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Abstract 

The class of bivariate integer-valued time series models, described via copula theory, is gaining popularity in the 

literature because of applications in health sciences, engineering, financial management and more. Each time series 

follows a Markov chain with the serial dependence captured using copula-based distribution functions from the Poisson 

and the zero-inflated Poisson margins. The copula theory is again used to capture the dependence between the two 

series. 

However, the efficiency and adaptability of the copula are being challenged because of the discrete nature of data and 

also in the case of zero-inflation of count time series. Likelihood-based inference is used to estimate the model 

parameters for simulated and real data with the bivariate integral of copula functions. While such copula functions offer 

great flexibility in capturing dependence, there remain challenges related to identifying the best copula type for a given 

application.  This paper presents a survey of the literature on bivariate copula for discrete data with an emphasis on the 

zero-inflated nature of the modelling. We demonstrate additional experiments on to confirm that the copula has potential 

as greater research area. 

Keywords: count time series, copula, Zero-Inflated, count data, Poisson distribution 
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1. Introduction 

In the study of multivariate distributions, copula functions are gaining popularity in recent years. They are attractive as 

they can handle internal and mutual dependences among variables. The copula was first introduced in the Sklar (1954) 

paper, a paper that Frechet helped publish. Hoffding (1940) is also credited for almost innovating the concept of copula . 

Many problems in practical situations are modeled under related distributions using copula functions, in contrast to 

classical multivariate (Gaussian) distributions for count data. As such, the literature shows a growing interest in the 

investigation of dependence for sequences of counts in time series cases. The simplest of such sequences are bivariate 

count time series data. Copula functions have gained popularity in building such bivariate and multivariate distributions 

as the desire to understand the structure in massive time series count data is becoming more common. For diseases and 

rare events, observed counts over time appear in a high frequency of zeros (zero inflation), which is discussed in MÖller 

et al. (2020) and Young et al. (2020).  

Sklar (1959) introduced a method to build in the bivariate and multivariate distributions for two random variables. The 

idea of joint distribution, especially in the bivariate case can be traced back to Frechet (1951, 1956, 1958). Morgensetrn 

(1956), Plackett (1965), Farlie (1969) and many other authors could be included in this systematic approach of 

constructing bivariate distributions with specific marginals and different dependence measures. See examples such as 

Gumbel (1958) or Johnson and Tenenbein (1981). In that same line of thought, Cook and Johnson (1981) asked two 

questions that are still of relevance. The questions are: 1) “Is there a distribution that appears to be the most promising 

candidate for non-normal types of data?” 2) “Is the resulting distribution or model fit significantly better than that 

obtained from the multivariate normal distribution?” 

Finding a unique copula for a joint distribution requires one to know the form of the joint distribution. When using 

copula, one can separately model the marginal distributions and the dependence structure, which makes the copula 
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approach unique. Choosing the appropriate copula for a particular scenario means finding the one that best captures the 

dependence in data.  Many variants of copulas have been proposed in the literature where each of these is suitable for 

different dependence structures. For example, Gaussian copula is flexible, and it allows for equally positive and 

negative dependence. The Clayton copula cannot account for negative dependence, and it exhibits strong left tail 

dependence. Similar to Gaussian copula, Frank copula allows for both positive and negative dependence between the 

marginals.  

Copulas offer a flexible framework to combine distributions. It is unique if marginal densities are continuous. However, 

if some of the marginal distributions are discrete, the unicity cannot be obtained automatically.  

Many copula functions have been identified, from the extreme of independent variables (the so-called independent 

copula or the product) to the max or min copula. The dependence is then captured by a selection of parameters and 

criteria associated with the range and properties of model parameters. 

