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Abstract

A new bivariate distribution is proposed in this paper using the univariate modified Weibull extension distribution. The
proposed distribution is referred to as the bivariate Modified Weibull Extension (BMWE) distribution. The BMWE dis-
tribution is of Marshall-Olkin type. We discuss some of the statistical properties of the BMWE distribution. Applications
of this distribution to dependent competing risks data are discussed. The maximum likelihood estimators (MLE) of the
model parameters using both bivariate data and dependent competing risks data are discussed. These MLE’s cannot be
obtained in closed form. Therefore, numerical optimization methods are applied. A simulation study is carried out to
investigate the performance of the estimation technique. Two real data sets; one bivariate data set and another dependent
competing risks data set, are analyzed using the proposed distribution for illustrative and comparison purposes.
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1. Introduction

The Weibull distribution is one of the most commonly used life-time distributions in reliability and lifetime data analysis.
It is flexible for modeling failure time data, as the corresponding hazard rate function can be increasing, constant or
decreasing. But in many applications in reliability and survival analysis, an appropriate hazard rate function should be
of bathtub shape. The hazard rate function plays a central role to the work of reliability, see (Bebbington, Lai, & Zitikis,
2007b), (Bebbington, Lai, & Zitikis, 2007a) and the references therein. Models with a bathtub hazard rate function are
often needed in reliability analysis and decision-making when the system’s lifetime is to be modeled. Many parametric
probability distributions have been introduced to analyze real data sets with bathtub shaped hazard functions. The bathtub
shaped hazard function provides an appropriate conceptual model for some electronic and mechanical products as well as
the lifetime of humans (Sarhan & Apaloo, 2013). An extensive amount of work has been done related to bathtub shaped
hazard functions, see for example, (Sarhan, Tadj, & Hamilton, 2014), (Sarhan & Mustafa, 2022), (Sarhan & Zaindin,
2009), (Sarhan, 2009), (Sarhan & Kundu, 2009), (Sarhan, Abd EL-Baset, & Alasbahi, 2013), (Smith & Bain, 1975),
(Leemis, 1986), (Gaver & Acar, 1979), (Hjorth, 1980), (Mudholkar & Srivastava, 1993), and (Lemonte, 2013). (Xie, Tang,
& Goh, 2002) proposed a new modified extension of the Weibull distribution with a bathtub-shaped hazard rate function.
We refer to this extension as the Modified Weibull Extension (MWE) distribution. The probability density function (pdf),
the survival function (sf), and the hazard rate function (hrf) of the MWE(λ, α, γ) distribution are, respectively:

fMWE (x; λ, α, γ) = λγ
( x
α

)γ−1
exp

{
αλ

(
1 − exp

{( x
α

)γ})
+

( x
α

)γ}
, (1)

S MWE (x; λ, α, γ) = exp
{
λα

[
1 − e( x

α )γ ]}, and (2)

hMWE (x; λ, α, γ) = λγ
( x
α

)γ−1
exp

{( x
α

)γ}
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where x ≥ 0 and α, γ, λ > 0. Here α and λ are scale parameters while γ is a shape parameter. The Chen distribution
(Chen, 2000) with parameters λ and γ is a special case of the MWE with α = 1.

In many practical situations, multivariate lifetime data arise, and it is important to consider different distributions that could
be used to model such data. (Sarhan & Balakrishnan, 2007), (Sarhan, El-Gohary, El-Bassiouny, & Balakrishnan, 2009),
(Sarhan, Hamilton, Smith, & Kundu, 2011) , (Kundu, Sarhan, & Gupta, 2012) and (Sarhan, Apaloo, & Kundu, 2022)
used independent shock models to propose bivariate/multivariate lifetime distributions. These studies used the bivariate
distributions mainly to fit bivariate data sets. Such distributions can also be used to analyze dependent competing risks
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data. Recently, (Sarhan et al., 2022) used the same idea with Chen distribution to introduced a new bivariate distribution,
abbreviated as BCD, to fit bivariate data and dependent competing risks data sets.

In this paper, we will first use the independent shock model concept to introduce a new bivariate distribution using the
MWE distribution, named as the BMWE distribution. The BMWE distribution generalizes the BCD of (Sarhan et al.,
2022) . We study the properties of the BMWE distribution. We discuss how to use this new proposed distribution as a
dependent competing risks model. The maximum likelihood method is used to estimate the unknown parameters of the
BMWE distribution using both bivariate data and competing risks data.

The rest of the paper is organized as follows. In Section 2, we introduce the BMWE distribution and discuss some of its
basic properties. In Section 3, we discuss the dependent competing risks model. The maximum likelihood method using
bivariate data and dependent competing risks data is discussed in Section 4. Data generation and some simulation results
are presented in Section 5. In Section 6, we provide the analysis of two real data sets using the new proposed distribution
and compare it with the BCD. The paper is concluded in Section 7.

