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Abstract

Sample surveys play a significant role in obtaining reliable estimators of finite population quantities, and survey weights
are used to deal with selection bias and non-response bias. The main contribution of this research is to compare the per-
formance of nine methods with differently constructed survey weights, and we can use these methods for non-probability
sampling after weights are estimated (e.g. quasi-randomization). The original survey weights are calibrated to the pop-
ulation size. In particular, the base model does not include survey weights or design weights. We use original survey
weights, adjusted survey weights, trimmed survey weights, and adjusted trimmed survey weights into pseudo-likelihood
function to build unnormalized or normalized posterior distributions. In this research, we focus on binary data, which
occur in many different situations. A simulation study is performed and we analyze the simulated data using average
posterior mean, average posterior standard deviation, average relative bias, average posterior root mean squared error, and
the coverage rate of 95% credible intervals. We also performed an application on body mass index to further understand
these nine methods. The results show that methods with trimmed weights are preferred than methods with untrimmed
weights, and methods with adjusted weights have higher variability than methods with unadjusted weights.
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1. Introduction

Sample surveys play a significant role in obtaining reliable estimators of finite population quantities, such as means,
totals, and ratios. In an ideal situation, the sampled population, where the sample was taken, can be identical to the target
population. Therefore, probability sampling is the golden rule for finite population prediction and inference (Lohr, 2009).
However, the ideal survey is hard to attain. The preference of probability sampling is challenged because of non-response,
time, and cost. Survey response rates are declining steadily; rare events, such as crashes and diseases, need long-term
observation; convenience samples are faster, easier, and cheaper to collect; massive data are increasingly available but
unstructured and hard to analyze because there are no survey weights (Beaumont, 2020; Rao, 2020; Y. Chen, Li, & Wu,
2020).

The issue of survey weights also come up in non-probability sampling, which is defined as a sampling mechanism in which
the researchers select samples based on the subjective judgment rather than random selection. In general, it is a sampling
method in which not all units of the population have an equal chance of being selected, unlike probability sampling where
every unit has a non-zero probability to be chosen. Accordingly, survey weights correct data disproportionality for the
sample with respect to the target population of interest. Rao, Hidiroglou, Yung, and Kovacevic (2010) and Haziza and
Beaumont (2017) summarized the typical weighting process in the multipurpose surveys. In the presence of a relevant
probability sample and a set of common auxiliary variables, it is possible to use propensity scores and consider the non-
probability samples as regular probability samples, which is also known as quasi-randomization (Lee & Valliant, 2009,
Elliott & Valliant, 2017).

Survey weights depend on the survey designs as well as on the actual collected data. In that way, it can be construct-
ed based on a combination of the unit non-response adjustment, the post-stratification adjustment and the inverse of its
inclusion probability. Lohr (2007) mentioned good properties of using survey weights in estimation. For example, esti-
mators have smaller mean squared errors and are robust to misspecifications of the superpopulation models. Q. Chen et
al. (2017) showed that when sample units are chosen based on a complex design, the main reason to use survey weights
in the analysis is to mitigate the biased inferences from a simple random sample, and they emphasized modifications of
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the basic design-based weight for a better analysis. In the matter of accessing quantities more complicated than means
and quantiles, weights can be incorporated into inference as factors in the log-likelihood for each unit, which can lead to
weighted linear or logistic regression (Pfeffermann, 1993). Gelman (2007) discussed incorporating covariates into the
weighted regression model to make consistent estimates.

Under a specified distribution on the assumed model, it is easy to implement Bayesian inference, assuming the model
holds for the sample. Royall and Pfeffermann (1982) discussed Bayesian inference on the finite population with normality
assumption and flat priors on the parameters of a linear regression model. Musal, Soyer, McCabe, and Kharroubi (2012)
present a Bayesian framework for population utility estimation. Pfeffermann, Da Silva Moura, and Do Nascimento Silva
(2006) discussed an application of Bayesian modeling to make inferences from multilevel models under informative
sampling. In addition, another way is fitting models on the non-probability sample and then making predictions on the
response variable for units in the probability sample (Kim, Park, Chen, & Wu, 2018, Wang, Rothschild, Goel, & Gelman,
2015). Nandram (2007) discussed Bayesian prediction inference under informative sampling via surrogate samples.
Beaumont (2020) and Rao (2020) reviewed available methods to use data from a nonprobability sample; specifically
they discussed the literature on combining information from probability sample and nonprobability sample using survey
weights or design weights.

In Table 1, we summarize the nine different methods by incorporating survey weights into our Bayesian models. Specifi-
cally, the baseline model with no survey weights is included; then the remaining eight methods are broadly categorized at
original weights or trimmed weights, and each of these is further categorized by unnormalized or normalized distribution,
and unadjusted or adjusted weights.

Table 1. A summary of the nine methods

(i). No weights
A. Baseline model

(ii). Original weights
B. Unnormalized distribution
C. Normalized distribution
D. Adjusted weights, unnormalized distribution
E. Adjusted weights, normalized distribution

(iii). Trimmed weights
F. Unnormalized distribution
G. Normalized distribution
H. Adjusted weights, unnormalized distribution
I. Adjusted weights, normalized distribution

Predictive inference can be obtained using a surrogate sample (Nandram 2007). That is, predict the entire population after
the samples are obtained from the posterior density of the super-population parameters. For example,

y1, . . . , yN |θ
˜

ind
∼ f (y | θ

˜
)

is the population model with N the population size. We have sample data (wi, yi), i = 1, . . . , n. With a prior on θ
˜
, we have

the posterior density π(θ|ys
˜

). Interest is on the finite population mean, Ȳ , say. Then, Bayesian predictive inference about
the finite population mean is obtained as follows,

π(Ȳ |ys
˜

) =

∫
f (Ȳ |θ)π(θ

˜
|ys
˜

)dθ
˜
,

where f (Ȳ |θ
˜
), the population model, does not depend on ys

˜
; see Nandram and Rao (2021). We simply draw θ

˜
from the

posterior density π(θ
˜
|ys
˜

) and draw Ȳ from the population model; this is surrogate sampling (e.g., Nandram, 2007).

The main idea of this research is to compare the performance of nine methods where we consider the base model with
no survey weights, and incorporate four different types of survey weights into our Bayesian models. In Section 2, we
review preparatory materials on the survey weights and then demonstrate these nine methods in detail: The base model,
original survey weights, adjusted survey weights, trimmed survey weights, and adjusted trimmed survey weights incor-
porated into unnormalized or normalized posterior distributions. In Section 3, a simulation study is performed to gain a
further understanding of these nine methods, and the simulated data are analyzed using average posterior mean, average
posterior standard deviation, average relative bias, average posterior root mean squared error and the coverage rate of
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95% credible intervals. In Section 4, we discuss an application of body mass index (BMI) data, which is taken from the
Third National Health and Nutrition Examination Survey (NHANES III), and analyze the posterior means, and posterior
standard deviations of these nine methods. Finally, in Section 5, we review the strengths and weaknesses of our study in
more detail and provide some future research suggestions. The appendices have technical details.

2. Different Types of Survey Weights

In Section 2.1, we describe survey weights in greater detail. In Section 2.2, we describe adjusted weights and trimmed
weights. In Section 2.3, we describe normalized weights.

2.1 Survey Weights

Design weights are reciprocal of selection probabilities, coming straight from the survey. Under a simple random sample,
every sample of size, n, from a finite population of size, N, has the same probability of selection, and so each unit has the
same selection probability, n

N for sampling without replacement. In complex survey designs, the selection probabilities
are different per unit, but units in certain groups may have equal probabilities (e.g., stratification and clustering). The sum
of the design weights is the finite population size, N. So although we do not use covariates in this paper, we are actually
using calibration weights (i.e., the sum of the original weights is the population size).

In a non-probability sample, the participation variable will be correlated with the study variable, and this correlation is
a measure of the data defect of the non-probability sample; see Meng (2018) for a detailed discussion of this measure.
One thing to note here as pointed out by Meng (2018), is that even a small correlation can cause a large selection bias for
Big Data. Therefore, it is much needed to get a handle on the selection probabilities in the non-probability sample. This
correlation is zero in a simple random sample, and there is no data defect. The correlation is non-zero in a complex survey
(any survey with unequal selection probabilities or design weights). One prominent example is probability-proportional-
to-size (PPS) sampling. The good thing though is that we know the selection probabilities in the probability sample, so
there is no data defect if the selection probabilities are used properly in the analysis. In PPS sampling, the probability of
selection is proportional to a measure of size, and this measure is correlated with the study variable (some PPS samples can
have equal selection probabilities). So in this design, the study variable and the participation variable could be correlated.
The good thing is that we have the selection probabilities, which should be used to avoid selection bias.