Moreover, high dimensional copulas have been introduced via bivariate copulas, under different decompositions and 

structures. These structures are known as the canonical vine (C-vine) or drawable vine (D-vine). References to C and D 

vines can be found in Bedford and Cooke (2002), Joe et al. (2010), and Aas et al. (2009). Gräler (2014) proposed the 

convex combination of bivariate copula densities incorporating the distance [between what?] as a parameter in the 

spatial setting. The application of copula functions can be found in finances (Czado et al, 2012), hydrology (Yu et al., 

2020), transportation (Irannezhad et al., 2017), health care (Shi and Zhang, 2015), and more. The 

Farlie-Gumbel-Morgenstern (FGM) family of copula can be used to establish relationship between predictors (Durante 

and Sempi, 2016)). 

Within the count time series, if we look at the binary data, there is a growing interest in the description of multivariate 

distributions under pair copulas (Lin and Chaganty, 2021). Panagiotelis et al. (2012) presented pair copula constructions 

for discrete multivariate data. Their algorithm is explained as a product of bivariate pair copula, demonstrating the great 

potential of vine copula approaches. They stated that the model selection for C or D vine remains an important open 

problem, with a particular emphasis on the conditional independence identification (Czado, 2019, Deng and Chaganty, 

2021,). From there, the idea of using the D vine for modeling counts with excess zeros and temporal dependence is 

presented in Sefidi et al. (2020). Perrone and Durante (2021) highlighted the link between the extreme discrete copula 

and mathematical concept of convex polytope, which is an idea spinning from the class of bivariate distributions (Rao 

and Subramanyam (1990). 

There are numerous problems and interesting challenges related to time series of counts. Davis et al. (2016, 2021) 

presented extensive literature and many examples of count time series. Fokianos (2021) and Armillota and Fokianos 

(2021) presented a Poison network autoregression for counts. In the statistical process control, Fatahi et al. (2012) 

proposed the monitoring of rare events under the copula based bivariate zero-inflated Poisson. van Den Heuvel et al. 

(2020) proposed corrections to such results adding the negative correlation option. 

With these studies and observations in mind, this paper presents reviews and updates related to the copula for bivariate 

distributions of zero-inflated count time series   and highlights research directions. Motivated by multivariate datasets 

acquired using correlation structures, our goal is to review the bivariate count and zero-inflated count time series for 

inference and application purposes under copula modeling. We give some insights into the bivariate count copula and its 

recent developments. We organize our discussion as follows. In Section 2, copulas for discrete count and zero-inflation 

of discrete count time series data are described. The use of univariate and bivariate copula for discrete data is discussed 

in Section 3. Extensions of discrete bivariate copulas are described in Section 4. We conclude this paper with an 

extended discussion on future work.  

2. Copula for Zero-inflated of Discrete and Count Time Series Data 

This section introduces the general form for multivariate copula, and its Gaussian representation. We also give an 

explicit definition of the zero inflated counts time series data. 

2.1 Simple Gaussian Copula Example 

Masarotto and Varin (2012) introduced a Gaussian copula model which can be used to model time series data in the 

presence of covariates.  The corresponding regression model can be written as follows.  

Yt =  g(𝑋𝑡, ϵt θ), for t =  1, . . , n, 

where g(.) is a function of the covariates 𝑋𝑡 and ϵt, which capture the serial dependence. The parameter θ is a vector 

of marginal regression coefficients. The joint distribution function of the time series {𝑌𝑡 } 𝑓𝑜𝑟 𝑡 = 1, … , 𝑛 can be 

constructed using the Gaussian copula as follows. 

𝐹(𝑦1 , 𝑦2 , … , 𝑦𝑛 ) = 𝑃(𝑌1  ≤ 𝑦1 , 𝑌2 ≤ 𝑦2 , … , 𝑌𝑛 ≤ 𝑦𝑛 )  =  Φ𝑅(𝜌)(Φ−1(𝐹1(𝑦1 )), Φ−1(𝐹2(𝑦2)) … , Φ−1(𝐹𝑛(𝑦𝑛 )))  (1) 
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Here, Φ−1 is the inverse CDF of standard normal distribution, and Φ𝑅(𝜌) is the joint CDF of a multivariate normal 

distribution with a mean vector of zeros and covariance matrix R. 