2. Method

2.1 The BMWE Distribution

The BMWE distribution can be formulated as follows. Let U1, U2, and U3 be independent random variables such that
U j ∼ MWE(λ j, α, γ), j = 1, 2, 3. Let X1 = min(U1,U3) and X2 = min(U2,U3). The distribution of the random vector
(X1, X2) follows the bivariate modified Weibull extension distribution, and it will be denoted by BMWE(λ1, λ2, λ3, α, γ).
This distribution can be interpreted in a reliability context as follows. Consider a reliability system consisting of two
units. The system units are subject to three independent fatal sources of shocks. A shock from the first source destroys
unit 1, a shock from the second source destroys unit 2, while a shock from the third source destroys both units. Let X1
and X2 be the lifetime of the system units 1 and 2, respectively. Then, X1 = min(U1,U3) and X2 = min(U2,U3). Under
the assumption that time at which the shocks occur (U1, U2 and U3) follow MWE distributions, as described above, the
joint distribution of (X1, X2) will follow the BMWE distribution. We can easily show that the marginal distributions of X1
and X2 follow MWE(λ1 + λ3, α, γ) and MWE(λ2 + λ3, α, γ), respectively.

Note that due to the fact that P(X1 = X2) = λ1
λ1+λ2+λ3

, while the Lebesgue measure of the set A = (x1, x2)|x1 = x2 > 0
is zero, the BMWE distribution will have both absolutely continuous and singular parts. This means that the BMWE
distribution is continuous but not absolutely continuous with respect to ordinary Lebesgue measure on (0,∞) × (0,∞).

The following theorem gives the joint survival and joint probability density functions of the BMWE distribution, and its
marginal distributions.

Theorem 1 Let (X1, X2) follow the BMWE(λ1, λ2, λ3, α, γ), then

1. The joint survival function of (X1, X2) is
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(4)

2. The joint probability density function of (X1, X2) is

fX1,X2 (x1, x2) =


f1 (x1, x2) if x1 > x2 > 0,
f2 (x1, x2) if x2 > x1 > 0,
f0 (x) if x1 = x2 = x > 0,

(5)

where

f1 (x1, x2) = fMWE (x1; λ1 + λ3, α, γ) fMWE (x2; λ2, α, γ)

f2 (x1, x2) = fMWE (x1; λ1, α, γ) fMWE (x2; λ2 + λ3, α, γ)

f0 (x) =
λ3

λ1 + λ2 + λ3
fMWE (x; λ1 + λ2 + λ3, α, γ)

Note: f1(x1, x2) and f2(x1, x2) are the continuous parts and f0(x) is the singular part of the joint pdf of the BMWE
distribution.
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3. The marginal distributions are MWE. That is, X j ∼MWE(λ j + λ3, α, γ), j = 1, 2.

Proof.

1. Using the definition of the joint survival function of (X1, X2), S X1,X2 (x1, x2) = P (X1 > x1, X2 > x2), we get

S X1,X2 (x1, x2) = P (U1 > x1,U3 > x1,U2 > x2,U3 > x2)

= P (U1 > x1) P (U2 > x2) P (U3 > max (x1, x2))

=

3∏
j=1

S MWE

(
x j; λ j, α, γ

)
, x3 = max (x1, x2)

Substituting from (1) into the above equation, we get S X1,X2 (x1, x2) as given in (4).

2. The absolutely continuous parts of the joint pdf of (X1, X2), f1(x1, x2) and f2(x1, x2) can be easily obtained by using
the relationship between the joint pdf and joint sf given by fX1,X2 (x1, x2) = ∂2

∂x1∂x2
S X1,X2 (x1, x2). The singular part

f0(x) can be obtained by using the following well know identity:

1 =

∫ ∞

0
f0(x) dx +

"
x1>x2

fX1,X2 (x1, x2) dx1 dx2 +

"
x1<x2

fX1,X2 (x1, x2) dx1 dx2.

3. It is straightforward using the definition of X j = min(U j,U3), j = 1, 2.

Special Case: The bivariate Chen distribution (BCD), that was proposed in (Sarhan et al., 2022), can be derived from
the BMWE distribution as a special case from the BMWE distribution when α = 1.

Figure 1 shows the absolutely continuous parts of the jpdf of (X1, X2) and the corresponding contour plots at some values
of the model parameters. While figure 2 displays the pdf and hrf of the marginal distribution of X1 at a set of parameter
values chosen to illustrate a bathtub shape for the hazard function. We used Matlab to draw these figures.

3. Dependent Competing Risks Model

In survival and reliability analysis one is often interested in the assessment of one risk in the presence of other risk factors.
In statistics, this is known as the competing risks problem. The competing risks model assumes that the data consists
of the failure time of the underlying object and the associated cause of failure. An extensive amount of study has been
carried out under both parametric and non-parametric assumptions, see for example the monograph by (Crowder, 2001) in
this respect. In this paper, we adopt the parametric setup along with the latent failure time assumption. Furthermore, it is
assumed here that there are two possible causes of death (competing risks), although the method can be easily generalized
to any fixed number of competing risks.

