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Abstract

The shrinkage methods such as Lasso and Relaxed Lasso introduce some bias in order to reduce the variance of the regres-
sion coefficients in multiple linear regression models. One way to reduce bias after shrinkage of the coefficients would be
to apply ordinary least squares to the subset of predictors selected by the shrinkage method used. This work extensive-
ly investigated this idea and developed a new variable selection algorithm. The authors named this technique OLSAVS
(Ordinary Least Squares After Variable Selection). The OLSAVS algorithm was implemented in R. Simulations were
used to illustrate that the new method is able to produce better predictions with less bias for various error distributions.
The OLSAVS method was compared with a few widely used shrinkage methods in terms of their achieved test root mean
square error and bias.
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1. Introduction

Following (Pelawa Watagoda et al., 2021) and (Pelawa Watagoda, 2018), suppose that the response variable Yi and at least
one predictor variable xi, j are quantitative with xi,1 ≡ 1. Let xT

i = (xi,1, ..., xi,p) = (1 uT
i ) and β = (β1, ..., βp)T where β1

corresponds to the intercept. Then the multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (1)

for i = 1, ..., n. This model is also called the full model. Here n is the sample size, and assume that the random variables
ei are independent and identically distributed (iid) with variance V(ei) = σ2.

In matrix notation, these n equations become
Y = Xβ + e (2)

where Y is an n × 1 vector of response variables, X is an n × p matrix of predictors, β is a p × 1 vector of unknown
coefficients, and e is an n × 1 vector of unknown errors.
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(3)

The ith fitted value Ŷi = xT
i β̂ and the ith residual ri = Yi − Ŷi where β̂ is an estimator of β.

2. Variable Selection

Variable selection is the search for a subset of predictor variables that can be deleted with little loss of information if n/p
is large, and so the model with the remaining predictors is useful for prediction. Following (Olive and Hawkins, 2005)
and (Pelawa Watagoda and Olive, 2021), a model for variable selection can be described by

xTβ = xT
S βS + xT

EβE = xT
S βS (4)

where x = (xT
S , x

T
E)T , xS is an aS × 1 vector, and xE is a (p − aS ) × 1 vector. Given that xS is in the model, βE = 0

and E denotes the subset of terms that can be eliminated given that the subset S is in the model. Let xI be the vector of
a terms from a candidate subset indexed by I, and let xO be the vector of the remaining predictors (out of the candidate
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submodel). Suppose that S is a subset of I and that model (5) holds. Then

xTβ = xT
S βS = xT

S βS + xT
I/Sβ(I/S ) + xT

O0 = xT
I βI (5)

where xI/S denotes the predictors in I that are not in S . Since this is true regardless of the values of the predictors, βO = 0
if S ⊆ I.

3. Estimating Model Coefficients

The most common method of obtaining model coefficients (β) is the ordinary least squares. There are many method-
s for estimating β, including, Lasso by (Tibshirani, 1996), Elastic Net by (Zou and Hastie, 2005), Relaxed Lasso by
(Meinshausen, 2007), and ridge regression by (Hoerl and Kennard, 1970).

One can obtain the the least squares estimates for β1, β1, . . . , βp by minimizing (6)

Q =
n∑

i=1

(Yi − β1 − β2Xi,2 − . . . − βpXi,p)2 (6)

Ridge Regression coefficient estimates β̂R, are values that minimizes,

n∑
i=1

(yi − β1 −

p∑
j=2

β jXi j)2 + λ

p∑
j=2

β2
j = RS S + λ

p∑
j=2

β2
j (7)

Where λ ≥ 0 is a tuning parameter. The term, λ
∑p

j=2 β
2
j is known as the shrinkage penalty. This penalty value is small

when β1, ..., βp are close to zero, sending the β j values to zero but never reaching zero. For this reason, ridge regression
includes all predictors p in the model. The Lasso regression minimizes a similar quantity as in (7), except the shrinkage
penalty changed to λ

∑p
j=1 |β j|. Unlike ridge regression, often, some of the Lasso coefficients β̂ j are exactly equal to zero.