Probability samples have selection probabilities as part of the data. If the selection probabilities are not taken into account
in an analysis, it is essentially a non-probability sample and the data defect will be nonzero, thereby creating a selection
bias. The good thing is that when a probability sample is taken, the probabilities must be incorporated into the analysis,
and an estimator (e.g., Horvitz-Thompson) of a finite population quantity (e.g., mean and total) is designed unbiased. In
addition, there are usually problems with the sample selection. For example, if there is a non-response, and responding
units are different from non-responding units, there will be a selection bias, and the selection probabilities need to be
adjusted to form the survey weights; see below. A good probability sample can provide design-unbiased estimates, but it
can turn into a non-probability sample if the survey weights are not used because there will be data defects.

Here our primary concern is about survey weights, which have several adjustments (e.g., non-response, demographics,
and other features of the population), but the survey weights must be calibrated to the population size (i.e., they must be
adjusted so that they sum up to the population size). However, the reciprocals of the survey weights we still call selection
probabilities (or more appropriately propensity scores). One can think that survey weights are surrogates for the design
weights, but they are not designed weights. We can also think that the survey weight of a unit is the number of units that it
represents in the population, including itself. However, survey weights are not in general equal to inverse probabilities of
selection but they are typically constructed using a combination of probability calculations and non-response adjustments
(possibly multi-stage processes). We agree with Gelman (2007) that survey weights are not just features of individual
units, but the survey weight of an individual unit depends on other units in the entire population. This suggests that survey
weights are correlated, and they should have a joint distribution. This is not a simple task because it is not possible to find
the correlation in a single sample without additional structure. One way to get an idea of what the correlation might be is
to use the method of random grouping; see, for example, Choi and Nandram (2021, 2022). We do not pursue this issue
further in this paper.

We use an example from Q. Chen et al. (2017) to illustrate some of these points. In data sets from population surveys, the
weights attached to the units can include adjustments for unit non-response, and post-stratification to match the distribu-
tions of auxiliary variables with known distributions in the population. Thus, a more general form of weight for the ith

sampled unit with design weight, di, can be expressed as

wi = di × w(n)
i × w(p)

i ,

where w(n)
i is a unit non-response adjustment, and w(p)

i is a post-stratification adjustment. Weighting units are a convenient
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way to help correct the effects of differential inclusion into the sample, but the resulting estimates can be very inefficient.
Q. Chen et al. (2017) reviews methods that attempt to help mitigate this inefficiency, either by modifying the weights
or by model-based approaches that treat weights as covariates. As stated by Q. Chen et al. (2017), many surveys are
multi-purpose surveys because the information is collected on a possibly large number of characteristics of interest. Then,
the weights are generally constructed so that they may be applied to any characteristic of interest, and these weights are
often referred to as multi-purpose weights. It does not matter what weights we have, in principle, we can use a weighted
likelihood to make inferences about a finite population. Smoother weights are preferred (e.g., trimmed weights).

We believe that the dialogue between Gelman (2007) and Lohr (2007) is historical and of scientific value, so it behooves
us to cite it here. Gelman (2007) started his paper with the statement, “Survey weighting is a mess. It is not always clear
how to use weights in estimating anything more complicated than a simple mean or ratio, and standard errors are tricky
even with simple weighted means.” Lohr (2007) responded in her comments, “I do not think that survey weighting is a
mess, but I do think that many people ask too much of the weights.” We concur with Lohr (2007) that one cannot expect
too much from survey weights, but we should try to get as much as possible from them. Design weights are generally
adjusted several times. However, we agree with Gelman (2007) that survey weights are complicated constructs that a
survey sampler must confront.

In design-based analyzes, inverse probability weighting is used to estimate finite population means or totals; see Y. Chen
et al. (2020) and Robbins, Ghosh-Dastidar, and Ramchand (2021). They both used inverse probability weighting via
quasi-randomization, but their procedures are different. While Y. Chen et al. (2020) used weighted likelihoods to obtain
propensity scores, Robbins et al. (2021) focused on weights using design-based methods such as calibration and propensity
score weighting (without parametric models). They both used the Horvitz-Thompson estimator to make inferences about
finite population means or totals. Note that these weights are surrogates for survey weights, so quasi-randomization is the
probabilistic basis for inference. Our original weights are calibrated to the population size. However, our concern is not
how to estimate the weights, but rather to show how to incorporate the weights into a parametric model. The idea is the
same for any parametric model, simple (Appendix A) or hierarchical (Appendix C).

There are Bayesian parametric models, and we present one piece of evidence here. A model-based method for incor-
porating survey weights was described by Nandram and Rao (2021) for integration of a non-probability sample and a
probability sample; see also Nandram, Choi, and Liu (2021). They used adjusted weights with a normalized likelihood,
which is the likelihood divided by its integral (sum) for the continuous (discrete) response. Under normality, the nor-
malization constant does not matter for inference, but it could matter under other densities (e.g., Bernoulli distribution);
the Bernoulli is a running example, but see Appendix A. We compare nine methods for incorporating the survey weights
from a single probability sample (not data integration) similar to the one presented by these authors. Again, note that we
are constructing survey weights; they are available to us. The procedure for a non-probability sample, once the unknown
selection probabilities are estimated, is simply the same. Of course, a problem with parametric models is that they are
generally not robust to their assumptions, but if their assumptions are true, they will be more efficient than design-based
methods; design-based methods rely on consistency and unbiasedness possibly via asymptotic theory to obtain linear
approximations.

2.2 Adjusted Weights and Trimmed Weights

For unit i, let yi denote the response (study variable), xi
˜

vector of covariates, and Wi the survey weight. Also, let zi be an
indicator (participation) variable, where zi = 1 if the unit i is in the sample and zi = 0 if the unit i is not in the sample, and
πi the selection probability. Under the assumption that the selection probability only depends on observed covariates (i.e.,
ignorable selection),

πi = P (zi = 1 | xi
˜
, yi) = P (zi = 1 | xi

˜
) , i = 1, . . . ,N.

When a sampling plan is implemented in a finite population of size N to draw a sample of size n, with given selection
probabilities, π1, . . . , πN , with πi corresponding to the ith selected unit, since di = 1/πi, i = 1, . . . ,N, Horvitz-Thompson
estimators of population total and population size are

T̂ =

n∑
i=1

diyi,

N̂ =

n∑
i=1

di,

and these are design-unbiased estimators. With survey weights, these estimators are approximately design-unbiased and
are generally used in a similar manner.
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The effective sample size indicates the degree to which the variance increases due to the unequal weight. Then, the
adjusted weight (Potthoff, Woodbury, & Manton, 1992) is required to get the appropriate variance,

wi =
neWi∑n
j=1 W j

, i = 1, . . . , n, , (1)

ne =

(∑n
j=1 W j

)2∑n
j=1 W2

j

, (2)

where ne is the effective sample size; see also Kish (1965). Here, we use capital W for original survey weights, and small
w for adjusted survey weights. The effective sample size ne has some interesting properties. For example, by calculation,
we get ne =

∑n
i=1 wi =

∑n
i=1 w2

i ; when Wi are almost equal, ne ≈ n. Weight trimming can make this happen.

To improve statistical efficiency and increase the robustness of statistical inferences, Winsorization is an effective way to
deal with outliers (Rao, 1966, Basu, 1971, Haziza & Beaumont, 2017). Outliers here are defined as observations above
Q3 +1.5(Q3−Q1), where Q1=1st quartile, Q3=3rd quartile. Let W∗ be weights after trimming and W0 = Q3 +1.5(Q3−Q1)
denote the threshold value, then

W∗
i =

{
W0, Wi ≥ W0
aWi, Wi < W0,

(3)

where a is a rescaling parameter such that
∑n

i=1 W∗i =
∑n

i=1 Wi = N̂.

Then, it is reasonable to consider the adjusted trimmed weights w∗i ,

w∗i =
n∗eW∗i∑n
j=1 W∗j

, i = 1, . . . , n, (4)

where

n∗e =

(∑n
j=1 W∗j

)2∑n
j=1 W∗j

2 , (5)

the effective sample size.

