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Abstract 

This article introduces a new finite mixture class of generated families between Topp–Leone–G class and 
exponentiated–G class, called mixture of Topp–Leone exponentiated–G (MTLE–G) class. This class be more suitable 
for many real life situations and improve fitted results. One sub–model of this class is studied in details, called mixture 
of Topp–Leone exponentiated–Weibull distribution. Some statistical properties are established. The potentiality of the 
new class is shown via two applications to real data sets.  

1. Introduction 

Exponentiated distributions can be obtained by powering a positive real number   to the cumulative distribution 
function (CDF), i.e, if we have CDF ( )F x  of any random variable X , then the function 

    ,   0,   F x G x


                            (1) 

is called an exponentiated distribution where introduced by Gupta et al. (1998) 

Sangsanit and Bodhisuwan (2016) and AL-Shomrani et al. (2016) introduced a new generating lifetime distribution, 
called the Topp–Leone generating (TL–G) family of distribution. In addition, the TL–G family is capable of improving 
fitted results and tail behavior of existing distributions. 

The CDF of TL–G is defined by the following expression 

  2
( ) 1 ,   0,F x G x     



                  (2) 

and the corresponding PDF is given by 

        
12

2 2 1 ,   0.f x G x g x G x


 


     
 

A mixture between two distributions or more is another technique to introduce a new class of distributions with CDF
 G x defined by the following formula 

 
1

( ) ,
n

i i
i

G x p F x


                 (3) 

where 
1

1,
n

i
i

p


 and ip  is a ratio number. 

In this article we introduce a new class of mixture distributions based on exponentiated–G and TL–G classes. We call it 
as the mixture of Topp–Leone exponentiated–G family. We are motivated to study a special model of this class named 
as mixture of Topp–Leone exponentiated weibull distribution (MTLEWD). Its hazard function can be bathtub shaped 
failure rates. This paper is constructed as follows: in Section 2, we introduce the new class of mixture distributions. In 
section 3, we consider sub–model of the proposed family. Statistical properties including moments, incomplete 
moments, moments of residual life, moment generating function, quantile function and order statistics are derived in 
Section 4. Two real data sets are analyzed in Section 5. Finally, Section 6 concludes the article. 
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2. New Class of Mixture Distributions 

In this section, a new mixture class of distributions, called the mixture of Topp–Leone exponentiated–G (MTLE–G) 

class is proposed. The CDF of the MTLE–G is defined by substituting (1) and (2) in (3) as the follows 

      
    

2
( ) 1 1

1 1 ,

F x p G x p G x

G x p p G x






         
         

                      (4) 

where  G x and  G x are the CDF and the survival function (SF) of any baseline distribution, respectively, p  is a 
ratio number and  is shape parameter.  

The corresponding probability density function (PDF) is given by 

            
        

121

11

( ) 1 2 1

        1 2 1 ,   , 0,

f x p g x G x p G x g x G x

g x G x p pG x G x p






 

 






         
          

       (5) 

where  g x  is the PDF of baseline distribution. A random variable X  having MTLE–G density function (5) will be 

denoted by MTLE-GX ‹ . 

The corresponding SF and hazard function (HF) are provided in (6), (7), respectively: 

      1 1 1 ,          
S x G x p p G x


                      (6) 

and 

        
    

11
1 2 1

( ) .
1 1 1

g x G x p pG x G x
h x

G x p p G x






          

         

        (7) 

Note that: 

 At p=0, then the mixture be exponentiated family. 

 At p=1, then the mixture be TL–G family. 

3. Topp–Leone Exponentiated Weibull Distribution 

Let X has the Weibull distribution with CDF    1 xG x e
   and PDF      1 xg x x e

     . Then the CDF of 
the mixture of Topp–Leone exponentiated Weibull distribution (MTLEWD) becomes 

      1 1 1 .x xF x e p p e
  

             
 

The corresponding PDF is 

          1 1
1 1 1 2 1 .x x x xf x x e e p pe e

    
    

 
               

 

Figure 1 shows some of the possible shapes of PDF of MTLEW distribution using R software for selected different 
values of parameters with different shapes the density function of MTLEWD is decreasing, left-skewed, right-skewed 
when 1  , and more symmetric as 1  . Figure 2 displays the hazard function of MTLEW distribution with 
various shapes using R software. This plot has very flexible shapes such as monotonically decreasing when 1  , 
bathtub shaped, monotonically increasing and upside-down bathtub features, depending on the parameter values. 
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The behaviors of the HF are 
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4. Statistical Properties 

In this section, we consider some statistical properties of the proposed family. 
4.1 Moments 

Moments have an important role in any statistical analysis. It can be used to describe important characteristics and 
shapes, peakedness and study the symmetry of the shape of the distribution.  