Following (Meinshausen, 2007), Relaxed Lasso controls model selection and shrinkage estimation by two separate pa-
rameters λ and φ. The Relaxed Lasso estimator is defined for λ ∈ [0,∞) and φ ∈ (0, 1] as

β̂
λ,φ
= argmin

β
n−1

n∑
i=1

(Yi − XT
i {β · 1Mλ

})2 + φλ|β|1 (8)

Where 1Mλ
is the indicator function on the set of variablesMλ ⊆ {1, ..., p} so that for all k ∈ {1, . . . , p}

β · 1Mλ
=

 0 k <Mλ

βk k ∈ Mλ

The Elastic Net estimator is defined as follows:

Given dataset (y, X), penalty parameter (λ1, λ2) and augmented data (y∗, X∗)

X∗(n+p)×p = (1 + λ2)(−1/2)

 X
√
λ2I

 , y∗(n+p) =

 y
0


Let γ =

λ1
√

1 + λ2
and β∗ =

√
1 + λ2β. Then the naı̈ve Elastic Net solves a Lasso-type problem

β̂
∗
= argmin

β∗
n−1

n∑
i=1

(Y∗i − X∗i
Tβ∗)2 +

λ1
√

1 + λ2
|β∗|1 (9)

Naı̈ve Elastic Net estimator is a two steps procedure: for each fixed λ2 it first finds the ridge regression coefficients,
and then it does the Lasso type shrinkage along the Lasso type solution path. As a result, the predictors will shrink
unnecessarily (double shrinkage). This would not help to reduce the variances much and also it will introduce unnecessary
extra bias, compared to the original Lasso or ridge. As a solution, it uses a correction factor

√
1 + λ2 to get the Elastic

Net solutions.
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Finally, the Elastic Net solutions can be written as β̂ =
√

1 + λ2β̂
∗
.

4. A New Method for Model Selection: OLSAVS

The shrinkage methods such as Lasso and Relaxed Lasso introduce some bias in order to reduce the variance of the
regression coefficients. As briefly mentioned in (Hastie et al., 2015), one way to reduce bias after shrinkage of the
coefficients would be to apply ordinary least squares to the subset of predictors selected by the shrinkage method used.
This work extensively explores this idea to develop a new variable selection algorithm. The authors named this technique
Ordinary Least Squares After Variable Selection (OLSAVS). OLSAVS method was implemented in R. The set of functions
can be found at https://hasthika.github.io/olsvspack.txt. The algorithm of the OLSAVS method is as
follows:

Algorithm: Ordinary Least Squares After Variable Selection (OLSAVS)
Repeat: following steps with a different shrinkage method

1) Apply the first shrinkage method to (Yi, xi) for i = 1, ..., n.
2) Obtain the k non-zero predictors selected by the shrinkage method in 1)
3) Apply Ordinary Least Squares on the subset of k predictors obtained in 2)

Stop
4) Select a single best model using cross-validated prediction error, Cp , (AIC), BIC, or adjusted R2

5. Simulation

This section contains the simulation setup and the results.

5.1 Simulation Setup

The statistical software, R (see (R Core Team, 2020)) was used to generate (Yi, xi) for i = 1, ..., n. The regression
parameters β were set to (1, 1, . . . , 1, 0, . . . , 0) with k + 1 ones, p− k − 1 zeroes where p is the total number of predictors,
and k is the number of non-trivial predictors. Then for a given regression method, the regression coefficients, β̂ were
obtained using the proposed method. This process was repeated 5000 times (runs). For each run, the difference between
the regression parameters β and the regression coefficients, β̂ were obtained using the Minkowski distance. The average
difference (Diff) was calculated by averaging all 5000 runs. The test root mean square error was also obtained using a set
of test observations and averaged over the 5000 runs (TRMSE). p = n/5, n/2, or n − 1 were used as the total number of
predictors and k = 1, 19, or p − 1 as the number of non-trivial predictors in the model. As per the easiness of coding the
relation cor(xi, x j) = ρ = (2ψ + (p − 3)ψ2)/(1 + (p − 2)ψ2) was used, for i , j, where, xi, x j are non-trivial predictors.
As ψ increases the correlation between preceptors, ρ grows. ψ = 0, 0.3 or 0.9 were used with five error distributions with
zero mean.

