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Abstract 

Interval estimation of a binomial proportion has had a consistent presence in the statistical literature through the years. 

Many interval procedures have been developed for a single proportion as well as for the difference of two proportions. 

However, little work has been conducted on the joint estimation of two binomial proportions. In this paper, we construct 

four confidence regions for two binomial proportions based on three statistics: the Wald (W), adjusted Wald (W*), score 

(S), and likelihood ratio (LR) statistics. Once the regions have been established, we compare their coverage 

probabilities and average areas for different parameter and sample size configurations. For small-to-moderate sample 

sizes, this paper finds that the three regions based on the W*, S, and LR statistics have good coverage properties, with 

the score region usually having the smallest average area. Finally, we apply these four confidence regions to some real 

data in veterinary science and medicine for the joint estimation of important proportions. 

1. Introduction 

Interval estimation of a binomial proportion has a long and popular history dating back to the development of 

confidence intervals over eighty years ago (Schilling and Doi 2014). Most confidence intervals are based on 

large-sample theory and yield very similar results in the case of a large sample, but in the presence of little data, 

discrepancies occur between the intervals in terms of average width and probability coverage problems. Agresti and 

Coull (1998) provide a nice overview of the problem. They also consider the common problem of estimating the 

difference between two proportions. In addition, Viana (1991) considers joint estimation of several binomial proportions 

from the Bayesian perspective, though not credible regions for such proportions. 

While much work has been done on interval estimation of a single proportion (Newcombe 1998a) and the difference of 

two proportions (Newcombe 1998b), little work has been done on joint estimation of two binomial proportions using a 

confidence region. In order to motivate the need for such a confidence region, consider the following example. Suppose 

that 1 .9p   and 2 .8p   for two populations while 1 .2p   and 2 .1p   for two other populations. Interval estimation 

techniques for the difference of the two proportions would lead to similar results; however, information regarding where 

the two proportions might lie individually is lost. A joint confidence region for 1p  and 2p  not only allows one to 

compare the two proportions but also retains information about plausible values of the individual proportions, as well as 

any interaction between the two proportions on the unit square. Such a confidence region may also be used to test the 

hypothesis 0 1 2:H p p d   by checking to see if the line 1 2p p d   lies in the confidence region. While Elliot and 

Riggs (2015) considered joint estimation of two negative binomial proportions, the only scholarly work that we have 

found for two binomial proportions is from Reiczigel, Abonyi, and Singer (2008), who proposed an exact confidence 

region for two binomial proportions. Although this method maintains appropriate coverage properties, it is 

computationally intensive and requires the application of a complicated algorithm, which may be out of reach for the 

researcher who is not well versed in computer programming or cannot obtain an appropriate computer application from 

the author. Another possible joint estimation technique is the rectangular confidence set created by computing two 

1   confidence intervals, one for 1p  and one for 2p . While this method is easy to implement, it results in larger 

than necessary areas. In this paper, we wish to develop and study more straightforwardly-developed confidence regions 

that can be used to jointly estimate 1p  and 2p  from two independent binomial distributions. 

The remaining sections will be outlined as follows. In Section 2, we propose three confidence regions for 1p  and 2p  

by inverting the Wald, score, and likelihood ratio statistics. In Sections 3 and 4, we compare the regions' average areas 

and coverage probabilities using a Monte Carlo simulation. In Section 5, we apply our regions to two real-world data 

sets, and finally, in Section 6, we make some remarks regarding our conclusions. 
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2. Confidence Regions  

Suppose we have two populations ( 1,2i  ) for which the presence of a particular attribute is of interest, such as whether 

or not a person smokes. Let 0 1ip   be the proportion of cases in population i possessing the attribute. Now, for each 

population, suppose we gather a random sample of size in  and that the two samples are independent of each other. Let 

iY  be the number of successes from each sample. Given this sampling structure, the joint probability mass function for 

( 1Y , 2Y ) is 

             1 2 1 1 2 2
1 2

1 2 1 2 1 2

1 2

( , ) (1 ) (1 )
y y n y n y

n n
f y y p p p p

y y

   
    
  

                        (1) 

where 0,1,...,  and 0 1i i iy n p   . 

