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Abstract

In this paper, we construct a new wavelet estimator of density for the component of a finite mixture under positive quadrant
dependence. Our sample is extracted from almost periodically correlated processes. To evaluate our estimator we will
determine a convergence speed from an upper bound for the mean integrated squared error (MISE). Our result is compared
to the independent case which provides an optimal convergence rate.
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1. Motivations

We observe n random variables X1, ..., Xn extracted from the continuous time process X = (Xt)t∈R uniformly almost
periodically correlated, of square integrable and zero mean, such that, for any i ∈ {1, ..., n}, the density of Xi is the
following finite mixture:

Υi(x) =

m∑
d=1

Πd(i) fd(x), x ∈ R,

where m ∈ N∗ (nonzero positive integer).

* (Πd(i))(i,d)∈{1,...,n}×{1,...,m} are taken as known weights of the mixture model such that, for any i ∈ {1, ..., n}, 0 ≤ Πd(i) ≤ 1
and

∑m
d=1 Πd(i) = 1,

* f1, ..., fm are densities (unknown) that we are going to estimate.

For any ν ∈ {1, ...,m}, we are going to estimate fν from our sample X1, ..., Xn which consists of random variables which
are pairwise positive quadrant dependent (PPQD).

The estimation of fν for finite mixture model has been extensively studied by Cai and Roussas (1997), Dewan and Prakasa
Rao (1999), Masry (2001), Prakasa Rao (2003), Pokhyl’ko (2005), Chaubey and al (2006) and Christophe Chesneau
(2010). Several estimators have been provided.

However, we propose a new estimator which proposes to considerably reduce the mean integrated square error (MISE)
from an assumption on the appropriate wavelet.

Our study will be based on wavelet methodology inspired by Pokhyl’ko (2005) and Prakasa Rao (2010). We build a
wavelet estimator, assuming that fν belongs to a Besov ball, and we evaluate its performance by determining the conver-
gence speed from an upper bound of the mean integrated square error (MISE ).

This paper is structured as follows. In section 2 a quick description of wavelet bases on [0, 1], Besov balls, and almost
periodically correlated processes. In section 3, we introduce additional assumptions and some notations on the model.
The wavelet estimator and its parameters are detailed in section 4. The theorem on the convergence speed from the upper
bound of the (MISE) is defined in section 5. Section 6 is dedicated to the proof of the result provided.

2. Wavelet basis, Besov Balls and Almost Periodically Correlated Processes

Wavelet basis. Let N be a nonzero positive integer, φ be a father wavelet of a multi-resolution analysis on R and ψ be the
associated mother wavelet. Assume that

- there is an odd integer ω > 0 such that φω = φ.
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- φ ∈ C1([0, 1[)

(For instance, Haar wavelet. φ(t) = 1 if t ∈ [0, 1[ and 0 otherwise).

Set
φ j,k(x) = 2 j/2φ(2 jx − k), ψ j,k(x) = 2 j/2ψ(2 jx − k).

Then according to Cohen (1993), we can find an integer τ satisfying 2τ ≥ 2N such that the set

B =
{
φτ,k(.);ψ j,k1 (.)

}
k∈{0,...,2τ−1}, j∈{τ,τ+1,...},k1∈{0,...,2 j−1}

(with adequate treatment at the boundaries) is an orthonormal basis of L2([0, 1]), the set of square-integrable functions on
the interval [0, 1].

Hence for any integer l ≥ τ, any g ∈ L2([0, 1]) can be expanded on the orthonormal basis B as

g(x) =

2l−1∑
k=0

αl,kφl,k(x) +

∞∑
j=l

2 j−1∑
k=0

β j,kψ j,k(x),

where

αl,k =

∫ 1

0
g(x)φl,k(x)dx, β j,k =

∫ 1

0
g(x)ψ j,k(x)dx.

αl,k and β j,k are the wavelet coefficients of g.

