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Abstract

This article introduces a new finite mixture class of generated families between Topp—Leone—G class and
exponentiated—G class, called mixture of Topp—Leone exponentiated—G (MTLE-G) class. This class be more suitable
for many real life situations and improve fitted results. One sub—model of this class is studied in details, called mixture
of Topp—Leone exponentiated—Weibull distribution. Some statistical properties are established. The potentiality of the
new class is shown via two applications to real data sets.

1. Introduction

Exponentiated distributions can be obtained by powering a positive real number £ to the cumulative distribution
function (CDF), i.e, if we have CDF F (X ) of any random variable X , then the function

B
F(x)=[G (x)]", B>0, (1)
is called an exponentiated distribution where introduced by Gupta et al. (1998)

Sangsanit and Bodhisuwan (2016) and AL-Shomrani et al. (2016) introduced a new generating lifetime distribution,
called the Topp—Leone generating (TL-G) family of distribution. In addition, the TL-G family is capable of improving
fitted results and tail behavior of existing distributions.

The CDF of TL-G is defined by the following expression

_ 278
F(x)=[l—(G(x))} , B>0, 2)
and the corresponding PDF is given by

f.00)=266 (o ()[1-(E ) | p>0

A mixture between two distributions or more is another technique to introduce a new class of distributions with CDF
G (x ) defined by the following formula

G(x)=ipiFi(x), 3)

n
where Z p; = I,and P; is aratio number.
i=l1

In this article we introduce a new class of mixture distributions based on exponentiated—G and TL-G classes. We call it
as the mixture of Topp—Leone exponentiated—G family. We are motivated to study a special model of this class named
as mixture of Topp—Leone exponentiated weibull distribution (MTLEWD). Its hazard function can be bathtub shaped
failure rates. This paper is constructed as follows: in Section 2, we introduce the new class of mixture distributions. In
section 3, we consider sub—model of the proposed family. Statistical properties including moments, incomplete
moments, moments of residual life, moment generating function, quantile function and order statistics are derived in
Section 4. Two real data sets are analyzed in Section 5. Finally, Section 6 concludes the article.
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2. New Class of Mixture Distributions

In this section, a new mixture class of distributions, called the mixture of Topp—Leone exponentiated—-G (MTLE-G)
class is proposed. The CDF of the MTLE-G is defined by substituting (1) and (2) in (3) as the follows

Foo=(-p)[6 ()] +p[1-(E () |
=[G (x )]ﬂ[l—p+p(l+§(x ))ﬁ},

where G (X )and a(x ) are the CDF and the survival function (SF) of any baseline distribution, respectively, P isa
ratio number and /3 is shape parameter.

“

The corresponding probability density function (PDF) is given by

f(x)=8(1-p)g (x )[G (x )]/H +2pAG (x)g (x )[1—(5()( ))Zril

N S 5)
=59 (x)[6 ()] [1-p 206 (x)(146 (<)) |. p.p>0.

where ¢ (X ) is the PDF of baseline distribution. A random variable X having MTLE-G density function (5) will be

denotedby X <« MTLE-G .
The corresponding SF and hazard function (HF) are provided in (6), (7), respectively:

s (x)=1-[G (x)]ﬂ[l—p+p(1+G(x))q, ©)

and
pa 0o ()] 1-p+2p8 (x)(1+6 ()" |
1-[G (x)]ﬂ[l—p+p(1+§(x))q .

h(x)

)

Note that:
e At p=0, then the mixture be exponentiated family.
e Atp=1, then the mixture be TL-G family.