Therefore, the log-likelihood function is  

1 2 1 1 1 1 1 2 2 2 2 2( , ) ln( ) ( ) ln(1 ) ln( ) ( ) ln(1 )p p C x p n y p x p n y p          

where C is a constant. From this expression, the maximum likelihood estimator (MLE) of ip  is straightforwardly 

show to be  

ˆ i
i

i

x
p

n
 . 

Also, from the log-likelihood function, we find that the diagonal elements of Fisher’s information matrix are given by  

( )
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while the off-diagonal elements are 0 by virtue of independent samples. Note that 
1( )ii iI p

 is the variance of ˆ
ip , or 

that 
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We propose creating the first confidence region by inverting a Wald statistic. The Wald statistic is 

𝑊 =
(𝑝1−𝑝1)2

𝜎̂𝑝̂1
2 +

(𝑝̂2−𝑝2)2

𝜎̂𝑝̂2
2 .  

Note that W is approximately distributed chi-squared with two degrees of freedom for large sample sizes. Therefore, an 

approximate 100(1-α)% confidence region for 1p  and 2p  is generated by solving 

2

1 (2)W                                           (2) 

where 
2

1 (2)   is the (1-α)th percentile of a chi-squared distribution with two degrees of freedom. We note that the 

boundary of the region in (2) is an ellipse that is centered at (𝑝̂1, 𝑝̂2) with axes lengths of 2 2

ˆ1
ˆ2 (2)

ii pa   . Hence, the 

area of (2) is given by  4𝜋𝜒1−𝛼
2 (2)𝜎̂𝑝̂1

𝜎̂𝑝̂2
 and intuitively reduces as either standard error of ˆ

ip  reduces. 

Agresti and Coull (1998) propose an “adjusted” Wald confidence interval for a single proportion simply by adding two 

successes and two failures in an effort to improve probability coverage when the sample size is not large. In a similar 

approach, we propose an “adjusted” Wald confidence region by inverting the following statistic 

1 2
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where 
( 2)

( 4)
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. Therefore, an approximate 100(1-α)% confidence region for 1p  and 2p  is 

generated by solving 

2

1* (2)W   .                                       (3) 

Similar to (2), the boundary of the region in (3) is an ellipse that is centered at 1 2( , )p p  with axes lengths of
2 2

1
ˆ2 (2)

ii pb   .  

We propose creating the next confidence region by inverting the following score statistic,  

2 2

1 1 1 2 2 2
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which is approximately distributed chi-squared with two degrees of freedom for large sample sizes. Thus, an 

approximate 100(1-α)% confidence region for 1p  and 2p  is generated by solving 

     
2

1 (2)S   .                                        (4) 

We propose creating the last confidence region by inverting a likelihood ratio statistic, which is 

𝐿𝑅 = −2[ℓ(𝑝1, 𝑝2) − ℓ(𝑝̂1, 𝑝̂2)], 

and is approximately distributed chi-squared with two degrees of freedom for large sample sizes. Thus, an approximate 

100(1-α)% confidence region for 1p  and 2p  is generated by solving 

        
2

1 (2)LR   .                                       (5) 

We note that the elliptical properties of (2) and (3) make it easy to graph, while (4) and (5) must be graphed with the aid 

of a computer. 

3. Coverage Probabilities and Average Areas  

Given that the confidence regions (2) – (5) are based on asymptotic approximations, the actual coverage probabilities 

may be substantially different from the nominal coverage probabilities. For each of the four confidence regions, the 

actual coverage probability is given by 

2 1

1 2 1 2( , ) ( , )CR

y y

CP p p f y yI
, 

where 1 2( , )CR p pI  is an indicator function that equals one if the pair 1 2( , )p p  lies in the region CR and equals zero 

otherwise. CP for each confidence region is estimated using a Monte Carlo technique. In particular, for a fixed 1 2( , )p p  

and 1 2( , )n n , 1 2( , )y y  is randomly generated from (1). Then, we check if the inequalities in (2) - (5) are satisfied. This 

process is carried out 10,000 times, and the relative frequency of times the inequalities are satisfied is a suitable 

estimate of CP for each confidence region.   