The rth moment for MTLEWD about the origin is 

        1 1
1

0

1 2

1 1 2 1

    I I ,

x x x xr
r x e e p pe e dx

    
     

  
                 

 

           (10) 

where, 1 2I and I  are obtained as follows  

     
1

1
1

0

I 1 1 .x xrp x e e dx
  

  
 

          

Using binomial expansion, then 1I can be written as follows:  

      

 
11
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1
I 1 1 1 ,
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i i xr i
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where,    1
1 1

  

 
    

 

i

iA p
i


 and 1

r


   
 

 is the gamma function. 

and 
   

1
2 21

2

0

I 2 1 .x xrp x e e dx
  

   
 

         

Using binomial expansion, then 2I  can be written as follows:  
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Substituting 1 2I and I  in (10) we get 

   

   

1 10 0

1 10 0

1 1
1 2 1

1 .
1 2 1
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The mean and the variance of MTLEWD are given as follows: 

   
1 1 1

1 10 0

1 1
1 ,

1 2 1

 

  

 
        

       

  ji

i j

BA

i j 


                      (11) 

and 

 
   

2 22
1 10 0

1 2
var 1

1 2 1

 

  

 
       

      

  ji

i j

BA
X

i j  
 

             
   

2

2

1 12
1 10 0

1 1
1 .

1 2 1

 

  

 
                  

  ji

i j

BA

i j  
                    (12) 

The rth central moment is defined by 

1 1
0

( ) ( 1) ( ) .
r

r i i
r r i

i

r
E X

i
    



        
 

  

The coefficient of skewness (Sk) and kurtosis (Ku) are defined by  

3 4
3 2

2 22

Sk , Ku .
 


   

Some measures of moments for MTLEW distribution  

Table 1 contains numerical values of mean ( 1 ), variance ( 2 ), Sk, and Ku of MTLEWD for some values of 

parameters 

  



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 12, No. 1; 2023 

14 

Table 1. 2
1, ,  Sk and Ku of MTLEWD  

(a) 

      p  1  2  Sk  Ku  

0.4 0.5 0.2 0.9 2.275 188.632 35.089 3192.397 

1.4 1.5 1.2 0.7 0.676 0.204 1.451 6.310 

2.4 2.5 2.2 0.5 0.467 0.023 0.544 3.304 

3.4 3.5 3.2 0.3 0.347 0.005 0.117 3.162 

4.4 4.5 4.2 0.1 0.255 0.005 1.594 3.463 

(b) 

      p  1  2  Sk  Ku  

0.4 0.5 0.2 

0.5 

5.1663 753.266 20.790 984.6328 

1.4 1.5 1.2 0.7487 0.2485 1.3437 5.6045 

2.4 2.5 2.2 0.4673 0.0229 0.5444 3.3039 

3.4 3.5 3.2 0.3339 0.0048 0.2397 3.1860 

4.4 4.5 4.2 0.2603 0.0002 0.5158 4.1288 

From Table 1(a), we conclude that, as the values of ,  and     increase and for p decrease, then the values of 1,
2and   are decreasing and  and Sk Ku  are decreasing and increases. Also, it can be seen that the MTLEW 

distribution is right skewed and leptokurtic. 

From Table 1(b), we conclude that, as the values of ,  and     increase and for fixed p , then the values of 1,
2and   are decreasing and  and Sk Ku  are decreasing and increases. 