Besov balls. Let R > 0, s > 0, p ≥ 1 and r ≥ 1. A measurable function g on [0, 1] and ε ≥ 0

Mε (g)(x) = g(x + ε) − g(x)

M2
ε (g)(x) =Mε (Mε (g))(x) and identically, MN

ε (g)(x) =MN−1
ε (Mε (g))(x) for any nonzero positive integer N. Let

ρN(t, g, p) = sup
ε∈[−t,t]

‖MN
ε (g) ‖p

then, for s ∈ [0,N[, we define the Besov ball Bs
p,r(R) of radius R > 0 by

Bs
p,r(R) =

{
g ∈ Lp([0, 1]);

( ∫ 1

0

(ρN(t, g, p)
ts

)r dt
t
)1/r
≤ R

}
if p = ∞ or r = ∞ we apply the usual modifications of norm.

We have the equivalence below to wavelet coefficients. (Hardle and al.(1998) corollary 9.1). A measurable function
g belongs to Bs

p,r(R) if and only if there exists a constant R∗ > 0 (depending on R) such that the associated wavelet
coefficients satisfy

2τ( 1
2−

1
p )
( 2τ−1∑

k=0

|ατ,k |
p
)1/p

+
( ∞∑

j=τ

(
2 j(s+ 1

2−
1
p )
( 2 j−1∑

k=0

|β j,k |
p
)1/p)r)1/r

≤ R∗.

If a function g belongs to Bs
2,∞(R)

sup
j≥τ

22 js
∑
k∈Λ j

β2
j,k ≤ R∗.

We set βτ−1,k = ατ,k. p and r are norm parameters and s is a smoothness parameter. According to Meyer (1990), for a
specific choice of s, p, and r, Bs

p,r(R) contain the Holder and Sobolev balls.

Almost Periodically Correlated Processes

Before defining an almost periodically correlated process, let us introduce the notion of almost periodic functions. Other
definitions equivalent to the following can be found in Corduneanu (1968).

Definition 2.1. (Dehay.D , Monsan.V (2007)).

Consider a complex-valued function C : S × T → C with S = Z or R, and T = Z or R. The function C(s, τ) is said to be
almost periodic in s uniformly with respect to τ varying in T, whenever for any ε > 0 there exists Lε > 0 such that for any
interval I with length greater than Lε , there is pε ∈ I ∩ S with

sup
τ∈T

sup
s∈S
|C(s + pε , τ) −C(s, τ)| < ε.
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Moreover, whenever S = R for simplicity, we assume that the function (s, τ) 7→ C(s, τ) is continuous on R × T, any
function C : R × T → C which is almost periodic uniformly on T, satisfies the following uniform continuity property
(Corduneanu, 1968)

lim
h→0

sup
τ∈T

sup
|s−t|<h

|C(t, τ) −C(s, τ)| = 0.

Next, we define the almost periodically correlated processes (Gladyshev (1963); Hurd (1991)).

Definition 2.2. A real-valued process with zero mean X = {Xt : t ∈ S} is uniformly almost periodically correlated when
E(X2

t ) < ∞, for any s ∈ S, the (shifted) covariance function C(s, τ) = Cov(Xs, Xs+τ) = E(XsXs+t) is almost periodic in s
uniformly in τ varying in T = S.

3. Assumptions

In this section we start by introducing additional assumptions to the assumptions of section 1 then we provide notations.

(A1) ASSUMPTIONS ON X1, ..., Xn.

X1, ..., Xn are pairwise positive quadrant dependence (PPQD) i.e. for any i, l ∈ {1, ..., n} with i , l and any (y, z) ∈ [0, 1]2

P(Xi > y, Xl > z) ≥ P(Xi > y)P(Xl > z)

This form of dependence was introduced by Lehmann (1966) and it generalizes other forms of dependence.

We recall X1, ..., Xn is a discrete-time process extracted from the continuous time process X = (Xt)t∈R uniformly almost
periodically correlated, of square-integrable and zero means.
- For any i, l ∈ {1, ..., n}

Cov(Xi, Xl) = E(XiXl) ≤ sup
t∈R

E(X2
t ) = b0 < ∞,

(A2) ASSUMPTIONS ON f1, ..., fm.

Without losing all generality, for any d ∈ {1, ...,m}, we assume that the support of fd is [0, 1].

(A3) ASSUMPTIONS ON THE WEIGHTS OF THE MIXTURE.