2.3 Normalized Weighted Density

We assume that
y1, . . . , yN | θ

˜

iid
∼ f (y | θ

˜
),

and a probability sample of size n is taken from the finite population. That is, putting the sample first,

y1, . . . , yn | θ
˜

iid
∼ f (y | θ

˜
).

We want to incorporate the survey weights in the likelihood.

Then, the loglikelihood for the entire population is

L(θ
˜
) =

N∑
i=1

log
{
f (yi|θ

˜
)
}
.

The Horvitz-Thompson estimator of L(θ
˜
) is

L̂(θ
˜
) =

n∑
i=1

Wi log
{
f (yi|θ

˜
)
}
.

Note that in this pseudo-loglikelihood, if we consider θ
˜

as fixed, then the yi are independent; e.g., see Y. Chen et al. (2020).
This motivates our normalized density.

We form a density function for yi by taking

g(yi|θ) ∝ f (yi | θ
˜
)Wi , i = 1, . . . , n.
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This is an unnormalized ‘density’. We obtain the normalized density by inserting the normalization constant,
∫

f (yi |

θ
˜
)Wi dyi. Therefore,

g(yi|θ) =
( f (yi|θ

˜
))Wi∫

( f (yi|θ
˜
))Wi dyi

. (6)

is the normalized density (i.e., g(yi | θ
˜
) integrates to 1, but f (yi | θ

˜
)Wi does not). A Bayesian should use the normalized

density rather than the unnormalized density whether original weights or trimmed weights are being used. Note that∫
f (yi | θ

˜
)Wi dyi is a function of θ

˜
, and this is an adjustment to the density in (6). We can use f (yi | θ

˜
)Wi as survey samplers

do, but this is incorrect from a Bayesian point of view because, as we just stated, the denominator in (6) is a function of θ
˜
.

In Appendix A, we show several illustrative examples of normalized densities, g(yi|θ
˜
) in order to demonstrate generality

(pointed out by both reviewers). We specifically show how we can construct such normalized densities. Although we
describe both continuous and discrete study variables in this paper we focus on binary variables. Our main problem is
how to include survey weights into

y1, . . . , yN | θ
ind
∼ Bernoulli(θ)

and to make inference about the finite population proportion, P = 1
N

∑N
i=1 yi, when data, (Wi, yi), i = 1, . . . , n, are available.

One issue that we do not address here is the incorporation of covariates, an important problem, but it does not help to
understand the main issue of survey weights, but see Appendix D, where we describe the the problem under study. This
is a problem of future study.

As a summary, we use the original survey weights W
˜

which are the ‘inverse’ of the inclusion probabilities for each unit to
construct adjusted survey weights w

˜
which make the sum of all adjusted weights equal the effective sample size, trimmed

survey weights W
˜
∗ which trimmed outliers, and adjusted trimmed survey weights w

˜
∗, which make the sum of all adjusted

trimmed weights equal the effective sample size. We also use normalized and unnormalized densities, but our preference
is for normalized adjusted weights (original or trimmed).

3. Bayesian Methodology

Let y1, . . . , yN , be the variable (study variable) of interest, where N is the number of units in the population.

By adjusting the sample weights, different surrogate samples from the original finite population were drawn and we
compared their performance in making inferences about the original finite population (Nandram, 2007). Specifically,

y1 . . . , yN | θ
ind
∼ Bernoulli (θ). (7)

Since there is no information about θ, we consider the proper but non-informative prior under the Bayesian framework,

θ ∼ uniform (0, 1). (8)

Here (7) and (8) form the population model, which we assume to be true. Of course, we can have a more general prior,
θ ∼ Beta (α, β), where (α, β) must be specified based on the amount of prior information that is available.

Let ys
˜

= (y1, . . . , yn)′ and yns
˜

= (yn+1, . . . , yN)′ denote respectively the sampled and non-sampled units.

Predictive inference about the finite population proportion, P = 1
N

∑N
i=1 yi, is obtained as follows,

π(P|ys
˜

) =

∫
f (P|θ)π(θ|ys

˜
)dθ.

where f (P|θ), the population model, does not depend on ys
˜

. We simply draw θ from the posterior density π(θ|ys
˜

) and draw
P from the population model; this is surrogate sampling (e.g., Nandram, 2007). Actually, letting T =

∑N
i=1 yi, we have

π(T |ys
˜

) =

∫
f (T |θ)π(θ|ys

˜
)dθ,

where T |θ
˜
∼ Binomial(N, θ); thereby providing a simpler computation.

Next, we describe the nine methods.

Method A: Without survey weights, the posterior distribution is

θ | ys
˜
∼ Beta

 n∑
i=1

yi + 1, n −
n∑

i=1

yi + 1

 . (9)
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As we discussed above, method A can lead to biased estimates, because the survey weights are not used. Considering this
one as the baseline model, we can analyze how biased samples affect our predictive inference of a population quantity.

We now adjust the Bernoulli population model using the survey weights to reflect the sampling bias. Therefore, the
weights are now to be added to

y1, . . . , yn|θ
ind
∼ Bernoulli(θ),

where the original survey weights, W
˜

, of y1, . . . , yn are known, and we can also construct adjusted survey weights, w
˜

,
trimmed survey weights, W

˜
∗, and adjusted trimmed survey weights, w

˜
∗.

The remaining eight methods are broadly categorized as original weights or trimmed weights, and each of these is further
categorized by unnormalized or normalized distribution, and unadjusted or adjusted weights, as we discussed in Table 1.
This gives the sample model, an adjustment to correct for the selection bias.

Method B: Replace sample total with estimator of population total by using original survey weights,

θ | ys
˜
∼ Beta

 n∑
i=1

yiWi + 1,
n∑

i=1

(1 − yi) Wi + 1

 . (10)

Method C: Consider use the normalized likelihood function with original survey weights to update the posterior
distribution,

fC(θ | ys
˜

) ∝
θ
∑n

i=1 yiWi (1 − θ)
∑n

i=1(1−yi)Wi∏n
i=1

[
θWi + (1 − θ)Wi

] . (11)

In Appendix B, we show how to do the computation for big Wi.

The following methods are generated by replacing original survey weights W
˜

with adjusted survey weights w
˜

(method D
and method E), trimmed survey weights W

˜
∗ (method F and method G), and adjusted trimmed survey weights w

˜
∗ (method

H and method I).

Method D: Beta distribution with adjusted survey weights w
˜

is

θ | ys
˜
∼ Beta

 n∑
i=1

yiwi + 1,
n∑

i=1

(1 − yi) wi + 1

 . (12)

Method E: The normalized likelihood with adjusted survey weights w
˜

is

fE(θ | ys
˜

) ∝
θ
∑n

i=1 yiwi (1 − θ)
∑n

i=1(1−yi)wi∏n
i=1 [θwi + (1 − θ)wi ]

. (13)

Method F: Beta distribution with trimmed survey weights W
˜
∗ is

θ | ys
˜
∼ Beta

 n∑
i=1

yiW∗
i + 1,

n∑
i=1

(1 − yi) W∗i + 1

 . (14)

Method G: The normalized likelihood with trimmed survey weights W
˜
∗ is

fG(θ | ys
˜

) ∝
θ
∑n

i=1 yiW∗i (1 − θ)
∑n

i=1(1−yi)W∗i∏n
i=1

[
θW∗i + (1 − θ)W∗i

] . (15)

In Appendix B, we also show how to do the computation for big W∗i .

Method H: Beta distribution with adjusted trimmed survey weights w
˜
∗ is

θ | ys
˜
∼ Beta

 n∑
i=1

yiw∗i + 1,
n∑

i=1

(1 − yi) w∗i + 1

 . (16)
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Method I: The normalized likelihood with adjusted trimmed survey weights w
˜
∗ is

fI(θ | ys
˜

) ∝
θ
∑n

i=1 yiw∗i (1 − θ)
∑n

i=1(1−yi)w∗i∏n
i=1

[
θw∗i + (1 − θ)w∗i

] . (17)

In short, there are nine methods for incorporating different survey weights into the Bayesian models.

In Appendix C, we consider a more general example of small area estimation because one reviewer asked about a more
general example of a hierarchical Bayesian model. However, as we stated, there is very little loss in generality in our
simple Bernoulli; the difference is essentially one of computation.