It is assumed in the competing risks model that the underlying experimental object (system, or a human, or an animal) is
under fatal attack from two competing risks. The object will be destroyed if it receives at least one attack from the two
risks. The attack from risk j ( j = 1, 2) occurs at time X j. When the object fails, we observe two quantities (T, δ), where
T represents the lifetime of the object, and δ is an indicator that describes the cause of failure. That is, T = min {X1, X2},
and

δ =


0 if the cause of failure is unknown,
1 if the risk 1 causes the failure, X1 < X2,
2 if the risk 2 causes the failure, X2 < X1.

(Crowder, 2001) includes an extensive literature dealing with the analysis of competing risks data based on the specific
continuous parametric distribution assumption on X1 and X2, assuming X1 and X2 to be independent random variables. In
many applications, the independence assumption will not hold. Therefore, competing risks models with dependent causes
of failure are needed in reliability/survival analysis.

Recently, to analyze the dependent competing risks data, some work adopted the assumption that (X1, X2) has a specific
bivariate distribution, see for example (Feizjavadian & Hashemi, 2015), (Shen & Xu, 2018), (Samanta & Kundu, 2021)
and (Sarhan et al., 2022). In this paper, we assume that that the joint distribution of (X1, X2) is the BMWE distribution.
This assumption produces a dependent competing risks model with risks that follow modified Weibull distributions. Under
this assumption, the risks will have either increasing, decreasing or bathtub shaped hazard rate functions. It follows that
the BMWE distribution can be applied to the analyis of a variety different types of lifetime data of dependent competing
risks type.

29



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 12, No. 3; 2023

Figure 1. The absolutely continuous parts of the joint pdf and the corresponding contour plots of the BMWE distribution
at different values for the model parameters: (i) λ1 = 0.063, λ2 = 0.072, λ3 = 0.023, α = 2160000, γ = 1.556; (ii);
λ1 = 0.3, λ2 = 0.4, λ3 = 0.7, α = 0.2, γ = 2.5; (iii) λ1 = 1.2, λ2 = 1, λ3 = 1.7, α = 0.2, γ = 2.5 (from top to bottom)
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Figure 2. The pdf and the hrf of the marginal distribution of X1 when λ1 = 1.2, λ2 = 1.0, λ3 = 1.7, α = 0.2, and γ = 0.5

4. Maximum Likelihood Estimation

In this section, we estimate the model parameters θ = (λ1, λ2, λ3, α, γ) using two different types of data. Type I Data
consists of simple random samples of the bivariate vector (X1, X2) that follows the new bivariate distribution. Type II
Data consists of dependent competing risks data (T, δ), with T = min{X1, X2}, where (X1, X2) follows a bivariate lifetime
distribution and δ represents the cause of failure. The maximum likelihood method is used to estimate model parameters.

Type I Data (Bivariate data): Let us assume that (X11, X21) , (X12, X22) , · · · , (X1n, X2n) is an independent and identical
random sample of (X1, X2) that follows the BMWE(λ1, λ2, λ3, α, γ). For simplicity, let us introduce the indicator variables
δi, i = 1, 2, · · · , n, where:

δi =


0 if Xi1 = Xi2 ,
1 if Xi1 < Xi2 ,
2 if Xi1 > Xi2 .

Using the above sample, the likelihood function can be expressed as

L1(θ) =

n∏
i=1

[
f2(x1i, x2i)

]I[δi=1] [ f1(x1i, x2i)
]I[δi=2] [ f0(x1i)

]I[δi=0] . (6)

Substituting from (5) into (6) , we get the log-likelihood function as

L1(θ) = −2(n1 + n2)(γ − 1) logα + (2n − n3) log γ +
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n j log(λ j + λ3) +
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2i
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+
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n∑
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I(δi = j)
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)
+

3∑
j=1

n j log λ j , (7)

where n j =
∑n

i=1 I(δi = j), j = 0, 1, 2, with I(A) = 1 if A is true and 0 otherwise.

In order to get the MLE of the model parameters, we need to maximize the log-likelihood function of the parameters,
for the given data, with respect to those unknown parameters. Equivalently, we need to solve the likelihood equations
derived by setting the first partial derivatives of the log-likelihood function with respect to the unknown parameters to
zero. The MLE’s are the solution of obtained likelihood equations, at which the Fisher information matrix should be
positive definite. The Fisher information matrix consists of the second partial derivatives of the log-likelihood function
with respect to the parameters. For the distribution in question, the likelihood equations cannot be solved analytically, and
we have used numerical routines in R software to solve the system of five non-linear equations in five unknowns.
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Type II Data (Dependent Competing Risks Data): We observe a pair of quantities: T , the system time to failure, and δ
an indicator of the cause of failure. This means that the observations in this case are (Ti, δi), i = 1, 2, · · · , n. The lifetime
experiment that produces this type of data can be illustrated as follows: (1) we put n independent and identical devices
(system/objects) on the life test, (2) each system is under the attack from two dependent competing risks which occur at
times X1 and X2, the system will fail once it receives one of the two attacks, (3) (X1, X2) follows the BMWE distribution;
(4) we observe (Ti, δi), i = 1, 2, · · · , n, where Ti = min(X1i, X2i), and δi is defined as δi = 1, if risk 1 causes the failure
(X1i < X2i); δi = 2, if risk 2 causes the failure (X2i < X1i) and δi = 0, if the cause of failure is unknown (X1i = X2i). The
likelihood function using such dependent competing risks data is