In addition to comparing the regions’ actual probability coverages, we desire to compare their average areas. The area of 

a region is a measure of the precision of a particular estimation technique. For each of the four confidence regions, the 

average (expected) area is given by  

 
2 1

1 2 1 21 ( , )
CR

y y

EA dp dp f y y  . 

Here, 1 21
CR

dp dp is the area of a single confidence region for fixed value 1 2( , )y y . For the Wald region, 1 21
CR

dp dp

= 4𝜋𝜒1−𝛼
2 (2)𝜎̂𝑝̂1

𝜎̂𝑝̂2
 because, as explained before, the boundary of (2) forms an ellipse, which has a closed-form 

representation for its area. Similarly, an explicit expression for 1 21
CR

dp dp  may be obtained for the adjusted Wald 
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region. However, for the score and likelihood regions, 1 21
CR

dp dp  must be approximated because their boundaries do 

not form ellipses. For both (4) and (5), 1 21
CR

dp dp  is approximated using a Monte Carlo integration technique. For 

each 1 21
CR

dp dp  approximated, we are 99.9% confident that the approximation is within .001 units of 1 21
CR

dp dp . This 

approximation is explained in more detail in the appendix. Also, we note again that the outer double sum for the 

computation of EA for each method is approximated using a Monte Carlo technique.  

4. Simulation Results  

We employed a Monte Carlo simulation to study the coverage and area properties of (2) – (5) for varying sample size 

and parameter configurations. In regards to coverage properties, we present estimated coverages for (2) – (5) across a 

fine grid of the unit square for the following sample size configurations:  1 2( , ) : (5,5), (10,10), (10,30), (30,30)n n . In 

each sample size - parameter configuration, we randomly generated 10,000 bivariate random variables from (1). The 

simulation was performed in SAS IML 9.2. The nominal confidence level was 95%. In the event that a generated 1y or 

2y was at the edges (0 or in ), we shifted 1 2 or y y  by 1 away from the edge. Also, if a confidence region was partially 

outside of the parameter space, we truncated that region to only contain values in the unit square. Figures 1 – 4 

summarize the coverage results. 

 

  

  

Figure 1. Estimated coverage probabilities for the Wald (W), Adjusted Wald (W*), Score (S), and Likelihood Ratio (LR) 

confidence regions for 1 2 5n n  . Maximum standard error ≤ 0.005 
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Figure 2. Estimated coverage probabilities for the Wald (W), Adjusted Wald (W*), Score (S), and Likelihood Ratio (LR) 

confidence regions for 1 2 10n n  . Maximum standard error ≤ 0.005 
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Figure 3. Estimated coverage probabilities for the Wald (W), Adjusted Wald (W*), Score (S), and Likelihood Ratio (LR) 

confidence regions for 1 210 and 30n n  . Maximum standard error ≤ 0.005 

 

Figure 4. Estimated coverage probabilities for the Wald (W), Adjusted Wald (W*), Score (S), and Likelihood Ratio (LR) 

confidence regions for 1 2 30n n  . Maximum standard error ≤ 0.005 
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Figures 1–4 demonstrate very poor coverage properties for the Wald ellipse. This result is consistent with other 

simulation studies, Agresti and Coull (1998) and Agresti and Caffo (2000), on a single proportion or difference of two 

proportions. Only when both sample sizes are 30 do we see the estimated coverage between 89% and 93%. Interestingly, 

the Wald ellipse had pockets of good coverage in the unbalanced sample-size situation where 1 10n   and 2 30n  . 

On the other hand, the adjusted Wald procedure demonstrates good coverage properties, even when both sample sizes 

are as low as 5 with the exception near the corners of the unit square. Figures 1 – 4 also demonstrate that the adjusted 

Wald and score ellipses perform quite similarly. This result is not too surprising because, as shown in Agresti and Coull 

(1998), the 95% adjusted Wald interval for a single proportion is an approximation to the score interval of the same 

confidence level. Lastly, we point out that the likelihood-ratio ellipse has good, but often conservative coverage 

properties.  