1. N(0, 1), the normal distribution with mean 0 and variance 1 which is commonly used in simulation studies.

2. t3, a t distribution with degrees of freedom 3, one of the heavy-tailed distributions.

3. EXP(1) − 1, an exponential distribution with mean 0. This distribution is not very commonly used in simulations
but found in many real-life situations, a non-symmetric error distribution

4. uni f orm(−1, 1), a uniform distribution in the rage of −1 and 1.

5. 0.9N(0, 1) + 0.1N(0, 100), a mixture of normal distributions.

The simulation study was conducted in R.

5.2 Simulation Results

Table 1 compares the OLSAVS method to Lasso with normal errors with mean 0 and variance 1. Notice in the TRMSE
column, when the number of non-trivial predictors (k) is low, Lasso and the OLSAVS method perform equally well. How-
ever, as k and the correlation between the predictors increase, the OLSAVS method outperformed Lasso with noticeably
larger distances between the OLSAVS and Lasso TRMSE values. This trend continues throughout the table. The OL-
SAVS stays consistent throughout for the TRMSE values, whereas the Lasso shows a lot of variability. Except for the
case of k = 1 and ψ = 0.9, the Lasso either came close or betters OLSAVS in the difference value (Diff column). Other
than this certain case, the OLSAVS method significantly bettered the Lasso.

The side-by-side boxplots in Figure 1, compare the TRMSE results for two randomly selected rows in table 1 for n = 100
and n = 200. OLSAVS has a smaller median TRMSE and a lower variation in the results than the Lasso. It also appears
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Table 1. TRMSE and difference values for OLSAVS vs. Lasso for ei ∼ N(0, 1)

TRMSE Diff

n p k ψ OLSAVS Lasso OLSAVS Lasso

100 20 1 0 1.0478 1.021 0.01657 0.1449

100 20 1 0.3 1.0417 1.0199 0.1124 0.1549

100 20 1 0.9 1.0083 1.0057 0.6455 0.6635

100 20 19 0 1.1112 1.1107 0.0037 0.0122

100 20 19 0.3 1.1112 1.1377 0.0055 0.0158

100 20 19 0.9 1.1543 2.3451 1.5667 7.5674

100 50 1 0 1.0916 1.0369 0.0268 0.181

100 50 1 0.3 1.0708 1.0303 0.1654 0.2028

100 50 1 0.9 1.0142 1.0059 0.9511 0.5929

100 50 49 0 1.3973 1.4014 0.0043 0.0149

100 50 49 0.3 1.5522 4.353 0.0163 0.0557

100 50 49 0.9 2.1118 9.4775 8.8016 43.9716

200 40 1 0 1.0386 1.0175 0.0225 0.1208

200 40 1 0.3 1.0316 1.0157 0.1044 0.1327

200 40 1 0.9 1.0108 1.005 0.7825 0.4165

200 40 39 0 1.117 1.119 0.002 0.0095

200 40 39 0.3 1.117 2.5606 0.0028 0.0369

200 40 39 0.9 1.6985 6.8533 5.8545 32.8388

200 100 1 0 1.0691 1.0261 0.0354 0.1454

200 100 1 0.3 1.0605 1.0251 0.1392 0.1653

200 100 1 0.9 1.0184 1.0045 0.9712 0.0855

200 100 99 0 1.4495 1.4561 0.0034 0.0132

200 100 99 0.3 3.166 11.4553 0.1379 0.488

200 100 99 0.9 3.7274 27.9646 17.4699 93.9076
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(a) Table 1, Plot 1 (n = 100) (b) Table 1, Plot 2 (n = 200)

Figure 1. Box plots for table 1 showing simulation results for OLSAVS vs. Lasso regression with error type 1

for this simulation, for Lasso with normal errors, when the sample size increases, so does the variation in the regression
coefficients while OLSAVS maintains the same low variability.