Incomplete Moments 

Incomplete moments of the income distribution form natural building blocks for measuring inequality: for example, 
income quintiles, the Lorenz curve, which depend upon the incomplete moments of the income distribution. The sth 
incomplete moment of X, denoted by  s t , is given by 

           11

0 0

1 2 1 .s

t t
s sx f x dx x g x G x p pG x G x dx


 

                 (13) 

The sth incomplete moment of MTLEWD is as follows: 

        1 1
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where,  
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where,   1, 1
   
 

s
i t

 


 is the incomplete lower gamma function. 

and 
   

1
2 21

2

0

2 1 .
t

x xsJ p x e e dx
  

  


         

Using binomial expansion, then 2J  can be written as follows:  
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Substituting the values of 1 2andJ J  in (14) we get 

 
  

 

  

 1 10 0

1, 1 1, 2 1
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1 2 1

 

  

         
    

   
 s i js s

s si j

s s
i t j t

t A B
i j

 

 

   
 
 

          (15) 

4.2 Moments of the Residual and Reversed Residual Life 

The nth moment of the residual life (MRL),  ( ) { },
n

nm x E X x X x   = 1,2,... n  uniquely determines F(x), 

(see Navarro et al., 1998). It is given by 

       1
.

1n

n

t

m t x t f x dx
F t



 
   

Using the binomial expansion, then 

       
0

1
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t t x f x dx
lF t






 
    

                       (16) 

The nth MRL for MTLEWD can be obtained as follows 

       1 2
0

1
,

1n

n
l

l

m
n

t t
lF t

 


 
     

           (17) 

where, 

     
1

1
1 1 1x xn l

t

p x e e dx
  

    
 

          . 

Using binomial expansion, then 1 can be written as follows:  
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where,   1, 1
    

 
n l
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 is the incomplete upper gamma function. 

Also, 
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Using binomial expansion, then 2 can be written as follows:  

    
   

 
2 11

2
10 0

1, 2 1
1

2 1 .
  

2 1
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j j xn l

n l
n lj jt

n l
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p x e dx
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Substituting the values of 1 2and   in (17) we get 

    

 

  

 1 10 0 0

1, 1 1, 2 1
( ) .

1 ( ) 1 2 1
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4.3 Moment Generating Function 

The general form of moment generating function for MTLEWD is defined as: 

    1 2

0

,txM t e f x dx  


                (18) 

where, 

     
1

1
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0

1 1 .x xtxp x e e e dx
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We apply the binomial expansion to 2   

    

 
2 11

2
1, 0 , 00

11
2 1 .

!
! 2 1

j kk
jj xk

k
kj k j k

B tt k
p x e dx

jk
k j

 




  



 
  

 

          
     

   

Substituting the values of 1 2and   in (18) we get 

 
   1 10 0 0

M 1 .
! 1 2 1
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BAt k
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4.4 Quantile and Median  

The quantile function qx of MTLEWD is the real solution of the following equation 

   1 1 1q qx x
q e p p e

  
                 

        (19) 

The percentage points at 25%, 50% and 75% of some specific choices of the parameters are given in Table 2. 
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Table 2. Percentage points for , ,  and p    

      p  25% 50% 75% 

1.2 1.5 1.8 0.5 0.464 0.714 1.048 

1.9 2 2.3 0.05 0.458 0.601 0.761 

0.4 2.5 2 0.2 2.012 2.566 3.173 

0.6 4 3.5 0.3 1.603 1.812 2.028 

We detect from Table 2 that as the values of   are increase, then the values of percentage points are decreases. 

4.5 Order Statistics  

In this subsection, we drive the single order statistics for MTLE–G. Let 1... nx x  denote n independent and identically 
distributed MTLE–G random variables. Further, let 1: :,...,n n nx x denote the order statistics from these n variables. 
Then, the PDF of the rth order statistic  :r nx , say  :r nf x , the rth order statistic is given by David and Nagaraja 
(2003) 

       1

: : 1 .
r n r

r n r nf x c F x f x F x
 

         

Using the binomial expansion, then 
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Using the binomial expansion again, then the rth order statistic for MTLE–G is as the following 
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The rth order statistics for MTLEWD is 
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The kth moments of rth order statistics for MTLE–G is 
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and               1 1111
2

0

2 1 1 .
          

vr ir i vv ky p p x g x G x G x G x dx


  

5. Application to Real Data 

In this section, we fit the MTLEWD to real data sets and compare the fitness with Weibull – Weibull distribution 
(WWD) (Abouelmagd et al. (2017)), Topp – Leone Weibull distribution (TLWD), and exponentiated Weibull 
distribution (EWD) (Pal et al. (2006)).  