L2(θ) =

n∏
i=1

[
f ∗2 (ti)

]I[δi=1] [ f ∗1 (ti)
]I[δi=2]

[
f ∗0 (ti)

]I[δi=0]
, (8)

where

f ∗j (t) = λ jγ
( t
α

)γ−1
e

 t
α

γ
e

(λ1+λ2+λ3)α
(
1−e

( ti
α

)γ )
, j = 1, 2; (9)

f ∗0 (t) = λ3γ
( t
α

)γ−1
e

 t
α

γ
e

(λ1+λ2+λ3)α
(
1−e

( ti
α

)γ )
. (10)

Substituting (9) and (10) into (8), we can get logarithm of the likelihood function L2(θ), say L2(θ), as

L2(θ) = n0 ln λ3 + n1 ln λ1 + n2 ln λ2 + n ln γ + (γ − 1)
n∑

i=1

log ti + (11)

−n(γ − 1) logα + (λ1 + λ2 + λ3)α
n∑

i=1

(
1 − e

( ti
α

)γ)
+

n∑
i=1

( ti
α

)γ
.

To get the MLE of the model parameters, using dependent competing risks data, we set the first partial derivatives of
L2 with respect to the five parameters λ1, λ2, λ3, α, γ equal to zero, we get a system of five non-linear equations in five
unknowns. Solving the first three equations, in λ j, j = 1, 2, 3, we get λ j as a function of (α, γ), as

λ j (α, γ) =
n j

α
∑n

i=1

(
1 − exp

{(
ti
α

)γ}) , j = 1, 2, 3 (12)

Substituting (12) into (11), we can express the log-likelihood function as a function of two parameters (α, γ), sayL∗2(α, γ).
This will make the optimization of the log-likelihood function much easier, since we will deal only with two parameters
instead of five. Once we get the MLE of α and γ, we can use (12) to get the MLE of λ j, j = 1, 2, 3.

Since the MLE of the parameters using either type of data are not obtained in closed form, we can not get the explicit
sampling distributions of the MLEs of these parameters. Therefore, we cannot obtain exact confidence intervals for the
model parameters. Alternatively, we can use the large sample distribution of the MLE and the corresponding observed
Fisher information matrix to derive approximate confidence intervals for the model parameters.

5. Data Generation and Simulation Results

In this section, we present how to generate random samples from the proposed BMWE model. We then show how to use
the bivariate sample to generate dependent competing risks data from the underlying distribution.

5.1 Random Sample Generation From the BMWE Distribution

The following algorithm can be applied to generate random samples of bivariate variables (X1, X2) from the BMWE(λ1,
λ2, λ3,α,γ), ”Type I Data”:

Algorithm 1:

1. Specify the sample size n.

2. Specify the model parameters: λ1, λ2, λ3, α, γ

3. Generate three independent random values v1, v2, v3 from (0, 1) uniform distribution.
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4. Compute the following three random values that follow MWE(λi, α, λ):

ui = α

(
log

{
1 −

log (vi)
λα

}) 1
γ

i = 1, 2, 3

5. Compute x1i = min (u1, u3) and x2i = min (u2, u3).

6. Repeat steps 3-5 n−times, we obtain a simple random sample (x1i, x2i), i = 1, 2, · · · , n, for (X1, X2) that follows
BMWE(λ1, λ2, λ3, α, γ).

Given a random sample of the bivariate variables (X1, X2), say (x11, x21), (x12, x22), · · · , (x1n, x2n) from BMWE distribu-
tion, we can generate a dependent competing risks data set, ”Type II Data”, with two risks, by applying the following
algorithm:

Algorithm 2:

1. Compute the time to failure of the ith object as ti = min{x1i, x2i}, i = 1, 2, · · · , n,

2. Determine the cause of the ith failure, δi, as

δi =


1 if xi1 < xi2 (this indicates that risk 1 causes the failure)
2 if xi1 > xi2 (this indicates that risk 2 causes the failure)
0 if xi1 = xi2 (this indicates that the cause of failure is unknown.)

We used algorithms 1 and 2, to generate a random sample of 100 dependent competing risk observations from the BMWE
distribution when λ1 = 0.063, λ2 = 0.072, λ3 = 0.023, α = 2160000, γ = 1.556, as shown in Table 1. The reason for using
these values of the model parameters is that we get similar values when we analyze a real data set, as will be discussed
later in Section 6.

Using the generated sample, we computed the MLE of all model parameters, the corresponding standard error (SE), the
95% CI (lower and upper limits) and the percentage error (PE) as given in Table 2. Based on these results, we conclude
that the random number generation algorithms and the estimation process used in this paper work very well.

We used R software to do the simulation and all the computations for this example, the simulations in Section 5 and data
analysis in Section 6.