Table 2 has the same structure as in Table 1 but the simulation was done with error type 2. The Lasso seems to narrowly
outperform OLSAVS when k = 1. However, as the k increases, the TRMSE favored the OLSAVS method significantly.
Additionally, as the correlation between the non-trivial predictors increases, notice the large distance increase between the
two methods in the TRMSE. In the Diff column in Table 2, the OLSAVS method outperformed Lasso by a large majority.

Figure 2 shows two simulation plots pulled from table 2. Looking at two cases, each varying in sample size, the OLSAVS
does edge-out Lasso regression with the error type being from a t-distribution. However, unlike in Figure 1, the variation
in the plot now decreases as expected when the sample size increases.

Table 3 compares OLSAVS with Lasso with the error being from the exponential distribution. A similar trend occurs
in the TRMSE column as in Table 2. As the non-trivial predictors are increased to p − 1 or the correlation between the
predictors increased, OLSAVS produced lower TRMSE than Lasso. The OLSAVS seems to dominate the majority of the
difference values.

Figure 3 shows boxplots gathered from two simulations in table 3. In the two plots shown, yet again the OLSAVS edges
out the Lasso and has a much shorter variation in the box plot. Lasso with an exponential error does compete in the
n = 100 plot but then has a much larger gap when the sample size is doubled.

Table 4 uses uniformly distributed errors with zero mean. Once again, the same trend appears in the TRMSE values
between the OLSAVS and Lasso estimates as before. The difference for the simulations remains mostly the same as for
previous simulations for Lasso with an exponential distribution.

In figure 4, the variation for either method is large compared to figure 1, however, OLSAVS still has the smaller average
TRMSE. Once the sample size increases, both the variation and the average TRMSE shrinks for each method, but the
OLSAVS still maintains the advantage in each.

Tables 5 and 6, compare the OLSAVS method with Relaxed Lasso regression with normal errors and with exponential
errors respectively. Much like the results for Lasso regression, The Relaxed Lasso appears to have a slight advantage when
k = 1. However, once k increases, OLSAVS begins to have much smaller TRMSE values. However, the Relaxed Lasso
is more competitive for normally distributed errors than the Lasso. The differences in table 6 show the OLSAVS method
performing well in terms of bias of the regression coefficients. Additionally, the OLSAVS provides more consistent
differences overall.

Figure 5 shows simulation results between OLSAVS and Relaxed Lasso with error type 1 while figure 6 shows results
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Table 2. TRMSE and difference values for OLSAVS vs. Lasso for ei ∼ t3

TRMSE Diff

n p k ψ OLSAVS Lasso OLSAVS Lasso

100 20 1 0 1.3677 1.3362 0.0260 0.1882

100 20 1 0.3 1.3551 1.3317 0.1497 0.2031

100 20 1 0.9 1.3178 1.3169 0.6539 0.7482

100 20 19 0 1.4441 1.4442 0.0047 0.0130

100 20 19 0.3 1.4441 1.4590 0.0061 0.0142

100 20 19 0.9 1.4487 2.4245 1.8395 7.2843

100 50 1 0.3 1.3704 1.3311 0.2075 0.2549

100 50 1 0.9 1.3060 1.3015 0.9523 0.6991

100 50 49 0 1.8360 1.8418 0.0076 0.0076

100 50 49 0.3 1.9877 4.4636 0.0245 0.0245

100 50 49 0.9 2.2778 9.6242 8.8102 43.9438

200 40 1 0 1.3453 1.3165 0.0351 0.1550

200 40 1 0.3 1.3324 1.3163 0.1351 0.1707

200 40 1 0.9 1.3075 1.3033 0.8243 0.5671

200 40 39 0 1.4351 1.4355 0.0036 0.0107

200 40 39 0.3 1.4351 2.5826 0.0048 0.0376

200 40 39 0.9 1.8981 6.7108 5.7510 32.8242

200 100 1 0 1.3837 1.3189 0.0460 0.1847

200 100 1 0.3 1.3559 1.3153 0.1774 0.2115

200 100 1 0.9 1.3096 1.2998 1.1920 0.2210

200 100 99 0 1.8397 1.8487 0.0058 0.0147

200 100 99 0.3 3.3891 11.4710 0.1501 0.4976

200 100 99 0.9 3.8424 27.4098 17.2990 93.9071
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(a) Table 2, Plot 1 (n = 100) (b) Table 2, Plot 2 (n = 200)