4. Simulation Study

The design of our simulation is inspired by the one implemented in Nandram (2007). The samples are given a random
selection mechanism with unequal probabilities. But in the simulation section, to generate probability samples, it is
assumed that at the stage of analysis, the selection probabilities are known, and our goal is to adjust for the selection bias
by using a probability sample whose weights are known. We conduct the simulation under nine Bayesian methods.

Regardless of which methods we use, suppose we have random samples of H iterations from the posterior distribution,
denoted by θ1, . . . , θH . By using surrogate sampling (e.g. Nandram, 2007), we have

N∑
i=1

yi | θi ∼ Binomial(N, θi), i = 1, . . . ,H

Then,

f

 N∑
i=1

yi|ys
˜

 =

∫
Θ

f

 N∑
i=1

yi|ys
˜
, θi

 π (θ|ys) dθi.

From each iteration, we can draw θi, and then get the prediction of population quantities, such as finite population propor-
tion,

∑N
i=1 yi/N.

In addition, probability proportional to size (PPS) sampling is a special case within the Bayesian framework that deserves
special attention. We can construct selection probabilities,

πi =
nxi∑N
i=1 xi

, i = 1, . . . ,N. (18)

Besides, to compare the different drawing methods, Poisson sampling is also considered. Poisson sampling is a sampling
process where every unit of the population is subjected to an independent Bernoulli trial can determine whether the unit
is a part of the sample or not. Samples are selected as follows,

Ii ∼ Bernoulli(πi), i = 1, . . . ,N;

again when Ii = 1, unit i is selected and when Ii = 0, unit i is not selected from population. Letting n0 =
∑N

i=1 Ii denote
the size of the sample in Poisson sampling, we have E(n0) =

∑N
i=1 E(Ii) = n, and Var(n0) =

∑N
i=1 πi(1 − πi), so n0 ≈ n.

Consider a finite population of size N, and the sample units y1, . . . , yN are drawn with probability proportional to measures
of size x1, . . . , xN , which should be non-negative. Here, x is auxiliary variable and z is a latent variable, generated as
follows:

xi
iid
∼ Gamma(α, β), (19)

zi | xi
iid
∼ N

(
ρ

σx
(xi − 1.2µx) , 1 − ρ2

)
, i = 1 . . .N, (20)

where ρ is the correlation coefficient, µx = α
β

and σ2
x = α

β2 .

Then, we use the latent variable to generate binary responses,
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yi =

{
1, zi ≥ 0
0, zi < 0 , i = 1 . . .N. (21)

In this simulation study, our interest is in the finite population proportion, P = 1
N

∑N
i=1 zi; in the simulation study P is

known, and we look to see how well our model predicts it. In a biased sample, the sampled values are taken with unequal
selection probabilities, which depend on the characteristic y. The sample model is assumed to correct for the selection
bias, which is accommodated by the survey weights.

Now, we can perform the simulation study to access the estimators of the finite population under probability proportional
to size (PPS) and Poisson sampling with respect to the measure of size xi, i = 1, . . . ,N, and the effective size of samples
should be equal to or around n = 100 according to different sampling method. Keeping the population size fixed at
N = 1000 and β = 1 (i.e., µx = α), we can generate H = 1000 datasets at ρ = {0.2, 0.5, 0.8} and α = {2, 5, 15}, which
means there are nine design points for each posterior distribution.

To evaluate the repeated surrogate sampling properties of our nine methods, average posterior mean (APM), average
posterior standard deviation (APSD), average relative bias (ARB), average posterior root mean squared error (APRMSE)
and the proportion of the 95% highest posterior density intervals (HPDI) of P containing the true P (PCI) are calculated
as below:

Let P =
∑N

i=1 yi/N denote the finite population proportion. Then,

PM = E(P|ys
˜

), (22)

PS D =
√

Var(P|ys
˜

), (23)
95% HPDI = (C025,C975), (24)

where C025 and C975 denote the end points, not necessarily percentiles.

Performing simulations H times, we get

PM(h), PS D(h), (C(h)
025,C

(h)
975), h = 1, . . . ,H.

Now, we compute

APM =
1
H

H∑
h=1

PM(h), (25)

APS D =
1
H

H∑
h=1

PS D(h), (26)

ARB =
1
H

H∑
h=1

(
PM(h) − P

)
/P, (27)

APRMS E =
1
H

H∑
h=1

√(
PM(h) − P

)2
+

(
PS D(h))2

, (28)

PCI =
1
H

H∑
h=1

I
(
C(h)

025 ≤ P ≤ C(h)
975

)
, (29)

where P is the true finite population proportion. These are standard quantities used in most simulation studies of this kind.

In Table 2 and Table 3, keeping ρ fixed and increasing α, the population mean decreases, and we can find the estimators
from eight methods with survey weights performed better than method A without survey weights. With increased α
and ρ, population distribution is more right-skewed. In this case, methods with survey weights still performed better
than method A. This shows methods with survey weights work better when the population is skewed. Besides, since
the effective sample size is almost equal to the sample size among methods with original survey weights and methods
with trimmed survey weights, the number of outliers could be small and there is no significant difference in average
posterior means. Estimators from methods including survey weights are more close to the population mean, which means
incorporating survey weights into Bayesian models can reduce survey bias in both PPS sampling and Poisson sampling.
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Table 2. PPS: Comparisons of the average posterior mean (APM) using nine posterior distributions of the finite
population by ρ and α

ρ α A B C D E F G H I P

0.2 2 0.5270 0.4753 0.4890 0.4761 0.4740 0.4847 0.4943 0.4850 0.4849 0.4766
5 0.4960 0.4619 0.4840 0.4627 0.4618 0.4648 0.4860 0.4656 0.4654 0.4643
15 0.4564 0.4355 0.4708 0.4368 0.4363 0.4361 0.4717 0.4374 0.4372 0.4382

0.5 2 0.5580 0.4308 0.4633 0.4333 0.4253 0.4544 0.4802 0.4556 0.4547 0.4328
5 0.4894 0.4028 0.4462 0.4051 0.4021 0.4115 0.4531 0.4133 0.4122 0.4043
15 0.3938 0.3433 0.3921 0.3464 0.3447 0.3451 0.3943 0.3479 0.3467 0.3454

0.8 2 0.5659 0.3590 0.4057 0.3640 0.3443 0.3981 0.4409 0.4005 0.3983 0.3654
5 0.4624 0.3287 0.3771 0.3325 0.3245 0.3389 0.3869 0.3422 0.3389 0.3333
15 0.3269 0.2548 0.3006 0.2594 0.2552 0.2563 0.3021 0.2610 0.2576 0.2576

Table 3. Poisson sampling: Comparisons of the average posterior mean (APM) using nine posterior distributions of the
finite population by ρ and α

ρ α A B C D E F G H I P

0.2 2 0.5307 0.4760 0.4894 0.4769 0.4741 0.4879 0.4957 0.4882 0.4879 0.4763
5 0.4986 0.4638 0.4856 0.4646 0.4637 0.4674 0.4876 0.4681 0.4677 0.4636
15 0.4609 0.4395 0.4733 0.4407 0.4402 0.4405 0.4741 0.4417 0.4414 0.4383

0.5 2 0.5662 0.4349 0.4659 0.4373 0.4299 0.4621 0.4834 0.4630 0.4623 0.4332
5 0.4934 0.4067 0.4499 0.4088 0.4061 0.4149 0.4564 0.4166 0.4158 0.4047
15 0.3983 0.3479 0.3969 0.3508 0.3492 0.3497 0.3989 0.3525 0.3515 0.3451

0.8 2 0.5799 0.3700 0.4165 0.3747 0.3571 0.4103 0.4506 0.4124 0.4106 0.3646
5 0.4752 0.3398 0.3888 0.3435 0.3366 0.3501 0.3992 0.3533 0.3505 0.3346
15 0.3298 0.2566 0.3024 0.2613 0.2570 0.2583 0.3042 0.2629 0.2596 0.2577

As for comparisons of the APSD (see Table 4 and Table 5), in general, methods B, C, F, and G have smaller APSDs than
others. The reason is that no matter whether in our simulation or real datasets, the survey weights could be very large. For
example, in the method B,

θ | ys
˜
∼ Beta

 n∑
i=1

yiWi + 1,
n∑

i=1

(1 − yi) Wi + 1

 ,
when survey weights Wi

˜
are large, Var(θ | ys

˜
) ≈ 0. After we normalized the distribution, the APSDs of the variable

decreased. However, if we adjusted the survey weights first, APSDs of methods D, E, H, and I are similar to that of
method A. Because the effective sample size is almost equal to the sample size among methods with original survey
weights and methods with trimmed survey weights, the number of outliers could be small and there is no significant
difference in average posterior standard deviations. From these tables, it seems the APSDs are mostly related to parameter
ρ. The larger ρ is, the lower APSDs will be. Clearly, and as is well-known in the survey literature, posterior standards
under methods B, C, F and G are not appropriate, and therefore we can weed out the use of Wi and W∗i if posterior standard
deviation is needed as is usually the case.