2.2 Review of Copula for Discrete Data 

Copula distributions are becoming increasingly popular in many areas of statistical data sciences. For example, in 

engineering, copula distributions are used to model the shear fore for cantilever beams and for beams with multiple 

point loads (Zhang and Lam, 2016). In pharmaceutical quality control, two correlated characteristics sample data are 

presented in Fatahi et al. (2012). The authors describe the bivariate Poisson distribution with the evidence of 

zero-inflation. Sukparungsee et al. (2021) developed a bivariate copula for control chart effectiveness. They show the 

bivariate copula distribution on Hotelling’s T^2 over the multivariate cumulative sum for positive, negative, weak, 

moderate, and strong correlations when the assumption of multivariate normality is violated. Van den Heuvel et al. 

(2020) extended the idea from Fatiha et al. (2012) and included negative correlation case, and an upper control limit on 

the sum of bivariate random variables.  Copulas are elegantly captured in the Genest and MacKay (1986), Genest 

(1987) and also in Han and De Oliveira (2016 and 2020), among others. In the financial sector, a recent work by 

Nikoloulopoulos and Moffatt (2019) reminds us of the need to study dependence structures. There are also more general 

ambitions for the bivariate copula from a bigger perspective than we expect to show the aggregated effects in many 

other areas. 

The list of copula functions is very large. The work of Größer and Okhrin (2021) presents a summary of bivariate 

copula followed by the construction of multivariate copula using pair copula decompositions. They provide examples 

for each copula family and provide an overview of how copula theory can be used in various fields of data science.  

Yang et al. (2014) proposed the Ali-Mikhael-Haq (AMH) copula-based function to investigate the joint risk 

probabilities of rainstorms, wind speeds, and storm surges. The proposed model was developed to assess the impact 

based on marginal distributions of maximum daily rainfall and extreme gust velocity. Alqawba et al. (2021) constructed 

a class of bivariate integer-valued time series models using copula theory. Applying either the bivariate Gaussian copula 

or the bivariate t copula functions, they jointly modeled two copula-based Markov time series models. They applied 

their method on bivariate count time series data, where the marginals follow either a Poisson or zero-inflated Poisson 

distribution. 

Safari et al. (2020) proposed a bivariate copula regression model to analyze cervical cancer data. They applied a 

bivariate copula to model and estimate joint distribution parameters.  Nikoloulopoulos and Moffatt (2019) used 

bivariate copulas to jointly model bivariate ordinal time-series responses with covariates for risks assessment of married 

couples. They proposed a copula-based Markov modelling of ordinal time-series responses and used another copula to 

couple their conditional (on the past) distributions at each time point. Copula families such as the Bivariate normal 

(BVN), Frank, Gumbel and bivariate t-copula were used to model the univariate time series as well as to couple them 

together.  

The work of Nikoloulopoulos & Karlis (2010) presents a regression copula-based model where covariates are used not 

only for the marginal but also for the copula parameters. They measured the effect of covariates on dependence 

structure by building a fully parametric copula-based model while considering six one-parameter copula families, 

namely Frank, Galambos, Gumbel, Mardia–Takahasi (M-T), and normal to build the dependence structure.  

Karlis & Pedeli (2013) presented a bivariate integer-valued autoregressive process (BINAR(1)) in which the 

cross-correlation was modeled using a copula to accommodate both positive and negative correlation. They presented 

an application of the Frank and Gaussian copula to model dependence, and marginal time series were modeled using 

Poisson and negative binomial INAR(1) distributions. 

Ma et al. (2020) proposed a copula approach utilizing a Gaussian copula with random effects to model correlated 

bivariate count data regression. 

2.3 The Zero-Inflated Discrete Data 

Zero inflation models can be found in many studies from Lambert (1992) to Hall (2000) and recently in Rigby et al. 

(2019). The zero-inflated count regression models are described as follows. 