33



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 12, No. 3; 2023

Table 1. Dependent competing risks data set generated from the BMWE distribution

i 1 2 3 4 5 6 7 8 9 10
ti 1271.7 554.6 589.2 94.9 209.2 567.6 522.9 432.5 410.7 974.2
δi 2 2 2 2 2 2 1 2 2 2
i 11 12 13 14 15 16 17 18 19 20
ti 243.1 238.8 261.7 333.7 881.8 303.3 435.8 900.8 547.1 99.3
δi 1 2 2 0 1 1 1 1 1 2
i 21 22 23 24 25 26 27 28 29 30
ti 753.2 500.8 355.7 438.9 187.1 195.5 365.7 638.6 583.2 394.4
δi 1 1 0 2 1 2 0 2 2 2
i 31 32 33 34 35 36 37 38 39 40
ti 595.8 623.8 506.2 932.9 59.9 292.9 1085.9 1041.3 1037.5 852.9
δi 0 0 1 1 1 1 0 0 2 2
i 41 42 43 44 45 46 47 48 49 50
ti 241.9 768.1 124.6 339.8 377.3 562.1 381.9 181.1 1335.7 161.1
δi 0 2 1 1 1 1 1 1 1 1
i 51 52 53 54 55 56 57 58 59 60
ti 721.1 286.3 188.4 200.4 969.3 753.1 692.9 411.8 600.9 558.1
δi 0 2 2 2 2 1 1 1 2 2
i 61 62 63 64 65 66 67 68 69 70
ti 404.2 976.4 828.4 306.5 442.1 1006.4 571.9 507.3 467.5 511.1
δi 0 1 2 1 1 2 2 2 0 2
i 71 72 73 74 75 76 77 78 79 80
ti 470.1 434.7 151.1 88.6 573.7 919.9 614.5 869.1 231.5 216.1
δi 1 1 2 2 1 2 2 2 0 2
i 81 82 83 84 85 86 87 88 89 90
ti 895.9 1161.1 300.5 362.5 603.4 657.7 1486.5 691.3 87.7 239.5
δi 2 1 2 2 2 1 2 0 1 1
i 91 92 93 94 95 96 97 98 99 100
ti 785.4 224.7 133.4 78.3 276.5 230.6 163.5 997.1 398.6 943.1
δi 2 1 2 1 2 1 2 2 2 2

34



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 12, No. 3; 2023

Table 2. Parameters estimation using the generated sample in Table 1

θ̂ MLE SE Lower Upper PE
λ̂1 0.0612 0.0377 0.0011 0.1353 %2.73
λ̂2 0.0694 0.0376 0.0113 0.1432 %3.52
λ̂3 0.0218 0.0148 0.0027 0.0509 %4.88
α̂ 2159982 104.52 2159777 2160187 %0.001
γ̂ 1.546 0.0721 1.4054 1.6879 %0.611

5.2 Simulation Study

In this section we present a simulation study to show how the proposed methods work for different sample sizes and
different parameter values. In this simulation study we used the two algorithms 1 and 2 presented in the previous section
to generate samples with different sizes n = 100, 150, 200, 250, 1000 using two different sets of the model parameter
values. For every sample size, we perform the following: (1) generate 2000 samples; (2) for each sample, the MLE, its
squared deviation from the actual value, and a 95% confidence interval for each parameter are computed; (3) using the
2000 MLEs and 95% CIs, we computed the average value of the MLEs (AMLE); the mean squared error (MSE), and the
coverage probability (CP) for each parameter.

This strategy for the simulation is followed for the bivariate data sets and for the dependent competing risks data sets.
Tables 3 and ?? show the results for bivariate data and depending competing risks data, respectively. In this study, three
sets of parameter values were used. In set 1, it is assumed that λ1 = 0.3, λ2 = 0.4, λ3 = 0.7, α = 0.2, γ = 2.5; in set 2, it is
assumed that λ1 = 1.2, λ2 = 1, λ3 = 1.7, α = 0.2, γ = 2.5; and in set 3, it is assumed that λ1 = 0.3, λ2 = 0.4, λ3 = 0.7, α =

0.2, γ = 0.5.

Table 3. Simulation results for the bivariate data from BMWED using the three sets of parameters’ values. Set 1:
λ1 = 0.3, λ2 = 0.4, λ3 = 0.7, α = 0.2, γ = 2.5; set 2: λ1 = 1.2, λ2 = 1, λ3 = 1.7, α = 0.2, γ = 2.5 and set 3:
λ1 = 0.3, λ2 = 0.4, λ3 = 0.7, α = 0.2, γ = 0.5

θ̂ n
Set 1 Set 2 Set 3

AMLE MSE CP AMLE MSE CP AMLE MSE CP
λ̂1

100

0.43 0.1455 0.9165 1.51 1.3780 0.9130 0.36 0.0356 0.9155
λ̂2 0.56 0.2249 0.9145 1.26 1.0183 0.9130 0.48 0.0655 0.9110
λ̂3 1.00 0.7142 0.9170 2.14 2.9819 0.9175 0.83 0.1714 0.9520
α̂ 0.21 0.0018 0.9115 0.20 0.0017 0.9695 0.36 0.1784 0.9095
γ̂ 2.68 0.4233 0.9125 2.55 0.2582 0.9285 0.54 0.0205 0.9080
λ̂1