Table 1. Average Areas of the Wald (W), Adjusted Wald (W*), Score (S), and Likelihood Ratio (L) Methods 

 

 

 

 

 

 

Table 2. Average Areas of the Wald (W), Adjusted Wald (W*), Score (S), and Likelihood Ratio (L) Methods 

 

 

 

 

 

 

Table 3. Average Areas of the Wald (W), Adjusted Wald (W*), Score (S), and Likelihood Ratio (L) Methods 

 

 

 

 

 

Table 4. Average Areas of the Wald (W), Adjusted Wald (W*), Score (S), and Likelihood Ratio (L) Methods 

 

 

 

 

 

 

Tables 1 – 4 give estimated average areas for (2) – (5). First, as expected, the average areas tend to decrease when the 

sample sizes increase. Also, from the tables we see that the Wald and score regions typically have the smallest average 

area for a given configuration. The Wald ellipse appears to be the smallest around the edges and corners of the unit 

square. This feature, though, is likely due to the fact that the Wald ellipse could have been truncated for any portion 

outside of the unit square, resulting in a smaller area. On the other hand, closer to the interior of the unit square, we see 

that the score ellipse most often has the smallest average area. We also note that the adjusted Wald ellipse displayed 

high average area values. This result is not too surprising given that the adjustment forced a shrinking of the 1p  and 

2p estimates towards 0.5, resulting in larger standard errors.  

In summary, although the Wald ellipse often had small areas, it is not recommended because of the under-coverage 

problems exhibited in Figures 1 – 4. Rather, the score ellipse is preferable due to its small area values while maintaining 
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appropriate coverage for most configurations we considered. In the case where one would want to draw a confidence 

ellipse by hand (e.g. introductory or intermediate statistics class), the Wald and adjusted Wald ellipses are good 

candidates because their construction depends only on the point estimates of 1p  and 2p , as well as the standard errors, 

as stated in Section 2. 

5. Two Examples  

Reiczigel, Abonyi, and Singer (2008) jointly estimate the sensitivity ( 1p ) and specificity ( 2p ) of an ultrasonographic 

examination for the bowel obstruction in dogs from data in Manczur et al. (1998). In the study, 11 of 13 dogs with 

mechanical ileus were correctly diagnosed while the absence of an obstruction was correctly diagnosed in 29 of 31 dogs. 

These diagnoses resulted in sensitivity and specificity estimates of 1
ˆ 0.85p   and 2

ˆ 0.94p  . Also, as shown in Figure 

5, we get the following (nominal) 95% confidence regions, which we created using the “Implicit Plot” function in 

Mathematica.  

In addition to regions (2) – (5), a rectangular confidence set (RS) was plotted using two level .95 % adjusted Wald 

confidence intervals on 1p  and 2p . Regions (2) and (3) contained values outside of the unit square, and therefore the 

effective regions for (2) and (3) are truncated. The (truncated, if necessary) areas for regions (2) – (5) are 0.0607, 0.1002, 

0.0876, and 0.0803, respectively. The area for (2) is smaller than the areas for (3) – (5) because it was truncated to the 

first quadrant, not because it is inherently more precise. The area for the rectangular confidence set is 0.1082. Regions 

(2) and (3) and the rectangular set are symmetric, but the asymmetry of (4) and (5) is clear. Also, we note that the line 

1 2p p  falls in all of the regions. Given the similar sample sizes for the simulation study resulting in Figure 3, we see 

that (2) is a poor choice due to its severe undercoverage, but that (3) – (5) are viable because of coverages close to the 

nominal level of 95%. With that in mind, the smallest confidence region here, (5), is the best choice. It has the smallest 

area, while maintaining appropriate coverage. It is worth noting that this likelihood-ratio confidence region is 

approximately 25% smaller than the rectangular set. Also, the exact or “minimum volume” confidence region from 

Reiczigel et al. (2008) has a slightly larger area of 0.0841 (using a grid with fin=200).  