 Zero-Inflated Poisson (ZIP) Distribution (Lambert, 1992): 

𝐹𝑌𝑡
 (𝑚) =  𝜔𝑡 + (1 − 𝜔𝑡)𝑒−𝜆𝑡 ∑

𝜆𝑡
𝑦𝑡

𝑦𝑡!

𝑚
𝑦𝑡=0 .        (2) 

 Zero-Inflated Negative Binomial (ZINB) Distribution (Ridout et al, 2001): 
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𝐹𝑌𝑡
 (𝑚) =  𝜔𝑡 + 

(1−𝜔𝑡)

Γ(𝜅𝑡)
(

𝜅𝑡

𝜅𝑡+𝜆𝑡 
)

𝜅𝑡
  ∑

Γ(𝜅𝑡+𝑦𝑡)

𝑦𝑡!

𝑚
𝑦𝑡=0  (

𝜆𝑡

𝜅𝑡+𝜆𝑡 
)𝑦𝑡. 

 Zero-Inflated Conway-Maxwell-Poisson (ZICMP) Distribution (Sellers and Raim, 2016): 

𝐹𝑌𝑡
 (𝑚) =  𝜔𝑡 +  

(1−𝜔𝑡)

Ζ(𝜆𝑡+𝜅𝑡)
∑

𝜆𝑡
𝑦𝑡

(𝑦𝑡!)𝜅𝑡

𝑚
𝑦𝑡=0 ,  

where 𝜆𝑡 = exp(𝑿𝑡
′ 𝛽) , 𝜔𝑡 =  

exp(𝒁𝑡
′𝛾) 

1+exp(𝒁𝑡
′𝛾) 

,  and 𝜅𝑡 =  exp(𝑾𝑡
′ 𝛼) 

are the associated covariate vectors affecting the intensity parameter 𝜆𝑡, the zero-inflation parameter 𝜔𝑡 and the 

dispersion parameter 𝜅𝑡 , respectively. 

The term ∑
𝜆𝑡

𝑦𝑡

(𝑦𝑡!)𝜅𝑡

𝑚
𝑦𝑡=0  is the normalizing function of the CMP. 

Different variants of similar regression models have been proposed in the literature.  A noteworthy use of copula for 

zero-inflated data is studied in Shamma et al. (2020), where the inflation is built from a geometric count time series in 

an integer-valued autoregressive (INAR) process. 

3. Univariate and Bivariate Copula Models for Count Time Series Data 

3.1 Univariate Copula-Based Model for Count Time Series Data 

First order Markov model 

Alqawba, & Diawara (2021) introduced a class of Markov zero inflated count time series model where the joint 

distribution function of the consecutive observations is constructed through copula functions. Suppose { 𝑌𝑡 } 

zero-inflated count time series first order Markov chains the multivariate joint density distribution of  𝑌1, 𝑌2,…, 𝑌𝑛 

can be constructed as below. 

                   𝑃𝑟 (𝑌1 = 𝑦1 , … , 𝑌𝑛 = 𝑦𝑛 ) = 𝑃𝑟 (𝑌1 = 𝑦1 ) ∏ Pr (𝑌𝑡 = 𝑦𝑡|𝑌𝑡−1 = 𝑦𝑡−1)𝑛
𝑡=2  

Using the copula theory, the joint distribution function of Yt, Yt-1 can be written as below.  

                 F12(yt  yt-1) = C (Ft(yt), Ft-1(yt-1); 𝜹)    where 𝜹 is bivariate copula parameter vector.  

Hence, we can calculate the transition probability as below.  