3. Topp-Leone Exponentiated Weibull Distribution

Let X has the Weibull distribution with CDF G (x)=1-e ) and PDF g (x)=62(4x)" e ™). Then the CDF of
the mixture of Topp—Leone exponentiated Weibull distribution (MTLEWD) becomes

F (x ):[l—e(“)g]ﬁ [1— P+ p(1+e’(“)a )ﬂ]

The corresponding PDF is
0 g 18-1 0 9 \A-1
f(x)=p804"%x""e ") [l—e'(“) :| {1—p+2pe‘(“) (1+e‘(“) ) }

Figure 1 shows some of the possible shapes of PDF of MTLEW distribution using R software for selected different
values of parameters with different shapes the density function of MTLEWD is decreasing, left-skewed, right-skewed
when @ <1, and more symmetric as € >1 . Figure 2 displays the hazard function of MTLEW distribution with
various shapes using R software. This plot has very flexible shapes such as monotonically decreasing when @ <1,
bathtub shaped, monotonically increasing and upside-down bathtub features, depending on the parameter values.
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Figure 1. Plot of the PDF for some parameter values
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Figure 2. Plot of the HF for some parameter values

The behaviors of the PDF are
limf (x)=0,

X ——
A

limf (x)=0.

X =0

Let X follows MTLEWD, then X reduces to

1.

® NN kWD

9.

EW distribution, if p =0.
TLW distribution, if p =1.

MTLE exponential distribution, if @ =1 (new).
MTLE Rayleigh distribution, if @ =2 (new).
Weibull distribution, if p =0, f#=1.
Rayleigh distribution, if p=0, f=1,0=2.
Exponential distribution, if p=0, #=1,0=1.

Topp-Leone exponential distribution, if p =1, #=1,0=1,

Topp-Leone Rayleigh distribution, if p =1, #=1,0=2.

The corresponding SF is

S(X)=1—[1—e(“)ﬁr [1— p+ p(1+e<ﬁX)9)ﬁ}

and the HF is

11
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0 e 0 0 \B-1
SO X e ) [l—e’(“) } {1—p+2pe(“) (1+e’(“) ) }

e \P
l—[l—e'(“) } {1—p+p(1+e'(“) ) }

h(x)= )

The behaviors of the HF are
lim h (x) = 0,
ﬂeﬂe*‘[l—e*‘]”"[l— p +2pe*‘(1+e*1)”"J
lim1 h(x)=

27 1—[1—e"}ﬂ[1—p+p(1+e")ﬁ}

lim h(x ) = 0.

>

4. Statistical Properties

In this section, we consider some statistical properties of the proposed family.
4.1 Moments

Moments have an important role in any statistical analysis. It can be used to describe important characteristics and
shapes, peakedness and study the symmetry of the shape of the distribution.

The r'" moment for MTLEWD about the origin is

“ 0 o 1B8-1 0 A
:ﬂ&ﬂfx r0-1g=(#) [l—e’(“) } [1— p+2pe *) (1+e’(“) ) }dx
0

=1, +L,

(10)

where, I,andl, are obtained as follows

-1

“ a 0 ﬂ
I =p0A° (1-p) [x """ [l—e‘(“) } dx.
0

Using binomial expansion, then I, can be written as follows:

I —ﬂ@ﬂ,g i[ j ]C'Xr+€—1e—(i+l)(ﬂx)9dx _ ( ji
=02 (1+|) "

i=0 0
i( -1 r . .
where, A; =/ (1 -p )(—1) i and I’ 7 +1 | is the gamma function.

“ 0 g 181
and 1, = 2mgpﬂfx r+0-1g (%) [1 —g ™) ] dx..
0

Using binomial expansion, then I, can be written as follows:

(B~ ? > A'B,
I, :2«9/19p,82ﬁ ] 1)’ [xreote 2 g _F(%sz .
i=0 0

where, B. —2p,B( )(ﬁ; 1)

12
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Substituting I, andL, in (10) we get

> i A'B;
( j'Z-‘;/l’(lﬂ) - ( )JZ[ (1+1)J

o[ fally Ay B,
(9 j'°(1+i)ﬂ” 214 )]

The mean and the variance of MTLEWD are given as follows:

and

The r'" central moment is defined by

C=EX - = Zr: (-1’ (:J(ﬂf)i J71p

i=0
The coefficient of skewness (Sk) and kurtosis (Ku) are defined by

Skz%,Ku =y
u? ,uz

Some measures of moments for MTLEW distribution

(11)

(12)

Table 1 contains numerical values of mean ( ,Uf ), variance (02 ), Sk, and Ku of MTLEWD for some values of

parameters

13
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Table 1. 4,07, Sk and Ku of MTLEWD