For ARBs in Table 6 and Table 7, as the population means decrease, the ARBs of method A are increasing. When α is
fixed and ρ is increasing, ARBs of all these methods are increasing. For methods B and F (survey weights and trimmed
survey weights with beta distribution), the ARBs are more robust and stable than others. But after considering normalized
the distribution (method C and G), ARBs are larger when ρ is larger. But for adjusted original survey weights (method
D and method E) and adjusted trimmed survey weights (method H and method I), there are no significant differences in
unnormalized distribution and normalized distribution.

Table 8 and Table 9 indicate that method A (no survey weights) has larger APRMSEs than the other methods. Keeping
ρ constant and changing α from 2 to 15, we can see that APRMSEs of almost all methods are negatively related to α,
except for method C and method G (a normalized distribution with original survey weights and trimmed survey weights),
APRMSEs get larger when α increases. If the α is constant, APRMSEs of method A (no survey weights) tend to be
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Table 4. PPS: Comparisons of the average posterior standard deviation (APSD) using nine posterior distributions of the
finite population by ρ and α

ρ α A B C D E F G H I

0.2 2 0.0514 0.0220 0.0161 0.0664 0.0692 0.0221 0.0162 0.0576 0.0580
5 0.0515 0.0221 0.0161 0.0564 0.0571 0.0221 0.0162 0.0548 0.0550
15 0.0512 0.0220 0.0161 0.0526 0.0527 0.0220 0.0161 0.0523 0.0524

0.5 2 0.0512 0.0219 0.0159 0.0657 0.0690 0.0220 0.0161 0.0575 0.0580
5 0.0515 0.0217 0.0158 0.0555 0.0565 0.0218 0.0159 0.0540 0.0544

15 0.0503 0.0211 0.0154 0.0505 0.0508 0.0211 0.0154 0.0503 0.0506
0.8 2 0.0510 0.0212 0.0155 0.0640 0.0687 0.0216 0.0158 0.0565 0.0573

5 0.0513 0.0208 0.0153 0.0532 0.0549 0.0210 0.0153 0.0521 0.0529
15 0.0483 0.0193 0.0144 0.0464 0.0468 0.0194 0.0144 0.0464 0.0468

Table 5. Poisson sampling: Comparisons of the average posterior standard deviation (APSD) using nine posterior
distributions of the finite population by ρ and α

ρ α A B C D E F G H I

0.2 2 0.0513 0.0222 0.0161 0.0660 0.0686 0.0222 0.0162 0.0575 0.0578
5 0.0517 0.0222 0.0162 0.0567 0.0574 0.0222 0.0162 0.0550 0.0552
15 0.0514 0.0221 0.0161 0.0527 0.0528 0.0221 0.0161 0.0526 0.0527

0.5 2 0.0511 0.0221 0.0159 0.0661 0.0695 0.0222 0.0161 0.0576 0.0580
5 0.0515 0.0219 0.0158 0.0556 0.0566 0.0219 0.0159 0.0542 0.0546

15 0.0505 0.0212 0.0154 0.0507 0.0511 0.0212 0.0154 0.0506 0.0509
0.8 2 0.0508 0.0215 0.0156 0.0644 0.0688 0.0219 0.0159 0.0568 0.0575

5 0.0515 0.0211 0.0153 0.0538 0.0553 0.0213 0.0154 0.0526 0.0534
15 0.0484 0.0194 0.0145 0.0465 0.0470 0.0194 0.0145 0.0464 0.0469

Table 6. PPS: Comparisons of the average relative bias (ARB) using nine posterior distributions of the finite population
by ρ and α

ρ α A B C D E F G H I

0.2 2 0.1202 0.1104 0.0639 0.1064 0.1178 0.0913 0.0553 0.0893 0.0904
5 0.0976 0.0928 0.0674 0.0906 0.0929 0.0887 0.0672 0.0869 0.0877
15 0.0918 0.0891 0.0951 0.0873 0.0883 0.0886 0.0961 0.0869 0.0876

0.5 2 0.2898 0.1170 0.1087 0.1126 0.1297 0.1093 0.1206 0.1078 0.1089
5 0.2138 0.1017 0.1273 0.0990 0.1043 0.1004 0.1378 0.0988 0.1005

15 0.1570 0.0994 0.1542 0.0974 0.0996 0.0996 0.1589 0.0978 0.0993
0.8 2 0.5497 0.1183 0.1477 0.1116 0.1514 0.1353 0.2141 0.1362 0.1374

5 0.3885 0.1120 0.1592 0.1090 0.1222 0.1148 0.1806 0.1136 0.1181
15 0.2780 0.1234 0.1943 0.1208 0.1256 0.1237 0.1985 0.1216 0.1248

Table 7. Poisson sampling: Comparisons of the average relative bias (ARB) using nine posterior distributions of the
finite population by ρ and α

ρ α A B C D E F G H I

0.2 2 0.1253 0.1093 0.0625 0.1055 0.1164 0.0947 0.0561 0.0925 0.0936
5 0.1010 0.0893 0.0678 0.0873 0.0895 0.0860 0.0684 0.0842 0.0851
15 0.0966 0.0908 0.0984 0.0893 0.0902 0.0904 0.0993 0.0889 0.0892

0.5 2 0.3075 0.1181 0.1115 0.1137 0.1306 0.1165 0.1260 0.1152 0.1163
5 0.2213 0.0990 0.1312 0.0973 0.1016 0.0998 0.1413 0.0985 0.0999

15 0.1723 0.1071 0.1705 0.1057 0.1073 0.1075 0.1745 0.1063 0.1082
0.8 2 0.5915 0.1259 0.1728 0.1216 0.1542 0.1599 0.2420 0.1613 0.1622

5 0.4210 0.1122 0.1812 0.1113 0.1195 0.1203 0.2057 0.1210 0.1231
15 0.2888 0.1213 0.1972 0.1190 0.1237 0.1221 0.2029 0.1202 0.1239
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Table 8. PPS: Comparisons of the average posterior root mean square error (APRMSE) using nine posterior distributions
of the finite population by ρ and α

ρ α A B C D E F G H I

0.2 2 0.0812 0.0596 0.0361 0.0881 0.0942 0.0514 0.0323 0.0758 0.0765
5 0.0727 0.0510 0.0363 0.0745 0.0757 0.0494 0.0361 0.0720 0.0724
15 0.0689 0.0474 0.0456 0.0688 0.0692 0.0472 0.0460 0.0684 0.0687

0.5 2 0.1368 0.0577 0.0507 0.0862 0.0940 0.0547 0.0553 0.0785 0.0792
5 0.1037 0.0490 0.0551 0.0723 0.0745 0.0487 0.0589 0.0712 0.0719

15 0.0777 0.0427 0.0568 0.0639 0.0646 0.0427 0.0584 0.0638 0.0644
0.8 2 0.2074 0.0507 0.0577 0.0799 0.0935 0.0564 0.0806 0.0800 0.0809

5 0.1405 0.0452 0.0567 0.0680 0.0724 0.0461 0.0634 0.0680 0.0698
15 0.0893 0.0393 0.0533 0.0588 0.0600 0.0394 0.0543 0.0589 0.0598

Table 9. Poisson sampling: Comparisons of the average posterior root mean square error (APRMSE) using nine
posterior distributions of the finite population by ρ and α

ρ α A B C D E F G H I

0.2 2 0.0831 0.0592 0.0354 0.0875 0.0932 0.0530 0.0325 0.0768 0.0773
5 0.0738 0.0494 0.0362 0.0734 0.0747 0.0481 0.0366 0.0712 0.0716
15 0.0703 0.0480 0.0468 0.0693 0.0697 0.0478 0.0472 0.0691 0.0693

0.5 2 0.1439 0.0582 0.0518 0.0869 0.0947 0.0578 0.0574 0.0810 0.0817
5 0.1062 0.0481 0.0566 0.0717 0.0737 0.0484 0.0603 0.0710 0.0718

15 0.0817 0.0450 0.0620 0.0660 0.0668 0.0451 0.0633 0.0661 0.0667
0.8 2 0.2216 0.0532 0.0662 0.0824 0.0940 0.0646 0.0901 0.0867 0.0875

5 0.1508 0.0454 0.0638 0.0687 0.0721 0.0477 0.0716 0.0698 0.0710
15 0.0916 0.0392 0.0541 0.0590 0.0603 0.0394 0.0555 0.0592 0.0602

greater with increasing ρ, but there is no significant pattern for other methods.