Pr (𝑌𝑡 = 𝑦𝑡|𝑌𝑡−1 = 𝑦𝑡−1) =
Pr (𝑌𝑡 =𝑦𝑡,𝑌𝑡−1 =𝑦𝑡−1) 

𝑓𝑡−1(𝑦𝑡−1)
 

Where                𝑃 𝑟(𝑌1 = 𝑦1 , 𝑌𝑡−1 = 𝑦 𝑡−1) = 𝐹12 (𝑦𝑡  , 𝑦𝑡−1  ) - 𝐹12 (𝑦𝑡 − 1, 𝑦𝑡−1 ) 

-𝐹12 (𝑦𝑡 , 𝑦𝑡−1 − 1) +𝐹12 (𝑦𝑡 − 1, 𝑦𝑡−1 − 1) 

Likelihood and parameter estimation under first order Markov model 

The likelihood function of the first order Markov model is given by  

           𝐿(𝜗, 𝑦) = Pr(𝑌1 = 𝑦1 ; 𝜃) ∏ Pr (𝑌𝑡 = 𝑦𝑡|𝑌𝑡−1 = 𝑦𝑡−1; 𝜗)𝑛
𝑡=2      (3) 

The log likelihood function (𝑙(𝜗; 𝑦)) is given by 

𝑙(𝜗; 𝑦) = log Pr(𝑌1 = 𝑦1 ; 𝜃) + ∑ 𝑙𝑜𝑔Pr (𝑌𝑡 = 𝑦𝑡|𝑌𝑡−1 = 𝑦𝑡−1; 𝜗)

𝑛

𝑡=2

 

Where 𝜃 𝑎𝑛𝑑 𝛿 are the parameter vectors of the marginals and the dependence structure, respectively. For the Gaussian 

copula family, the likelihood function involves a bivariate integral of the normal probability in 𝐶(. ; 𝛿) which means 

that the function is not in a closed form and we need approximations for the rectangle probabilities.  

The simulation study was conducted using the R software by the ‘optim’ function in the “stats” package. We simulate 

first order stationary Markov processes with joint distribution of consecutive observations following the bivariate 

Gaussian copula. The marginal distributions are chosen to be the Poisson and ZIP distributions. We present the 

simulation results for a first order Markov model with Poisson marginals. The parameter 𝜆 represents the mean of a 

marginal Poisson, 𝜔 is the measure of zero inflation, and 𝛿 is the serial dependence associated with time series data. 
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We found that the estimate of these parameters is fairly stable where the precision increases with increasing sample size. 

Table 1 and Table 2 show the estimates of copula parameters for positive and negative autocorrelations, respectively. 

The estimates are described by standard measures of variation, including standard deviation, mean square error and 

mean absolute error. 

Univariate ZI count time series models 

For positive serial dependence with 𝝀=3, 𝝎=0.3, 𝜹 =0.6 

Table 1. Parameter estimates for the univariate ZI Poisson model with positive autocorrelation 

Sample Size Parameters Estimate SE MSE MAE 

100 

𝝀(3) 2.990 0.347 0.1200 0.282 

𝝎(0.3) 0.288 0.083 0.0070 0.006 

𝜹(0.6) 0.577 0.091 0.0080 0.073 

300 

𝝀(3) 3.013 0.192 0.037 0.152 

𝝎(0.3) 0.293 0.046 0.002 0.037 

𝜹(0.6) 0.596 0.046 1.433 1.196 

500 

𝝀(3) 3.006 0.154 0.024 0.120 

𝝎(0.3) 0.295 0.035 0.001 0.028 

𝜹(0.6) 0.596 0.037 0.001 0.028 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 

For negative serial dependence with 𝝀=3, 𝝎=0.3, 𝜹 =-0.6 

Table 2. Parameter estimates for the univariate ZI Poisson model with negative autocorrelation 

Sample Size Parameters Estimate SE MSE MAE 

100 

𝝀(3) 3.045 0.280 0.080 0.234 

𝝎(0.3) 0.299 0.046 0.002 0.036 

𝜹(-0.6) -0.618 0.087 0.0070 0.072 

300 

𝝀(3) 3.019 0.152 0.023 0.119 

𝝎(0.3) 0.298 0.030 0.0007 0.002 

𝜹(-0.6) -0.605 0.050 0.003 0.040 

500 

𝝀(3) 3.014 0.112 0.0127 0.009 

𝝎(0.3) 0.299 0.019 0.0004 0.015 

𝜹(-0.6) -0.603 0.040 0.002 0.031 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 