150

0.39 0.0802 0.9220 1.41 0.7389 0.9325 0.34 0.0185 0.9110
λ̂2 0.53 0.1413 0.9270 1.19 0.5258 0.9285 0.45 0.0285 0.9150
λ̂3 0.92 0.4420 0.9215 2.00 1.4055 0.9310 0.79 0.0860 0.9395
α̂ 0.21 0.0014 0.9095 0.20 0.0011 0.9705 0.32 0.1047 0.9045
γ̂ 2.64 0.3172 0.9140 2.54 0.1859 0.9275 0.53 0.0150 0.9065
λ̂1

200

0.37 0.0500 0.9215 1.36 0.5095 0.9180 0.33 0.0144 0.9200
λ̂2 0.49 0.0840 0.9235 1.13 0.3599 0.9170 0.45 0.0255 0.9160
λ̂3 0.87 0.2710 0.9175 1.93 1.0448 0.9255 0.78 0.0740 0.9300
α̂ 0.20 0.0012 0.9055 0.20 0.0010 0.9625 0.28 0.0593 0.9080
γ̂ 2.61 0.2527 0.9050 2.52 0.1469 0.9330 0.52 0.0111 0.9035
λ̂1

250

0.35 0.0418 0.9115 1.32 0.3559 0.9325 0.34 0.0131 0.9175
λ̂2 0.47 0.0712 0.9145 1.10 0.2531 0.9335 0.45 0.0219 0.9255
λ̂3 0.83 0.2226 0.9190 1.89 0.7613 0.9380 0.79 0.0627 0.9165
α̂ 0.20 0.0010 0.9080 0.20 0.0008 0.9650 0.26 0.0480 0.9010
γ̂ 2.57 0.2112 0.9060 2.52 0.1184 0.9455 0.51 0.0101 0.9040
λ̂1

1000

0.32 0.0103 0.9075 1.22 0.0734 0.9540 0.31 0.0030 0.9460
λ̂2 0.42 0.0181 0.9075 1.02 0.0532 0.9520 0.42 0.0050 0.9275
λ̂3 0.74 0.0538 0.9080 1.74 0.1510 0.9535 0.73 0.0145 0.9190
α̂ 0.20 0.0004 0.9025 0.20 0.0002 0.9565 0.21 0.0106 0.9140
γ̂ 2.52 0.0755 0.9060 2.50 0.0317 0.9485 0.50 0.0032 0.9160
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Table 4. Simulation results for the dependent competing risks data from BMWED using the three sets of parameters’
values. Set 1: λ1 = 0.3, λ2 = 0.4, λ3 = 0.7, α = 0.2, γ = 2.5; set 2: λ1 = 1.2, λ2 = 1, λ3 = 1.7, α = 0.2, γ = 2.5 and set 3:
λ1 = 0.3, λ2 = 0.4, λ3 = 0.7, α = 0.2, γ = 0.5

θ̂ n
Set 1 Set 2 Set 3

AMLE MSE CP AMLE MSE CP AMLE MSE CP
λ̂1

100

0.45 0.1639 0.9215 1.74 4.5560 0.8960 0.37 0.0418 0.9170
λ̂2 0.59 0.2785 0.9180 1.45 3.0209 0.9000 0.48 0.0623 0.9145
λ̂3 1.03 0.7791 0.9255 2.49 11.094 0.9010 0.85 0.1898 0.9385
α̂ 0.21 0.0022 0.9480 0.20 0.0028 0.9750 0.40 0.3428 0.9030
γ̂ 2.68 0.4469 0.9195 2.54 0.2924 0.9365 0.53 0.0208 0.9000
λ̂1

150

0.41 0.1198 0.9145 1.52 1.9245 0.9075 0.35 0.0280 0.9360
λ̂2 0.55 0.2109 0.9135 1.28 1.2720 0.9075 0.47 0.0473 0.9230
λ̂3 0.97 0.6338 0.9210 2.17 4.2002 0.9155 0.82 0.1369 0.9385
α̂ 0.21 0.0018 0.9305 0.20 0.0018 0.9530 0.33 0.1156 0.9040
γ̂ 2.63 0.3655 0.9055 2.53 0.1991 0.9345 0.52 0.0155 0.9060
λ̂1

200

0.38 0.0773 0.9090 1.45 1.1631 0.9215 0.34 0.0201 0.9230
λ̂2 0.51 0.1370 0.9025 1.22 0.8122 0.9205 0.46 0.0339 0.9250
λ̂3 0.89 0.3892 0.9095 2.07 2.2416 0.9235 0.81 0.0985 0.9350
α̂ 0.20 0.0015 0.9225 0.20 0.0015 0.9550 0.31 0.1034 0.9065
γ̂ 2.58 0.2942 0.9140 2.52 0.1689 0.9340 0.52 0.0141 0.9015
λ̂1