Figure 2. Box plots for table 2 showing simulation results for OLSAVS vs. Lasso regression with error type 2

(a) Table 3, Plot 1 (n = 100) (b) Table 3, Plot 2 (n = 200)

Figure 3. Box plots for table 3 showing simulation results for OLSAVS vs. Lasso regression with error type 3
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Table 3. TRMSE and difference values for OLSAVS vs. Lasso for ei ∼ exp(1) − 1

TRMSE Diff

n p k ψ OLSAVS Lasso OLSAVS Lasso

100 20 1 0 1.0589 1.0366 0.0208 0.1416

100 20 1 0.3 1.0287 1.0099 0.1123 0.1533

100 20 1 0.9 0.9913 0.9900 0.6264 0.6519

100 20 19 0 1.1055 1.1063 0.0033 0.0118

100 20 19 0.3 1.1055 1.1583 0.0046 0.0148

100 20 19 0.9 1.1335 2.3835 1.5415 7.5833

100 50 1 0 1.0948 1.0456 0.0232 0.1804

100 50 1 0.3 1.0767 1.0414 0.1689 0.2039

100 50 1 0.9 1.0263 1.0188 0.9343 0.5814

100 50 49 0 1.4078 1.4105 0.0045 0.0147

100 50 49 0.3 1.5744 4.3752 0.0153 0.0520

100 50 49 0.9 2.1137 9.5345 8.8138 44.0251

200 40 1 0 1.0298 1.0071 0.0202 0.1201

200 40 1 0.3 1.0202 1.0037 0.1063 0.1331

200 40 1 0.9 0.9969 0.9925 0.7664 0.4067

200 40 39 0 1.1034 1.1048 0.0026 0.0097

200 40 39 0.3 1.1034 2.4771 0.0035 0.0380

200 40 39 0.9 1.7076 6.7040 5.8761 32.8648

200 100 1 0 1.0522 1.0122 0.0371 0.0371

200 100 1 0.3 1.0356 1.0101 0.1402 0.1657

200 100 1 0.9 1.0067 0.9953 0.9636 0.0896

200 100 99 0 1.4138 1.4192 0.0037 0.0131

200 100 99 0.3 3.1658 11.2754 0.1451 0.4836

200 100 99 0.9 3.6705 27.4919 17.5606 93.9063
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Table 4. TRMSE and difference values for OLSAVS vs. Lasso for ei ∼ uni f orm(−1, 1)