(a)

o | B | 2| P 7 o’ Sk Ku
0.4 0.5 0.2 0.9 2.275 188.632 35.089 3192.397
1.4 1.5 1.2 0.7 0.676 0.204 1.451 6.310
24 2.5 2.2 0.5 0.467 0.023 0.544 3.304
34 35 32 0.3 0.347 0.005 0.117 3.162
44 4.5 4.2 0.1 0.255 0.005 1.594 3.463

(b)

6 | p| 1| P 78 o’ Sk Ku
0.4 0.5 0.2 5.1663 753.266 20.790 984.6328
1.4 1.5 1.2 0.7487 0.2485 1.3437 5.6045
24 2.5 2.2 0.5 0.4673 0.0229 0.5444 3.3039
34 3.5 32 0.3339 0.0048 0.2397 3.1860
44 4.5 4.2 0.2603 0.0002 0.5158 4.1288

From Table 1(a), we conclude that, as the values of &, and 4 increase and for P decrease, then the values of £/,
and o’ are decreasing and SK and Ku are decreasing and increases. Also, it can be seen that the MTLEW
distribution is right skewed and leptokurtic.

From Table 1(b), we conclude that, as the values of &,/ and A increase and for fixed P ,
and o’ are decreasing and SK and Ku are decreasing and increases.

Incomplete Moments

then the values of ,ul' s

Incomplete moments of the income distribution form natural building blocks for measuring inequality: for example,
income quintiles, the Lorenz curve, which depend upon the incomplete moments of the income distribution. The s
incomplete moment of X, denoted by ¢, (t ), is given by

t t

. =Ixsf (x )dx =/3Ixsg (x )[G (x )]ﬁfl [1— p+2pG (x )(1+5(x ))ﬁl}dx. (13)

0 0

The s" incomplete moment of MTLEWD is as follows:

¢ 0 s 18-1 0 \B-1
=ﬂ¢9/1‘9jx“‘9"e‘(“) [l—e'(“) } {l—p+2pe (3) (1+e‘(“) ) }dx
0

=J,+J,,

(14)
where,

t 0 0 18-1
3, =P’ (1- p)J.xS*g”e‘W) [l—e‘(“) } dx.
0

Using binomial expansion, then J, can be written as follows:

0 t n
J _ﬁaﬁﬁ Z( j 'J.XS+€1 —(i+1)(Ax) dX—ZA g -
° .

i=0

14
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where, 7 [ ;1! S(1+i)(a )gj is the incomplete lower gamma function.

F o 051
and J, =2864° DJX $+0-1g ~2Ax) [1 —e ™) J dx.
0
Using binomial expansion, then J, can be written as follows:

t . }/(S+1,2(1+ i)(at )"j
J —ZﬂHEODZ[ J JJ‘XS+01 =2( J+l )dX ZZBJ 49 )
j=0 0 j=0 ﬂ |: (1+J):|+7

Substituting the values of J,andJ, in (14) we get

5 7/(2+1,(1+i )(At )5) o 7/(;+1,2(1+ j)(at )“’j. -

A° (1+i)”% i=0 A8 [ (1+j):|1+7

4.2 Moments of the Residual and Reversed Residual Life

The n" moment of the residual life (MRL), m_ (x)=E {(X -X )n ‘X >x},N=12,... uniquely determines F(x),

(see Navarro et al., 1998). It is given by

Using the binomial expansion, then

m, (1) = ! i(”(—t)'?x”"f (x )dx. (16)

1 nin |
-y ) e, a
where,
% 0 9 181
a)l :eiaﬂ(l_p)J-XrH—@—I—le*(},X) |:1_e(ﬂ.x) j| dX .
t

Using binomial expansion, then @, can be written as follows:

o = 0" (1 i( J iTXnH?I (1)) :iA'F(n:H,(Hi)(ﬂt)gj’

n-l
i=0

r =0 A (1+i) e

n-I :
where, I’ (9 +1, (1 +1 )(ﬂt )Hj is the incomplete upper gamma function.