250

0.37 0.0637 0.9120 1.39 0.6535 0.9250 0.34 0.0126 0.9110
λ̂2 0.49 0.1152 0.9140 1.16 0.4627 0.9250 0.46 0.0294 0.9290
λ̂3 0.86 0.3510 0.9170 1.97 1.3191 0.9305 0.80 0.0850 0.9315
α̂ 0.20 0.0013 0.9135 0.20 0.0011 0.9510 0.28 0.0721 0.9060
γ̂ 2.57 0.2550 0.9040 2.52 0.1367 0.9425 0.51 0.0112 0.9040
λ̂1

1000

0.32 0.0110 0.9300 1.23 0.1056 0.9450 0.31 0.0023 0.9460
λ̂2 0.42 0.0192 0.9340 1.03 0.0774 0.9405 0.42 0.0039 0.9480
λ̂3 0.74 0.0586 0.9320 1.75 0.2084 0.9450 0.73 0.0119 0.9190
α̂ 0.20 0.0004 0.9210 0.20 0.0003 0.9595 0.22 0.0125 0.9325
γ̂ 2.52 0.0822 0.9225 2.50 0.0364 0.9515 0.50 0.0032 0.9335

Based on the simulation results, it is seen that in all cases, as the sample size increases, the AMLE of all parameters
approach their actual values, the MSE decreases and the coverage probability approaches the nominal confidence level.
This indicates consistency of the maximum likelihood estimate of the parameters.

6. Data Analysis

This section illustrates how the proposed BMWE distribution can be applied to real data sets. We analyze two real data
sets. The first is a bivariate data set and the second is a dependent competing risks data set.

6.1 Bivariate Real Data Set

In this subsection we analyze the Union of European Football Associations (UEFA) data set. This data was introduced in
(Meintanis, 2007). It consists of bivariate observations (X1i, X2i), i = 1, 2 · · · , 37. Here X1 measures the time in minutes
of the first kick goal scored by any team, while X2 is the time in minutes of the first goal of any type scored by the home
team. For more information about this data, we refer to (Meintanis, 2007) .

This data was analyzed by different researchers using different bivariate distributions. For example, (Meintanis, 2007) used
the Marshall-Olkin bivariate exponential (MOBE), (Kundu & Gupta, 2009) used the bivariate generalized exponential
(BVGE), (Sarhan et al., 2011) used the bivariate generalized linear failure rate (BGLFR) distribution, and recently (Sarhan
et al., 2022) used the bivariate Chen distribution (BCD). In this paper, we use the BMWE distribution to fit this data set.

To compare the performance of different non-nested distributions (BVGE, BGLFR, BCD, and BMWE) to fit the underly-
ing data set, we use Akaike Information Criterion (Akaike, 1969), AIC = −2L̂ + 2k, where k is the number of the model
parameters. Table 5 shows the MLE, the value of the log-likelihood function and AIC for all the models stated above. The
results for BVGE, BGLFR and BCD are taken from (Sarhan et al., 2022) .

(Sarhan et al., 2011) showed that BVGE should be rejected versus the BGLFR distribution at any significance level greater
than or equal to 0.05. (Sarhan et al., 2022) showed that BCD fits the data better than BGLFR model. Since BCD is a
special case from BMWE, we can use the likelihood ratio test statistic Λ that follows a chi square distribution with one
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degree of freedom χ1, to test the following hypothesis:

H0 : the data follow BCD, (α = 1) vs H1 : the data follow BMWE, (α , 1).

Using the results in Table 5, we get Λ = −2
(
L̂H0 − L̂H1

)
= 4.08, and the corresponding p-value is P(χ1 ≥ 4.08) =

0.04496. Therefore, BCD is rejected to fit this data set, in favor of BMWE distribution at at any significance level of
0.04496 or larger.

Table 5. The MLEs of the models parameters, corresponding log-likelihood function values and the values of AIC

Model MLEs L̂ AIC
BVGE α̂1 = 1.351, α̂2 = 0.465, α̂3 = 1.153, −296.94 601.87

β̂ = 0.039
BGLFR α̂1 = 0.492, α̂2 = 0.166, α̂3 = 0.411, −293.38 596.76

β̂ = 2.013 × 10−4, γ̂ = 8.051 × 10−4

BCD α̂1 = 2.817 × 10−3, α̂2 = 6.298 × 10−3, −288.23 584.47
α̂3 = 6.006 × 10−3, β̂ = 0.4035

BMWE λ̂1 = 0.0039, λ̂2 = 0.0086, λ̂3 = 0.0082, −286.19 582.38
α̂ = 47.55, γ̂ = 1.192

6.2 Diabetic Retinopathy Data Analysis

Diabetic retinopathy is a major eye condition that can cause vision loss and blindness in diabetic people. It affects blood
vessels in the retina (the light-sensitive layer of tissue in the back of the eye). The National Eye Institute in Bethesda,
Maryland conducted an experiment on 71 patients, to study the effect of laser treatment in reducing the risk of blindness.
For each patient, the laser treatment was given to a randomly selected eye. The time to blindness and the indicator whether
treated or untreated or both eyes became blind were recorded. The main aim of the experiment is to test whether the laser
treatment has any effect in delaying the onset of blindness in the diabetic retinopathy patients. The data set provided from
this experiment can be treated as a dependent competing risks data with two causes of failure (blindness). The data are
presented in Table 6, and the BMWE distribution may be a reasonable model to analyze this data set. (Sarhan et al., 2022)
used BCD to analyze this data and reported, based on the Kolmogorov-Smirnov test statistic, that the BCD is a good fit
for this data. In this paper, we use the BMWE distribution to fit this data set and compare it with the BCD. Table 7 shows
the MLE, the corresponding log-likelihood function and AIC for BCD and BMWE distribution.