Table 10 and Table 11 are highly related to Table 4 and Table 5. As we mentioned before, unnormalized or normalized
distributions with original survey weights (method B and method C) or with trimmed survey weights (method F and
method G) have smaller APSDs than others, since they used the large survey weights without adjustment. In this situation,
it causes the width of the 95% confidence interval to be very short. Then the probability of this 95% confidence interval to
cover the population mean decreases. For unnormalized or normalized distribution with adjusted original survey weights
(method D and method E) or with adjusted trimmed survey weights (method H and method I), they have similar APSDs,
so their width of 95% confidence intervals is larger, but the average relative bias of method A is the largest, which leads
to the lower 95% confidence interval coverage when APMs of method A are biased. When we focus on the models with
high PCI, we can figure out that model D is almost the same as model E. Similarly, model H performs as model I. So
no matter whether the model used adjusted original weights or adjusted trimmed weights, there is no winner between the
unnormalized model and the normalized model.

The main reason why methods (D, E) differ very little from methods (H, I) is that the simulation proceeds with very few
outliers. This makes trimming the weights less useful. However, if there are outliers in the weights, these two will differ.
Also, there are very little differences between unnormalized and normalized whether the adjusted weights come from the
original weights or the trimmed weights. As we will see in an example on body mass index data, there are differences
among these methods, and the main cause is whether there are outliers or not in the weights.

5. Application on Body Mass Index

In this section, we apply our methods to the body mass index (BMI) from NHANES III (Nandram & Choi, 2005, 2010).
We use eight counties, which are included in California, from NHANES III. In these datasets, original sample weights for
each county are given.

The datasets contain age, race and sex as observed covariates, where age is collected as integers from 20 to 90; race uses
{0, 1} to denote Hispanic and non-Hispanic; sex is represented by 0 for male and 1 for female. Body mass index (BMI)
is a simple index of weight for height that is commonly used to classify overweight and obesity in adults. It is defined
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Table 10. PPS: Comparisons of the proportion of these 95% credible intervals containing θ (PCI) using nine posterior
distributions of the finite population by ρ and α

ρ α A B C D E F G H I

0.2 2 0.858 0.490 0.633 0.971 0.959 0.581 0.709 0.964 0.964
5 0.930 0.569 0.544 0.963 0.955 0.590 0.551 0.962 0.960
15 0.948 0.628 0.340 0.959 0.958 0.634 0.346 0.963 0.961

0.5 2 0.320 0.495 0.296 0.971 0.957 0.539 0.223 0.941 0.950
5 0.651 0.587 0.321 0.970 0.964 0.599 0.260 0.965 0.962
15 0.877 0.677 0.315 0.982 0.972 0.676 0.298 0.980 0.976

0.8 2 0.016 0.565 0.339 0.981 0.963 0.515 0.157 0.916 0.912
5 0.261 0.603 0.328 0.978 0.970 0.602 0.281 0.969 0.964
15 0.708 0.656 0.312 0.985 0.979 0.657 0.296 0.980 0.976

Table 11. Poisson sampling: Comparisons of the proportion of these 95% credible intervals containing θ (PCI) using
nine posterior distributions of the finite population by ρ and α

ρ α A B C D E F G H I

0.2 2 0.827 0.487 0.649 0.969 0.960 0.553 0.681 0.966 0.964
5 0.89 0.600 0.545 0.976 0.970 0.636 0.528 0.969 0.963
15 0.944 0.606 0.324 0.970 0.971 0.606 0.319 0.969 0.967

0.5 2 0.251 0.497 0.295 0.976 0.960 0.496 0.201 0.935 0.89
5 0.614 0.605 0.302 0.977 0.970 0.603 0.251 0.974 0.972
15 0.833 0.646 0.275 0.966 0.967 0.651 0.268 0.967 0.964

0.8 2 0.005 0.539 0.269 0.977 0.959 0.440 0.114 0.876 0.878
5 0.205 0.619 0.270 0.985 0.979 0.589 0.222 0.968 0.963
15 0.709 0.680 0.294 0.971 0.967 0.682 0.276 0.970 0.969
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as a person’s weight in kilograms divided by the square of his height in meters (kg/m2). The World Health Organization
defined obesity as a BMI greater than or equal to 30. In this dataset, we focus on obesity, which means yi = I(BMIi ≥ 30),
i = 1, . . . , n. Here, our sample size is n = 1867 for eight counties combined in California. We also give separate analyses
for each county.

We present posterior summaries in Tables 12 & 13. Note that n is the sample size, ne is the effective sample size generated
by adjusted (according to original survey weights or trimmed survey weights), n∗e is the effective sample size generated by
adjusted weights (according to original survey weights or trimmed survey weights), nO is the number of outliers detected
in weight trimming.

Table 12. Posterior mean (PM) of nine methods for BMI data by different areas

n A B C D E F G H I ne n∗e nO

164 0.254 0.220 0.221 0.228 0.188 0.230 0.231 0.237 0.221 76 86 3
176 0.246 0.168 0.168 0.182 0.040 0.257 0.257 0.258 0.255 50 159 23
795 0.228 0.235 0.235 0.239 0.192 0.234 0.235 0.234 0.220 180 593 113
162 0.182 0.127 0.128 0.148 0.047 0.154 0.155 0.165 0.127 33 64 9
125 0.234 0.209 0.209 0.224 0.144 0.233 0.234 0.241 0.224 33 94 26
141 0.251 0.159 0.159 0.170 0.133 0.234 0.235 0.240 0.230 41 124 31
128 0.215 0.150 0.151 0.161 0.089 0.172 0.172 0.179 0.147 56 83 7
176 0.231 0.172 0.174 0.181 0.085 0.218 0.218 0.221 0.212 69 142 37
1867 0.228 0.192 0.192 0.195 0.147 0.221 0.221 0.221 0.199 498 1301 323

Table 13. Posterior standard deviation (PSD) of nine methods for BMI data by different areas

n A B C D E F G H I ne n∗e nO

164 0.036 0.013 0.013 0.049 0.049 0.013 0.014 0.047 0.048 76 86 3
176 0.035 0.011 0.012 0.054 0.034 0.014 0.014 0.036 0.037 50 159 23
795 0.020 0.014 0.014 0.034 0.035 0.013 0.013 0.022 0.022 180 593 113
162 0.031 0.011 0.011 0.060 0.029 0.012 0.012 0.047 0.046 33 64 9
125 0.040 0.013 0.013 0.070 0.072 0.014 0.013 0.045 0.046 33 94 26
141 0.039 0.012 0.012 0.058 0.060 0.013 0.014 0.040 0.040 41 124 31
128 0.038 0.011 0.011 0.048 0.029 0.012 0.012 0.043 0.042 56 83 7
176 0.035 0.011 0.012 0.047 0.028 0.013 0.013 0.038 0.039 69 142 37
1867 0.017 0.012 0.012 0.022 0.012 0.013 0.013 0.017 0.017 498 1301 323

From Table 12, PMs of method E (a normalized distribution with adjusted original survey weights) are smaller than PMs
of other methods. It is possible that outliers of survey weights affected the estimators badly. After trimming these outliers,
PMs from methods F, G, H, and I (distributions with trimmed survey weights) are more stable and reasonable. There are
outliers in the original survey weights, but these are removed in the trimmed weights. The outliers can cause the adjusted
weights to be dominated by many small adjusted weights (weights much smaller than unity, with just a few weights larger
than unity). This is the reason why D and E are so different in some cases.

From Table 13, PSDs of models with adjusted survey weights (methods D, E, H, and I) are greater than that of models
with unadjusted survey weights (methods B, C, F, and G). This is one finding from the simulation study, but it should be
obvious to most survey statisticians. More importantly, there are some examples where the PSDs in E are much smaller
than those in D, but this is not so for H and I. Clearly, the outliers in the original weights can make a significant difference.