Applications  

Alqawba & Diawara (2021) applied the proposed model to analyze monthly count of strong sandstorms recorded by the 

AQI airport station in Eastern Province, Saudi Arabia. The data set consists of 348 monthly counts of strong sandstorms, 

starting from January 1978 to December 2013. The bar plots suggest that both counts follow Zero inflated Poisson 

distribution, whereas the ACFs indicate that the counts are serially dependent. Finally, to illustrate the superiority of the 

proposed method they compare the method with zero-inflated integer-valuedautoregressive (ZIINAR) models.  

3.2 Bivariate Copula-Based Model for Count Time Series Data 

Copula based bivariate model 

Suppose we have {𝑌1𝑡} and {𝑌2𝑡} jointly observed at timepoints t=1, 2, …, n, with the assumption that each series {𝑌1𝑡} 

and {𝑌2𝑡} follows a copula-based Markov process described on section 3.1. Let’s mean vector, correlation matrix of the 

bivariate series as 𝜇𝑡   

and 𝜏(𝑡, 𝑡 − 1) which are described as below.  
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𝜇𝑡  = 𝐸(𝑌𝑡) = [
𝐸(𝑌1𝑡)
𝐸(𝑌2𝑡)

] 

𝜏(𝑡, 𝑡 − 1) = 𝐶𝑂𝑉(𝑌𝑡 , 𝑌𝑡−1) [
𝐶𝑂𝑉(𝑌1𝑡 , 𝑌1,𝑡−1) 𝐶𝑂𝑉(𝑌1𝑡 , 𝑌2,𝑡−1)

𝐶𝑂𝑉(𝑌2𝑡 , 𝑌1,𝑡−1) 𝐶𝑂𝑉(𝑌2𝑡 , 𝑌2,𝑡−1)
] 

Here the diagonal elements of the matrix represent the serial dependence between two series, while the off-diagonal 

elements describe the cross-correlation between two time series.  

The joint distribution of 𝑌1𝑡 and 𝑌2𝑡 given 𝑌1𝑡−1 , 𝑌2𝑡−1 for t=1, 2,…,n is given by 

f(𝑦1𝑡 , 𝑦2𝑡 |𝑦1𝑡−1 ,𝑦2𝑡−1 ) = ∫ ∫ 𝑉2 (𝑧1 , 𝑧2 , 𝑅)𝑑
𝑉−1(𝐹2,𝑡

+ )

𝑉−1(𝐹2,𝑡
− )

𝑉−1(𝐹1,𝑡
+ )

𝑉−1(𝐹1,𝑡
− )

𝑧2 𝑑𝑧1  

where 𝑉−1 is either the inverse cdf (Cumulative distribution function) of the normal distribution or the t-distribution 

with V2(., R) being the bivariate normal or t-distribution, respectively. R is correlation matrix capturing the cross 

correlation between two time series which is described below.  

R=[
1 𝜌
𝜌 1

] 

The limits of the bivariate integral can be calculated as below. 

𝐹𝑖,𝑡 
+ = 𝐹(𝑦𝑖,𝑡 |𝑦𝑖,𝑡−1 ) 𝑎𝑛𝑑 𝐹𝑖,𝑡 

− = 𝐹(𝑦𝑖,𝑡 − 1|𝑦𝑖,𝑡−1 ) , for i= 1,2 where, 

𝐹(𝑦𝑖,𝑡|𝑦𝑖,𝑡−1) =
𝐹12 (𝑦𝑖,𝑡 , 𝑦𝑖,𝑡−1) − 𝐹12 (𝑦𝑖,𝑡 , 𝑦𝑖,𝑡−1 − 1)

𝑓𝑡−1 (𝑦𝑖,𝑡−1 ; 𝜽)
 

and  

𝐹12 (𝑦𝑖,𝑡 , 𝑦𝑖,𝑡−1) = 𝐶(𝐹𝑡(𝑦𝑖,𝑡), 𝐹𝑡−1 (𝑦𝑖,𝑡−1 − 1); 𝛿) 

C (.; 𝛿) represents the bivariate copula function with dependence parameter 𝛿, describing the 

serial dependence in a single series, and 𝜽 is a vector of the marginal parameters. 