Table 6. Diabetic Retinopathy Data

i 1 2 3 4 5 6 7 8 9 10 11 12
ti 266 91 154 285 583 547 79 622 707 469 93 1313
δi 1 2 2 0 1 2 1 0 2 2 1 2
i 13 14 15 16 17 18 19 20 21 22 23 24
ti 805 344 790 125 777 306 415 307 637 577 178 517
δi 1 1 2 2 2 1 1 2 2 2 1 2
i 25 26 27 28 29 30 31 32 33 34 35 36
ti 272 1137 1484 315 287 1252 717 642 141 407 356 1653
δi 0 0 1 1 2 1 2 1 2 1 1 0
i 37 38 39 40 41 42 43 44 45 46 47 48
ti 427 699 36 667 588 471 126 350 350 663 567 966
δi 2 1 2 1 2 0 1 2 1 0 2 0
i 49 50 51 52 53 54 55 56 57 58 59 60
ti 203 84 392 1140 901 1247 448 904 276 520 485 248
δi 0 1 1 2 1 0 2 2 1 1 2 2
i 61 62 63 64 65 66 67 68 69 70 71
ti 503 423 285 315 727 210 409 584 355 1302 227
δi 1 2 2 2 2 2 2 1 1 1 2

Based on the AIC, we can conclude that BMWE distribution fits this data set better than BCD. Moreover, performing the
Likelihood ratio test statistic, the value of the test statistic is 6.54 and the corresponding p-value is 0.0105. Therefore, the
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BCD is rejected in favor of the BMWE distribution at a level of significance larger than or equal to 0.0105.

Table 7. MLE, log-likelihood values, and AIC for BCD and BMWE distributions, using the Diabetic Retinopathy Data
Model MLE L̂ AIC
BCD α̂1 = 0.00123, α̂2 = 0.00145, α̂3 = 0.00044, γ̂ = 0.27221 −581.26 1170.52
BMWE λ̂1 = 0.063, λ̂2 = 0.072, λ̂3 = 0.023, α̂ = 2.16 × 106, −577.99 1165.98

γ̂ = 1.556

Finally, we can investigate if the laser treatment has a significant effect on delaying the blindness of the Diabetic Retinopa-
thy patients. To do so, we can test the following hypothesis

H0 : λ1 = λ2 (laser is not effective) vs H1 : λ1 , λ2 (laser is effective)

To use the likelihood ratio test, we need the the log-likelihood function, under H0, which can be obtained from (11), by
assuming that λ1 = λ2 = λ, as

L02(θ) = n0 ln λ3 + (n1 + n2) ln λ + n ln γ + (γ − 1)
n∑

i=1

log ti + (13)

−n(γ − 1) logα + (2λ + λ3)α
n∑

i=1

(
1 − e

( ti
α

)γ)
+

n∑
i=1

( ti
α

)γ
.

Under the null hypothesis, the MLE of the unknown parameters are λ̂ = 0.0196, λ̂3 = 0.0103, α̂ = 227279.9, γ̂ = 1.5552,
the corresponding log-likelihood value is −579.43. Thus, the value of the test statistic is Λ = −2 (577.99−579.43) = 2.88,
and the associated p-value is 0.09. Therefore, we cannot reject H0, in favor of H1, at any significance level less than or
equal to 9%, which indicates that the laser treatment does not have a significant effect in delaying blindness.

7. Conclusion

In this paper, we used the fatel shock model concept to propose a new bivariate distribution of Marshall-Olkin type, using
three independent univariate random variables that follow the modified Weibull extension distribution. This distribution is
referred to as BMWE distribution. The BMWE distribution generalizes the bivariate Chen distribution that was recently
proposed by (Sarhan et al., 2022). We illustrated how to use the BMWE distribution to fit dependent competing risks data
as well as bivariate data. We estimated the unknown parameters included in the BMWE distribution using the maximum
likelihood method based on two different types of data sets: a bivariate data set and a dependent competing risks data set.
We performed a simulation study to investigate the consistency of the maximum likelihood method. Finally, we used the
new proposed distribution to fit two real data sets (bivariate data and dependent competing risks data) and compared it
with the bivariate Chen distribution and some other related distributions and reported that the BMWE fits those data sets
better than the other distributions.

As a future plan, we can use either step-stress acceleration life test plan and/or progressively type-II censored data to
estimate the parameters of BMWE in the presence of either bivariate data or dependent competing risks data.
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