TRMSE Diff

n p k ψ OLSAVS Lasso OLSAVS Lasso

100 20 1 0 0.6087 0.5952 0.0112 0.0843

100 20 1 0.3 0.6024 0.5945 0.0662 0.0900

100 20 1 0.9 0.5905 0.5879 0.5773 0.4067

100 20 19 0 0.6360 0.6369 0.0023 0.0103

100 20 19 0.3 0.6360 0.9626 0.0031 0.0308

100 20 19 0.9 0.7599 2.3075 1.3762 7.8005

100 50 1 0 0.6265 0.5999 0.0177 0.1043

100 50 1 0.3 0.6169 0.5955 0.0943 0.1160

100 50 1 0.9 0.5917 0.5826 0.7318 0.2120

100 50 49 0 0.8221 0.8299 0.0028 0.0127

100 50 49 0.3 1.0467 4.3592 0.0121 0.0573

100 50 49 0.9 1.9089 9.4600 9.0251 44.0993

200 40 1 0 0.6078 0.5907 0.0127 0.0697

200 40 1 0.3 0.6016 0.5904 0.0604 0.0760

200 40 1 0.9 0.5886 0.5836 0.4935 0.1028

200 40 39 0 0.6506 0.6506 0.0013 0.0088

200 40 39 0.3 0.6506 2.5639 0.0018 0.0388

200 40 39 0.9 1.4729 6.8174 5.9630 33.0055

200 100 1 0 0.6130 0.5903 0.0123 0.0831

200 100 1 0.3 0.5967 0.5967 0.0898 0.0973

200 100 1 0.9 0.5902 0.5830 0.5646 0.0216

200 100 99 0 0.8125 0.8243 0.0021 0.0119

200 100 99 0.3 2.9615 11.3001 0.1460 0.4744

200 100 99 0.9 3.5458 27.3187 17.4181 93.9087
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(a) Table 4, Plot 1 (n = 100) (b) Table 4, Plot 2 (n = 200)

Figure 4. Box plots for table 4 showing simulation results for OLSAVS vs. Lasso regression with error type 4

(a) Table 5, Plot 1 (n = 100) (b) Table 5, Plot 2 (n = 200)

Figure 5. Box plots for table 5 showing simulation results for OLSAVS vs. Relaxed Lasso regression with error type 1
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Table 5. TRMSE and difference values for OLSAVS vs. Relax Lasso for ei ∼ N(0, 1)

TRMSE Diff

n p k ψ OLSAVS R Lasso OLSAVS R Lasso

100 20 1 0 1.05004 1.03955 0.01180 0.04069

100 20 1 0.3 1.04307 1.03993 0.11183 0.11699

100 20 1 0.9 1.00809 1.00586 0.63942 0.67805

100 20 19 0 1.11518 1.11527 0.00315 0.00298

100 20 19 0.3 1.11518 1.12323 0.00384 0.00384

100 20 19 0.9 1.14518 1.44021 1.54564 7.55956

100 50 1 0 1.10563 1.08454 0.02597 0.05857

100 50 1 0.3 1.09096 1.08971 0.16601 0.16668

100 50 1 0.9 1.03093 1.02483 0.95682 0.60006

100 50 49 0 1.42151 1.42127 0.00415 0.00446

100 50 49 0.3 1.57851 3.89696 0.01567 0.01567

100 50 49 0.9 2.12296 4.80282 8.87674 45.66343

200 40 1 0 1.03855 1.03304 0.02126 0.02466

200 40 1 0.3 1.03295 1.03285 0.10517 0.10524

200 40 1 0.9 1.01005 1.00655 0.78436 0.42916

200 40 39 0 1.12531 1.12531 0.00267 0.00267

200 40 39 0.3 1.12531 1.80026 0.00386 0.12240

200 40 39 0.9 1.70105 3.57716 5.88467 33.41152

200 100 1 0 1.06191 1.05162 0.02599 0.03373

200 100 1 0.3 1.04883 1.04896 0.13610 0.13720

200 100 1 0.9 1.01643 1.00291 0.96788 0.96788

200 100 99 0 1.40641 1.40518 1.40518 0.00281

200 100 99 0.3 3.15561 10.08956 0.14074 0.92836

200 100 99 0.9 3.71833 9.86930 17.35998 97.95932

Note – R Lasso: Relaxed Lasso
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Table 6. TRMSE and difference values for OLSAVS vs. Relaxed Lasso for ei ∼ EXP(1) − 1