We assume that the matrix Γn

Γn =
(1
n

n∑
i=1

Πk(i)Πl(i)
)

(k,l)∈{1,...,m}2

is non-singular i.e. det(Γn) > 0. For fixed ν (the one that refers to our estimate of fν) and any i ∈ {1, ..., n} we set

aν(i) =
1

det(Γn)

m∑
k=1

(−1)k+νγn
ν,kΠk(i),

where γn
ν,k represents the determinant of the minor (ν, k) of the matrix Γn. (aν(1), ..., aν(n)) is unique solution of the

following quadratic objective with linear constraints (quadratic optimization)

argmin
(b1,...,bn)∈Rn

1
n

n∑
i=1

b2
i ,

such that for any d ∈ {1, ...,m}
1
n

n∑
i=1

biΠd(i) = δν,d,

where δν,d represents the Kronecker delta.

For technical details see Maiboroda (1996) and Pokhyl’ko (2005).

We set

zn =
1
n

n∑
i=1

a2
ν(i).

We assume that zn < n for technical reasons.
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4. Linear Estimator

Suppose that fν ∈ Bs
p,r(R) with R > 0, s > 0, r ≥ 1 and p ≥ 2, we define the estimator f̂ by

f̂ (x) =

2 j0−1∑
k=0

α̂ j0,kφ j0,k(x), x ∈ [0, 1]

where

α̂ j0,k =
1
n

n∑
i=1

aν(i)φωj0,k(Xi), with φωj,k(x) = 2
j
2 φω(2 jx − k),

with odd integer ω > 0. j0 is the integer satisfying

1
2
( n
zn

)1/(2s+ω+3)
< 2 j0 ≤

( n
zn

)1/(2s+ω+3)
.

α̂ j0,k, is defined taking into account the pairwise positive quadrant dependence (PPQD) case, j0 is chosen to minimize the
mean integrated squared error (MISE) of f̂ .

5. Result

We formulate the main result of the article, the upper bound of the estimation error of f̂ is given in Theorem 5.1 belongs.

Theorem 5.1. Let X1, ..., Xn be n random variables as described in Section 1 under the assumptions (A1), (A2) and (A3).
Suppose that fν ∈ Bs

p,r(R) with p ≥ 2, s > 0, r ≥ 1 and ω > 0 a odd integer. Then there exists a constant C > 0 such that

E
( ∫ 1

0
( f̂ (x) − fν(x))2dx

)
≤ C

( zn

n
)2s/(2s+ω+3)

.

In the case where m = 1, Π1(1) = ... = Π1(n) = 1, zn = 1 and fν = f1 = f , the rate of convergence attained by f̂ becomes( 1
n
)2s/(2s+ω+3).

The case of independent random variables has been studied by Pokhyl’ko who provides an optimal convergence rate i.e.( zn
n
)2s/(2s+1).

6. Proofs

In the sequel, C denotes a constant that may differ from one term to another. Its value can depend on ω, φ or ψ but does
not depend on j, k and n.

To establish the proof of theorem 5.1 we use an inequality of moments on a particular decomposition of the mean inte-
grated squared error (MISE).

Proposition 6.1. Let X1, ..., Xn be n random variables as described in Section 1 under the assumptions (A1), (A2) and
(A3). For any k ∈ {0, ..., 2 j0 − 1}. Then there exists a constant C > 0 such that

E
(
(α̂ j0,k − α j0,k)2

)
≤ C2 j0(ω+2) zn

n

Proof. Proof of Proposition 6.1.

E(α̂ j0,k) =
1
n

n∑
i=1

aν(i)E(φωj0,k(Xi))

=
1
n

n∑
i=1

aν(i)
( n∑

d=1

Πd(i)
∫ 1

0
fd(x)φωj0,k(x)dx

)
=

n∑
d=1

∫ 1

0
fd(x)φωj0,k(x)dx

(1
n

n∑
i=1

aν(i)Πd(i)
)

=

∫ 1

0
fν(x)φωj0,k(x)dx =

∫ 1

0
fν(x)φ j0,k(x)dx, (φω = φ)

= α j0,k.
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Therefore

E
(
(α̂ j0,k − α j0,k)2

)
= Var(α̂ j0,k)

≤
1
n2

n∑
i=1

n∑
l=1

|aν(i)|.|aν(l)|.|Cov(φωj0,k(Xi), φωj0,k(Xl))|.