Also, in the simulation, the sampling fraction is 100/(100 + 900) ≈ 0.10, but in the BMI dataset, for county 59, there are
162 people in the sample and 1,353,001 people in the non-sample (i.e., the sampling fraction, 162/(162 + 1, 353, 001) ≈
0.00012, is very small). To assure that the population size is not an issue in the simulation study, we also modified the
original survey weights such that the sum of weights is around 1000 as the population size of the simulation. But because
multiplying one constant does not have any influence on the effective sample size or boundary of outliers, there are no big
differences between PM tables as well as PSD tables.

In this BMI application, trimming survey weights is essential for inference. It appears that if there are outliers in the
original weights, normalization will make a difference; otherwise, it does not (compare D and E and H and I). In the
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simulation, the effective sample size is close to the sample size, which did not lead to the same conclusion as the BMI
dataset, and there were no outliers in the original weights.

Figure 1. Histogram of surrogate posterior means on eight counties under the nine methods

To see more details, we draw the histograms of the finite population proportions under the nine methods for the whole
dataset, where n = 1867. Without survey weights, the distribution of PMs of method A is a little bit on the right of
others. Also, after we trimmed the survey weights outliers, the distributions under methods F, G H and I are on the right
of those under methods B, C, D and E. The normalization does not affect a lot between methods B and C (distributions
with original survey weights), methods F and G (trimmed survey weights), and methods H and I (adjusted trimmed survey
weights), but distribution under method E is significantly sharper and smaller than that under method D since outliers are
critical in normalization. Too small or too large weights can cause problems in large national surveys like NHANES, done
using probability-proportional-to-size survey designs.

6. Concluding Remarks

The discussion is motivated by the desire to make predictions and inferences about a finite population quantity from
biased samples by generating surrogate samples. The advantage of using a Bayesian method is evident when we use the
correct density of y, which is generally an awkward density; see Appendix A. The correct density, based on f (yi | θ

˜
),

should be normalized and the normalization constant is a function of θ
˜
. In the Bayesian approach, essentially we need the

posterior density of θ
˜
, and we can get samples from it regardless of its complexity. Besides we can input any available

prior information.

According to our simulation study, the performance of these nine methods is different. The results of PCI tables (Table 10
and Table 11) show that models with adjusted survey weights (method D, E, H, and I) higher coverage than models with
unadjusted survey weights (method A, B, C, F, and G), no matter whether it is the unnormalized or normalized model
with original survey weights or trimmed survey weights. It is clear that the Wi should not be used in a parametric model
if we need a measure of uncertainty at the same time.

In the analysis of the BMI data, we have seen that these nine methods are able to deal with data that contain extreme survey
weights and make proper inferences about the population, and this is an advantage of the Bayesian framework. Method
E (a normalized distribution with adjusted original survey weights) is worse for inference because of the outliers. If we
do not trim the weights, there will be differences between the unnormalized and normalized densities. The normalized
density will provide smaller posterior standard deviations, but this is not necessarily correct.

In future work, it is reasonable to consider how to incorporate probability samples with non-probability samples to make
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full use of known information. Once the survey weights are obtained, they can be incorporated into a Bayesian model,
regardless of the form as we have done here.

When there are covariates, xi
˜

(p−1 covariates and an intercept), it is a standard practice to use a logistic regression model.
So we assume logistic regression for the population model,

yi|β
˜

ind
∼ Bernoulli

 exi
˜
′β
˜

1 + exi
˜
′β
˜

 , i = 1, . . . ,N,

where N, the population size; see Appendix D for the sample model, where the survey weights are included. The non-
sampled covariates, xi

˜
, are typically unknown; see Appendix D for further details.
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Appendix A. Examples of Normalized Densities with Survey Weights

We give several examples of normalized densities when survey weights are incorporated into a likelihood. Our main
purpose is to show that we can deal with other data besides the simple Bernoulli model that is used to illustrate the general
principle. In all examples, we use adjusted original weights, wi, the examples are similar for Wi or trimmed weights, w∗i ,
and W∗i . Obviously, the list is not exhaustive.

Example 1 Normal distribution, f (yi|µ, σ
2) = 1

√
2πσ2

e−
1

2σ2 (yi−µ)2
, −∞ < µ < ∞, σ2 > 0.

yi | µ, σ
2 ind
∼ Normal

(
µ,
σ2

wi

)
.

Suppose the prior distribution is f (µ, σ2) = 1
σ2 . Then, the joint distribution is

f (y
˜
, µ, σ2) =

n∏
i=1

{
1

√
2πσ2

e−
1

2σ2 (yi−µ)2
}

1
σ2 .

In this way, it is easy to use the multiplication rule to draw parameters µ and σ2 from their closed-form posterior distribu-
tions,

µ|σ2, y
˜
∼ Normal

(∑n
i=1 wiyi∑n
i=1 wi

,
σ2∑n
i=1 wi

)
,

σ2|y
˜
∼ InvG

(
n − 1

2
,

∑n
i=1 wi(yi − ȳ)2

2

)
.

Notice that σ2|y
˜

has much smaller variance than if Wi is used, but
∑n

i=1 Wiyi∑n
i=1 Wi

and
∑n

i=1 wiyi∑n
i=1 wi

are the same.

Example 2 Lognormal distribution, f (yi|µ, σ
2) = 1

yi
√

2πσ2
e−

1
2σ2 (ln(yi)−µ)2

, −∞ < µ < ∞, σ2 > 0.

we can define zi = ln(yi), yi > 0. Then,

zi | µ, σ
2 ind
∼ Normal

(
µ,
σ2

wi

)
,

where again it is easy to draw parameters µ and σ2 as above.

Example 3 Gamma distribution, f (yi | α, β) =
βα

Γ(α) y
α−1
i e−βyi , α > 1, β > 0.

The pseudo-likelihood function with weights is

yi | α, β
ind
∼ Gamma (wiα − wi + 1, βwi) .

Notice that the general restriction of gamma distribution is α > 0 rather than α > 1. But to assure the pseudo-likelihood
function is well-defined, we need wiα−wi + 1 > 0 for i = 1, . . . , n, which means α > max wi−1

wi
. And to simplify it, we just

set it as α > 1.
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Example 4 Student’s t distribution, f (yi|ν) =
Γ( ν+1

2 )
√
νπΓ( ν

2 )

(
1 +

y2
i
ν

)− ν+1
2

.

The pseudo-likelihood function is hard to calculate because of the denominator. Suppose,

(yi − µ)
σ

ind
∼ tν,

where f (yi|µ, σ
2) =

Γ( ν+1
2 )

√
νπσ2Γ( ν

2 )

(
1 +

(yi−µ)2

νσ2

)− ν+1
2

. The numerator of pseudo-likelihood function with weights is,

( f (yi|ν))wi =

 Γ
(
ν+1

2

)
√
νπσ2Γ

(
ν
2

) 
wi (

1 +
(yi − µ)2

νσ2

)− wi (ν+1)
2

.

Let ai + 1 = wi (ν + 1), with ν > 0 and ai > wi − 1. By calculating, the pseudo-likelihood function is,

(yi − µ)

σ ai+1−wi
aiwi

ind
∼ tai ,

where

g(yi|µ, σ
2) =

Γ
(
ν+1

2

)
√

aiπσ2
(

ai+1−wi
aiwi

)
Γ
(
ν
2

)
1 +

(yi − µ)2

aiσ2 ai+1−wi
aiwi

−
a+1

2

.

When w
˜

are the original survey weights, the condition ai > wi−1 leads to a big degree of freedom and makes it approximate
to a normal distribution, not a student’s t distribution. When w

˜
are the standardized or adjusted survey weights as method

D, E, H, and I, it is possible to get some wi < 1 and cause ai negative. Therefore, ai+1−wi
aiwi

> 0 is not practical for all
samples.

To deal with this situation and get closed-form likelihood function of yi,

yi | a2, µ, σ2 ind
∼ Normal

(
µ,

a2σ2

wi

)
,

ν

a2 ∼ Gamma
(
ν

2
,

1
2

)
.

In this model, the pseudo-likelihood function is easy to get,
√

wi (yi − µ)
σ

ind
∼ tν,

where g(yi|µ, σ
2) =

Γ( ν+1
2 )√

νπ σ
2

wi
Γ( ν

2 )

(
1 +

wi(yi−µ)2

νσ2

)− ν+1
2

.