The second data set is reported by Fuller et al (1994), which is related with strength data of window glass of the aircraft 
of 31 windows. 

In order to compare distributions, we consider the Kolmogorov-Smirnov (KS) statistic, minus 2 of log likelihood 
(–2lnL), Akaike Information Criterion (AIC), Akaike Information Criterion Corrected (AICC), Bayesian Information 
Criterion (BIC), Hannan–Quinn information criterion (HQIC) and P–value. The best distribution corresponds to lower 
K-S, –2lnL, AIC, BIC, AICC and HQIC statistics value and high P–value. 

The numerical values of the –2lnL, AIC, AICC, BIC, HQIC, SS and K–S statistics are listed in Tables 3 and 5, whereas 
Tables 4 and 6 list the MLEs of the model parameters. 

Table 3. The statistics –2lnL, AIC, AICC, BIC, HQIC, K–S, and P–value for the first data set 

Model MTLEWD EWD TLWD WWD 

−2lnL 204.7422 208.0852 208.0852 211.7528 

AIC 212.7422 214.0852 214.0852 219.7528 

AICC 214.2807 214.9741 214.9741 214.2807 

BIC 218.4781 218.3872 218.3872 225.4887 

HQIC 214.612 215.4875 215.4875 221.6226 

K–S 0.087062 0.12733 0.12714 0.14864 

P–value 0.9567 0.65 0.6518 0.4564 

Table 4. ML estimates of the model parameters for the first data set 

Model 
̂  ̂  ̂  p̂  

MTLEWD 1.8004 91.6147 0.0661 0.5296 

EWD 1.4661 0.0764 19.4026 ــــــــ 

TLWD 1.4732 19.0691 0.0473 ــــــــ 

WWD 0.3683 7.0835 0.3518 0.0011 

Figure 3 shows the empirical and theoretical density and CDF of the fitted MAPEWD, and Figure 4 shows the P–P plot 
of the fitted MTLEWD for first data. 

 

Figure 3. Empirical and theoretical density and CDF of the fitted MTLEWD for first data 
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Figure 4. P–P plots of the fitted MTLEW distribution for first data 

Table 5.The statistics–2lnL, AIC, AICC, BIC, HQIC, K–S and P–value for the second data set 

Model MTLEWD EWD TLWD WWD 

−2lnL 346.4154 359.692 354.3028 395.0764 

AIC 354.4154 365.692 360.3028 403.0764 

AICC 355.3043 366.2137 360.8245 355.3043 

BIC 362.0635 371.4281 366.0389 410.7245 

HQIC 357.3278 367.8763 362.4871 405.9888 

K–S 0.084125 0.13188 0.11357 0.23178 

P–value 0.8418 0.3207 0.5033 0.00762 

Table 6. ML estimates of the model parameters for the second data set 

Model 
̂  ̂  ̂  p̂  

MTLEWD 0.6831 3218.4163 0.2702 0.9632 

EWD 0.5012 1.4925 735.0415 ــــــــ 

TLWD 0.3770 21149.66 2.4306 ــــــــ 

WWD 0.0275 66.7118 0.6319 0.4907 

Figure 5 shows the empirical and theoretical density and CDF of the fitted MTLEWD, and Figure 6 shows the P–P plot 
of the fitted MTLEWD for second data. 

 

Figure 5. Empirical and theoretical density and CDF of the fitted MTLEWD for second data 
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Figure 6. P–P plots of the fitted MTLEW distribution for second data 

6. Concluding Remarks 

In this article, a new class of mixture distributions named MTLE–G family is introduced. One model called the 
MTLEW distribution is studied. Some statistical properties of the new distribution are presented and discussed. The 
estimation of the model parameters is derived by maximum likelihood method. An application to real data sets indicates 
that the new model is superior to the fits than the other existing distributions. 
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