 

Figure 5. 95 % Confidence regions for the sensitivity and specificity of the ultrason exam 

As another illustration, consider Fagerland, Lydersen, and Laake (2015), where the authors compare two survival rates, 

1p and 2p , of children who undergo a “standard” dose or “high” dose of epinephrine after an initial standard dose of 

epinephrine seems to be ineffective for children who remain in cardiac arrest. Perondi et al. (2004) conducted the 

original experiment, from which was observed 7 of 34 patients who survived at 24 hours after a standard dose, and also 

observed 1 of 34 who survived at 24 hours after a high dose. Of main interest for these two articles was the direct 

comparison of 1p with 2p , whose point estimates are 0.21 and 0.03. A p-value of 0.054 using a Fisher’s exact test was 

reported, suggesting that the high dose treatment may be worse than the standard dose treatment. Figure 6 illustrates the 

 
Figure 5: 95 % Confidence regions for the sensitivity and specificity of the ultrason. exam. 
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utility of using the bivariate confidence regions to jointly estimate 1p and 2p . The regions allow us to see plausible 

values of 1p and 2p , while at the same time testing their equality with a graphical check of the line. As before, we 

created the following (nominal) 95% confidence regions with the “Implicit Plot” function in Mathematica.  

 

Figure 6. 95% Confidence regions for survival rates using the standard dose and high dose, respectively, for epinephrine 

study; along with line to test H0: p1 = p2 

6. Discussion 

Other than the afore-mentioned Reiczigel et al. (2008) article, the authors found no published method for joint 

estimation of two binomial proportions. Bivariate confidence regions are useful because they describe where the 

individual proportions might lie, how they interact, and how they compare to one another, as was illustrated in two 

different examples. The first example’s main focus was joint estimation of the sensitivity and specificity of a diagnostic 

test. The second example’s main objective was the comparison of two survival rates but with the added inferential 

feature of plausible values for the individual survival rates. The findings of this paper should prove useful for applied 

statisticians who desire to jointly estimate binomial proportions from independent samples. We also contend that the 

findings here are useful for elementary and intermediate statistics instructors when they cover statistical inference on 

two population proportions.  

Some future work in this area is to consider a “Clopper-Pearson” based confidence region for the two proportions, as 

well as confidence regions for two binomial proportions when the two samples are dependent. One could also extend 

the methods here to three proportions, and give a three-dimensional confidence region. Beyond three dimensions, 

though, the utility of graphically seeing the confidence region is greatly diminished. 
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Appendix  

One method of approximating 1 21
CR

dp dp  involves randomly generating two independent uniform variates on the 

interval [0, 1] and then checking to see if the pair lies in the confidence region, i.e. satisfies the pertinent inequality in 

(2), (3), (4), or (5). The number of pairs that land in the region, w, divided by the total number of pairs generated, m, 

acts as an approximation of 1 21
CR

dp dp . The challenge here is finding a suitable value for m so that /w m  is a good 

approximation of 1 21
CR

dp dp . Our desire was for /w m  to be within 0.001 of 1 21
CR

dp dp  with 99.9% confidence. To 

achieve this goal, we choose m such that 
2

2

(3.29) (1 )

(0.001)

CR CRA A
m


  where CRA  is the area of the confidence region and 

3.29 is the 99.95th percentile of the standard normal distribution. Except in the case of (2), CRA  is obviously unknown, 

however, we can choose a conservative value of CRA  that ensures our approximations are still within 0.001 of 

1 21
CR

dp dp  with 99.9% confidence. The most conservative choice of CRA  is 0.5, which yields 2,706,025m  , but this is 

computationally inefficient and unnecessary. Because (2) is an ellipse, we know that 𝐴𝐶𝑅 = 4𝜋𝜒1−𝛼
2 (2)𝜎̂𝑝̂1

𝜎̂𝑝̂2
 for the 

Wald-based approach (2). Also, computational experience suggests that the difference in the four regions’ areas is no 

more than 0.1. Therefore, we recommend using the value 4𝜋𝜒1−𝛼
2 (2)𝜎̂𝑝̂1

𝜎̂𝑝̂2
+ 0.1 as a suitable plug-in for CRA  

because 4𝜋𝜒1−𝛼
2 (2)𝜎̂𝑝̂1

𝜎̂𝑝̂2
 is considerably less than 0.5, and the addition of 0.1 is a conservative shrinking towards 0.5.   
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