2 4 4 571
Also, @, =264°p ﬂj x M0 M) [1—e’2“*) ] dx .
t

15
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Using binomial expansion, then @, can be written as follows:

(po) e o le“(n_l+1,2(1+j)(/1t)9j
o, :29/10pﬂz[ _ j(_l)l J'Xn+€—l—1e—2(l+j)(ix) dx :Z 0 - ‘
=0\ J t 2 g)] e

Substituting the values of @, and®, in (17) we get

vy e | AT ey | e[ gy (aty
m”(t)zz(lj(lt—)én 2 [g(m)“%' LZ (Ez(mﬂ”y )

1=0

4.3 Moment Generating Function
The general form of moment generating function for MTLEWD is defined as:

©

M (t)=je‘xf (x )dx =7, +7,, (18)

0

where,

0 0 B-1
= BOA° (1- p)J 0-lgg 4 )[l—e‘(“)} dx.

0

17, can be written as follows:

= poa’ (1-p itk (ﬂ le x O-tkg (1 i k) F(%H).

k=0 b k=0 2% 11+ )e

0 0\ S
Also, 1, = 2ﬂ«9pﬁf’jx“ eXe X )(l—ez(”“x)) dx.
We apply the binomial expansion to 77,

o0 0 k
=2p0p2’ Z (ﬂ lJf rikg A gy = gL kf[kﬂj.
j.k=0 J 0 j,k:Ok!lk |:2(1+J):|H79
Substituting the values of 77, and 17, in (18) we get

b ) D v T
=k (9 j'0(1+|) i [(1_'_])]17

4.4 Quantile and Median
The quantile function X, of MTLEWD is the real solution of the following equation

il o \P
q :[l—e_(““) } {1—p+p(1+e_(““) j } (19)

The percentage points at 25%, 50% and 75% of some specific choices of the parameters are given in Table 2.

16
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Table 2. Percentage points for f3,6,4 and p

A o p Y 25% 50% 75%
12 | 1.5 | 1.8 | 05 0.464 0.714 1.048
1.9 2 | 23] 005 0.458 0.601 0.761
04 | 25 2 0.2 2.012 2.566 3.173
0.6 4 |35 03 1.603 1.812 2.028

We detect from Table 2 that as the values of A are increase, then the values of percentage points are decreases.
4.5 Order Statistics

In this subsection, we drive the single order statistics for MTLE-G. Let X,... X, denote n independent and identically
distributed MTLE-G random variables. Further, let X, ,...,X ., denote the order statistics from these n variables.

Then, the PDF of the r™ order statistic X(r:n), say f o (X ), the r'™ order statistic is given by David and Nagaraja
(2003)

fr () =c [FOO)] f ()[1-F(x)]"".

Using the binomial expansion, then

r

fr:n (X ) :Cr:n

S o e
.. iﬂ;(ni— rJ(_l)i g (x )[1_ p+2pG (x )(1+5(x ))ﬁ’—l}
o opealiieof "

n!
(r=1)Y(n-r)
Using the binomial expansion again, then the r' order statistic for MTLE—G is as the following

ol e S O RarTO I
(1+6 (x))" [1—p+2pG(x)(1+G(x))ﬁl}

where c, , =

fr:n (X ) =Cr

n—rr+i-1

i=0 v=0

The r'" order statistics for MTLEWD is

fra (X)=Cr ZZI[”‘ rj(r ; _1J(—1)i BOAXTp (1-p) " e O

izo voo \ | v

o B(r+i)-1 AV 0 0 \B-1
[l—e’“” ] (1+e’(“) ) {1—p+2pe(“) (1+e’(’“) ) }

The k™ moments of r'" order statistics for MTLE~G is

St n=r\(r+i-1 i
AR 33 Ll e G TIEEA ]
i=0 v=0

where, y, = A" (1-p)""™ [x*g ()[G ()] (1+G (x))" dx.

0

17
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andy =269 (1-p) " [x*g ()8 (4)[ ()" (146 ()" .