TRMSE Diff

n p k ψ OLSAVS R Lasso OLSAVS R Lasso

100 20 1 0 1.36487 1.34437 0.02908 0.08346

100 20 1 0.3 1.34847 1.34209 1.34209 0.15530

100 20 1 0.9 1.30332 1.30211 0.62132 0.74412

100 20 19 0 1.44316 1.44326 0.00553 0.00605

100 20 19 0.3 1.44316 1.44720 0.00764 0.03972

100 20 19 0.9 1.43871 1.65548 1.83681 7.26831

100 50 1 0 1.44446 1.40636 0.03604 0.10807

100 50 1 0.3 1.41096 1.40477 0.20648 0.21225

100 50 1 0.9 1.34176 1.33864 0.95980 0.71164

100 50 49 0 1.85165 1.85164 0.00554 0.00698

100 50 49 0.3 2.00740 4.14320 4.14320 4.14320

100 50 49 0.9 2.31574 4.91246 8.71224 45.59930

200 40 1 0 1.33118 1.31585 0.03086 0.05388

200 40 1 0.3 1.31769 1.31472 0.13591 0.13865

200 40 1 0.9 1.29278 1.28860 0.84014 0.58889

200 40 39 0 1.44431 1.44436 0.00272 0.00272

200 40 39 0.3 1.44431 2.02409 0.00388 0.13289

200 40 39 0.9 1.91426 3.72937 5.77462 33.17816

200 100 1 0 1.35272 1.32707 0.04958 0.07102

200 100 1 0.3 1.33008 1.32910 0.18092 0.18116

200 100 1 0.9 1.28972 1.27810 1.19952 0.21588

200 100 99 0 1.80251 1.80167 0.00513 0.00464

200 100 99 0.3 3.31817 10.32727 0.14145 0.92488

200 100 99 0.9 3.76114 9.86319 17.36192 97.95763

Note – R Lasso: Relaxed Lasso
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(a) Table 6, Plot 1 (n = 100) (b) Table 6, Plot 2 (n = 200)

Figure 6. Box plots for table 6 showing simulation results for OLSAVS vs. Relaxed Lasso regression with error type 2.

with error type 2. Figure 6 follows closely to the results from figure 5. The Relaxed Lasso seems to have a much larger
variation for error types 1 and 2 compared to OLASVS.

6. Real Data Example

Wisconsin nursing home data set provided by the Wisconsin Department of Health and Family Services (DHFS) was used
as the real data example, see (Rosenberg et al., 2007). The goal of this data set is to utilize nursing home capacity. The
years 2000 and 2001 were considered, with 362 and 355 facilities respectively. However, 10 observations were removed
for containing missing values. The data set contains 12 variables, with total patient-years (TPY) being the response
variable.

To determine how OLSAVS performs, the data set was split into testing and training sets. 60% of the data was allocated to
be in the training set and 40% was in the testing set. The TRMSE was recorded and compared the values of the OLSAVS
method to those of Lasso, Relaxed Lasso, and Elastic Net.

Table 7, summarizes the results. Each of these side-by-side results shows that the OLSAVS method edges out each of the
other methods considered for this real-world example.

Table 7. TRMSE comparison for OLSAVS vs. common methods using Wisconsin nursing home data

Method OLSAVS Elastic Net OLSAVS Lasso OLSAVS Relaxed Lasso

TRMSE 7.956877 8.071371 8.007678 8.044224 8.007678 8.013652

7. The R Package

The R function used for the simulation, a function we used to produce graphs, and a function for performing the OLSAVS
regression can be found under https://hasthika.github.io/olsvspack.txt. To load this package: use
source("https://hasthika.github.io/olsvspack.txt")

8. Conclusions

The new method for variable selection, OLSAVS involves applying ordinary least squares to a subset of predictors selected
from a specific variable selection method such as Lasso, Relax Lasso, or Elastic Net. We expected the OLSAVS to reduce
the bias in the regression coefficients introduced by the shrinkage method and lead to the model being close-fitting while
keeping the consistency of the reduced variance from the shrinkage method. Simulation results show that the OLSAVS
method not only reduced the bias of the regression coefficient but also further reduced the variance of the estimates.
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Furthermore, the OLSAVS method performs well in terms of prediction error as well. As discussed in section 5.2, the
test root mean square errors when using OLSAVS for all error types studied are either significantly low or equal to the
competing shrinkage method. It is interesting to notice that the prediction accuracy drastically decreases as the correlation
between the predictors increases when using commonly used shrinkage methods. Prediction accuracy decreases further
with the number of non-trivial predictors. OLSAVS method outperformed the other shrinkage method studied in both of
the scenarios mentioned above and produced much lower test root mean square error values.
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