From the assumption (A1), X1, ..., Xn are pairwise positive quadrant dependence (PPQD), It arises from (Newman 1980,
Lemma 3) that, for any i, l ∈ {1, ..., n} with i , l,

|Cov(φωj0,k(Xi), φωj0,k(Xl))| ≤
(

sup
x∈[0,1]

|(φωj0,k(x))
′

|
)2Cov(Xi, Xl).

Therefore
1
n2

n∑
i=1

n∑
l=1

|aν(i)|.|aν(l)|.|Cov(φωj0,k(Xi), φωj0,k(Xl))| ≤
1
n2 A.B

where
A =

(
sup

x∈[0,1]
|(φωj0,k(x))

′

|
)2
,

B =

n∑
i=1

n∑
l=1

|aν(i)|.|aν(l)|. sup
t∈R

E(X2
t ),

with supt∈[0,1] E(X2
t ) = b0 < ∞.

Now let’s find a bound for A and B in turn.

Upper bound for A. Since φ ∈ C1([0, 1]), we have (φωj0,k(x))
′

= 2 j0(3/2).ω.φω−1(2 j0 x − k).φ
′

(2 j0 x − k), so

sup
x∈[0,1]

|(φωj0,k(x))
′

| ≤ 2 j0((ω+2)/2) sup
x∈[0,1]

|ωφ
′

(x)φω−1(x)| = C2 j0((ω+2)/2).

ω > 0 a odd integer. Hence
A ≤ C2 j0(ω+2).

Determine an upper bound for B. We have

B ≤ b0nzn + 2
n∑

i=2

i−1∑
l=1

|aν(i)|.|aν(l)|.b0

≤ b0
[
nzn +

n∑
i=2

i−1∑
l=1

(a2
ν(i) + a2

ν(l))
]

≤ b0
[
nzn +

n∑
i=2

a2
ν(i) +

i−1∑
l=1

a2
ν(l)

]
≤ b0

[
nzn + nzn + nzn

]
= 3nznb0.

Hence
B ≤ C.n.zn.

We obtain
E
(
(α̂ j0,k − α j0,k)2

)
≤ C2 j0(ω+2) zn

n
.

This completes the proof of Proposition 6.1. �

Proof. Proof of Theorem 5.1.

We expand the function fν on B as

fν(x) =

2 j0−1∑
k=0

α j0,kφ j0,k(x) +

∞∑
j= j0

2 j−1∑
k=0

β j,kψ j,k(x),
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where α j0,k and β j,k are the wavelet coefficients of fν defined by

α j0,k =

∫ 1

0
fν(x)φ j0,k(x)dx, β j,k =

∫ 1

0
fν(x)ψ j,k(x)dx.

We have

f̂ (x) − fν(x) =

2 j0−1∑
k=0

(α̂ j0,k − α j0,k)φ j0,k(x) −
∞∑

j= j0

2 j−1∑
k=0

β j,kψ j,k(x).

Since B is an orthonormal basis of L2([0, 1]), we obtain

E
( ∫ 1

0
( f̂ (x) − fν(x))2dx

)
≤ F + G

where

F =

2 j0−1∑
k=0

E
(
(α̂ j0,k − α j0,k)2

)
and

G =

∞∑
j= j0

2 j−1∑
k=0

β2
j,k.

Using the definition of j0 and Proposition 6.1, we have

F ≤ C2 j0 2 j0(ω+2) zn

n
≤ C.

( zn

n

)2s/(2s+ω+3)
.

A deterministic calculation makes it possible to obtain G. Since p ≥ 2, we have Bs
p,r(R) ⊂ Bs

2,∞(R). Hence

G ≤ C2−2 j0 s ≤ C.
( zn

n

)2s/(2s+ω+3)
.

Therefore

E
( ∫ 1

0
( f̂ (x) − fν(x))2dx

)
≤ C.

( zn

n

)2s/(2s+ω+3)

This completes the proof of Theorem 5.1.

�
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