5. Application to Real Data

In this section, we fit the MTLEWD to real data sets and compare the fitness with Weibull — Weibull distribution
(WWD) (Abouelmagd et al. (2017)), Topp — Leone Weibull distribution (TLWD), and exponentiated Weibull
distribution (EWD) (Pal et al. (2006)).

The second data set is reported by Fuller et al (1994), which is related with strength data of window glass of the aircraft
of 31 windows.

In order to compare distributions, we consider the Kolmogorov-Smirnov (KS) statistic, minus 2 of log likelihood
(-2InL), Akaike Information Criterion (AIC), Akaike Information Criterion Corrected (AICC), Bayesian Information
Criterion (BIC), Hannan—Quinn information criterion (HQIC) and P—value. The best distribution corresponds to lower
K-S, -2InL, AIC, BIC, AICC and HQIC statistics value and high P—value.

The numerical values of the —2InL, AIC, AICC, BIC, HQIC, SS and K-S statistics are listed in Tables 3 and 5, whereas
Tables 4 and 6 list the MLEs of the model parameters.

Table 3. The statistics —2InL, AIC, AICC, BIC, HQIC, K-S, and P—value for the first data set

Model MTLEWD EWD TLWD WWD
—2InL 204.7422 208.0852 208.0852 211.7528
AIC 212.7422 214.0852 214.0852 219.7528
AICC 214.2807 214.9741 214.9741 214.2807
BIC 218.4781 218.3872 218.3872 225.4887
HQIC 214.612 215.4875 215.4875 221.6226
K-S 0.087062 0.12733 0.12714 0.14864
P—value 0.9567 0.65 0.6518 0.4564
Table 4. ML estimates of the model parameters for the first data set
Model A A A A
0 b A p
MTLEWD 1.8004 91.6147 0.0661 0.5296
EWD 1.4661 0.0764 19.4026 —_
TLWD 1.4732 19.0691 0.0473 _
WWD 0.3683 7.0835 0.3518 0.0011

o

N —
o

- MILEW

Density
0.10
|

0.00
|

20

Figure 3. Empirical and theoretical density and CDF of the fitted MTLEWD for first data
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18
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Figure 3 shows the empirical and theoretical density and CDF of the fitted MAPEWD, and Figure 4 shows the PP plot
of the fitted MTLEWD for first data.
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Figure 4. P-P plots of the fitted MTLEW distribution for first data

Table 5.The statistics—2InL, AIC, AICC, BIC, HQIC, K-S and P—value for the second data set

Model MTLEWD EWD TLWD WWD
—2InL 346.4154 359.692 354.3028 395.0764
AIC 354.4154 365.692 360.3028 403.0764
AICC 355.3043 366.2137 360.8245 355.3043
BIC 362.0635 371.4281 366.0389 410.7245
HQIC 357.3278 367.8763 362.4871 405.9888
K-S 0.084125 0.13188 0.11357 0.23178
P—value 0.8418 0.3207 0.5033 0.00762

Table 6. ML estimates of the model parameters for the second data set
Model é ,8 /i Iﬁ

MTLEWD 0.6831 3218.4163 0.2702 0.9632

EWD 0.5012 1.4925 735.0415 _

TLWD 0.3770 21149.66 2.4306 _
WWD 0.0275 66.7118 0.6319 0.4907

© MTLEW
(e R
o
2 |
= a
& I | 3
o s
o
S - = =
o | | | |
20 40 60 80 100
Data

0.8

04

0.0

Figure 5 shows the empirical and theoretical density and CDF of the fitted MTLEWD, and Figure 6 shows the P—P plot
of the fitted MTLEWD for second data.

20 40 60 80

X

100

Figure 5. Empirical and theoretical density and CDF of the fitted MTLEWD for second data
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Figure 6. P—P plots of the fitted MTLEW distribution for second data
6. Concluding Remarks

In this article, a new class of mixture distributions named MTLE-G family is introduced. One model called the
MTLEW distribution is studied. Some statistical properties of the new distribution are presented and discussed. The
estimation of the model parameters is derived by maximum likelihood method. An application to real data sets indicates
that the new model is superior to the fits than the other existing distributions.
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