Example 5 Multinomial distribution, f (yi
˜
|p1, . . . , pk) =

pwiyi1
1 ···pwiyik

k

pwi
1 +···+pwi

k
,
∑k

i=1 pi = 1,
∑k

j=1 yi j = 1, and k > 0 is the number of
groups.

Then, by calculation, the pseudo-likelihood function is

g(yi
˜
|p1, . . . , pk) ind

∼ Multi

1, pw1
1∑k

j=1 pw j

j

, · · · ,
pwk

k∑k
j=1 pw j

j


.

B. Algorithm for Original Survey Weights W
˜

For equation,

π(p|y
˜
) ∝

n∏
i=1

{
pyiWi (1 − p)(1−yi)Wi

pWi + (1 − p)Wi

}
,
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when survey weights are large (W
˜

), since 0 ≤ p ≤ 1, the denominator would be close to 0. Then, it is hard to calculate the
probability density at each p. To solve this problem, we can rewrite π(p|y

˜
) and make a transformation. In this case, p is

approximately a point mass at a possibly unknown point. Then, we have

π(p|y
˜
) =

∏
{i:yi=1}

pWi

pWi + (1 − p)Wi

∏
{i:yi=0}

(1 − p)Wi

pWi + (1 − p)Wi

=
∏
{i:yi=1}

( p
1−p )Wi

1 + ( p
1−p )Wi

∏
{i:yi=0}

1
1 + ( p

1−p )Wi
.

If we assume that 0 ≤ p ≤ 1
2 (right-skewed density), then we can make the transformation, Q =

p
1−p . This is true for

obesity. The Jacobian is 1
(1+Q)2 and 0 ≤ Q ≤ 1. A similar procedure can be carried out if 0 ≥ p ≤ 1

2 (left-skewed density).

With our assumption that the density is right skewed,

π(Q|y
˜
) ∝

1
(1 + Q)2

∏
{i:yi=1}

QWi

1 + QWi

∏
{i:yi=0}

1
1 + QWi

(30)

=
Q

∑n
i=1 Wi

(1 + Q)2

n∏
i=1

1
1 + QWi

. (31)

Because survey weights w
˜

are large,
∏n

i=1
1

1+QWi
≈ 1 and π(Q|y

˜
) ≈ Q

∑n
i=1 Wi

(1+Q)2 .

We will use the grid method to draw Q from (31). Then P can be obtained by re-transformation, P =
Q

1+Q .

For normalized posterior distributions with original survey weights (method C) or trimmed survey weights (method G),
we need this approach.

APPENDIX C: Hierarchical Bayesian Model for Binary Data

We consider a small area model, where there are ` areas each comes from a population. (A reviewer requested us to
provide a hierarchical model to show generality.) The population size of the ith area is Ni, i = 1, . . . , `. Let yi j, j =

1, . . . ,Ni, i = 1, . . . , `. We are omitting covariates from this example. Inference is required for the finite population
proportions Pi = 1

ni

∑Ni
j=1 yi j. The population model is

yi j | pi
ind
∼ Bernoulli(pi), j = 1, . . . ,Ni,

pi | µ, ρ
ind
∼ Beta

{
µ

1 − ρ
ρ

, (1 − µ)
1 − ρ
ρ

}
, i = 1, . . . , `.

See Nandram (2016) for this reparameterization of the beta distribution. Finally, we assume

π(µ, ρ) = 1, 0 < µ, ρ < 1.

We assume that this population model is correct.

For the sample model, we adjust the population model using only the observed data. We have a sample of size ni, i =

1, . . . , `, from the ith area. We also have survey weights Wi j and adjusted trimmed survey weights w∗i j Then, using the
normalized adjusted trimmed survey weights (our preference), we have

yi j | pi
ind
∼ Bernoulli

 p
w∗i j

i

p
w∗i j

i + (1 − pi)w∗i j

 , j = 1, . . . , ni

pi | µ, ρ
ind
∼ Beta

{
µ(

1 − ρ
ρ

), (1 − µ)(
1 − ρ
ρ

)
}
, i = 1, . . . , `,

π(µ, ρ) = 1, 0 < µ, ρ < 1.

Let y
˜

denote the sample data. Then, using Bayes’ theorem, the joint posterior density is

π(p
˜
, µ, ρ | y

˜
) ∝

50



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 12, No. 1; 2023

∏̀
i=1

ni∏
j=1

p
yi jw∗i j

i (1 − pi)(1−yi j)w∗i j

p
w∗i j

i + (1 − pi)w∗i j

∏̀
i=1

p
µ( 1−ρ

ρ )−1
i (1 − pi)

(1−µ) 1−ρ
ρ −1

B{µ( 1−ρ
ρ

), (1 − µ)( 1−ρ
ρ

)}
,

where 0 < pi < 1, i = 1, . . . , `, 0 < µ, ρ < 1. To make inference about the finite population proportions, we only need
to sample pi, i = 1, . . . , `, from their marginal posterior density. It is easy to show that if 0 <

∑ni
j=1 yi j < ni, i = 1, . . . , `

(distinctly), the joint posterior density, π(p
˜
, µ, ρ | y

˜
) is proper. Also, we can sample the posterior density using a technique

similar to Nandram (2016).

Predictive inference is now exactly the same for the simple Bernoulli example as we discussed in this paper using surrogate
samples (e.g. Nandram, 2007).

APPENDIX D: A Model for Binary Study Variable with Covariates

Our basic objective is to show how to incorporate covariates for binary data. Therefore, we incorporate the survey
weights into the logistic regression model. The Bayesian analysis is currently under study. A reviewer has requested
that we consider calibration weights, and this is why we have considered covariates. In our development we are actually
using calibration weights, but we are not using covariates. So by simply raking up the original weights so that they
sum to the population size, we are essentially using the calibration weights. But calibration makes sense when the total
covariate vector is known for the population. It is just a simple optimization step to go from the original survey weights
to calibration weights (Haziza & Beaumont, 2017).

We assume logistic regression with p covariates, including an intercept, for the population model,

yi | β
˜

ind
∼ Bernoulli

 ex
˜
′
iβ
˜

1 + ex
˜
′
iβ
˜

 , i = 1, . . . ,N,

where N, the population size, and the nonsampled x
˜

i may not be known, and these can come from an external source.

Then, the normalized density with the adjusted trimmed survey weights, w∗i , i = 1, . . . , n, is

yi | β
˜

ind
∼ Bernoulli

 ew∗i x
˜
′
iβ
˜

1 + ew∗i x
˜
′
iβ
˜

 , i = 1, . . . , n.

Again, the normalized form is more appropriate under the Bayesian paradigm, and in this form the covariates are adjusted
to x̃

˜
i = w∗i x

˜
i, i = 1, . . . , n. Then, using a flat prior on β

˜
, π(β

˜
) = 1, the joint posterior density is

π(β
˜
| y

˜
) ∝

 e
∑n

i=1 yiw∗i x
˜
′
iβ
˜∏n

i=1(1 + ew∗i x
˜
′
iβ
˜
)

 , β˜ ∈ Rp.

With a flat prior on β
˜
, under some mild conditions relating the x

˜
i and yi, it is well known that if X = (x

˜
′
i) is full rank, the

joint posterior density, π(β
˜
| y

˜
), is proper; see M.-H. Chen, Ibrahim, and Kim (2008) for more details with Jeffreys’ prior.

Also, with a proper prior on β
˜
, because the likelihood is bounded, the posterior density will be proper. We can actually

use the Gibbs sample (or the Metropolis sampler) to get samples of β
˜
. Inference about the finite population proportion

P is now straight forward. Because we have covariates, it is possible to start with calibration weights, which replace the
original weights. These can be adjusted and trimmed survey weights.

The only practical issue that remains is when the nonsampled covariates are unknown, a typical scenario, how to estimate
them because they are needed to predict the finite population proportion. If all the covariates are discrete with each having
just a few levels, then it is possible. If some variables are continuous, they can be discretized to a few levels. In the BMI
data, there are three covariates, which are generally used, and these are all discrete, but age has about 70 levels (age runs
from 20 to 89) and race and sex, each has two levels. So there are 280 distinct vectors x

˜
of covariates. If the sample is

fairly large (BMI data we use have nearly 2000 observations), it is reasonable to assume that the sample covariates are the
only ones in the population, and if some are not observed, they can be structurally eliminated. Using the original survey
weights, we have a Horvitz-Thompson estimate of the frequency of each distinct vector covariate.
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