Likelihood and parameter estimation for the bivariate model 

Likelihood based inference were conducted with maximizing the log-likelihood function of the bivariate distribution. 

The corresponding likelihood function for the joint distribution is given by, 

                              𝐿(𝜗, 𝑦) = 𝑓(𝑌11, 𝑌21). ∏ 𝑓(𝑌1𝑡, 𝑌2𝑡|𝑌1𝑡−1, 𝑌2𝑡−1)𝑛
𝑡=2     (4)  

Where 𝜗 = (𝜃′, 𝛿1 , 𝛿2  , 𝜌)′ ,where 𝜃 is the marginal parameter vector and 𝛿1 , 𝛿2  are parameters associated with the 

serial dependence in each time series respectively. The cross correlation between the two-time series is captured by 𝜌. 

We can construct the log -likelihood function 𝑙(𝜗, 𝑦)  as below. 

𝑙(𝜗, 𝑦) = log(𝑓(𝑌1𝑡 , 𝑌2𝑡)) + ∑ log 𝑓(𝑌1𝑡, 𝑌2𝑡|𝑌1𝑡−1, 𝑌2𝑡−1)𝑛
𝑡=2 . 

The likelihood function (𝑙(𝜗, 𝑦)) contains either a bivariate normal or t-integral function which unable us to use the 

standard maximization procedures to get the ML estimates. Due to this reason, we evaluated the bivariate integral 

function using the standard randomized importance sampling method.  

We present simulation results for the proposed bivariate model in Section 3.1 after expanding from univariate to 

bivariate model. For each univariate time series, we considered a copula-based Markov model, where a copula family 

was used for the joint distribution of subsequent observations, and then, coupled these two-time series using another 

copula at each time point. 

The parameters of the marginal Poisson distribution are shown in Table 3 and Table 4 for positive and negative cross 

correlations, respectively. Here 𝝀𝟏 and 𝝀𝟐 denote the means, 𝝎𝟏 and 𝝎𝟐 denote zero inflation parameters,   𝜹𝟏 and 

 𝜹𝟐 denote the serial dependence of marginal distributions.  𝜌 is measure of the cross correlation between the two time 

series distributions.  

The Gaussian copula was used to construct marginal distributions for 300 replicates with sample sizes of 100,300 ,500 

and the true parameter values are presented in brackets. The count time series with positive cross correlation is 

presented in Figure 1, and the joint density is shown in Figure 2. When observing the parameter estimates displayed in 

Table 3, we can state that the estimated values are more precise and converges to the true parameter values as the 
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sample size increases.  

Bivariate ZI count time series models 

Table 2. Parameter estimates for the bivariate ZI Poisson model with positive cross correlation 

Sample Size Parameters Estimate SE MSE MAE 

100 

𝝀𝟏 (3) 3.4021 0.3887 0.3123 0.4599 

𝝎𝟏(0.3) 0.3333 0.0835 0.0081 0.0701 

𝝀𝟐(5) 5.1993 0.3832 0.1860 0.3337 

𝝎𝟐(0.4) 0.4026 0.0686 0.0047 0.0537 

𝜹𝟏(𝟎. 𝟔) 0.5425 0.0837 0.0103 0.0788 

𝜹𝟐(0.4) 0.3628 0.0963 0.0106 0.0806 

𝝆(0.5) 0.4822 0.0911 0.0086 0.0748 

300 

𝝀𝟏 (3) 3.4051 0.1974 0.2030 0.4082 

𝝎𝟏(0.3) 0.3380 0.0447 0.0034 0.0471 

𝝀𝟐(5) 5.1816 0.2097 0.0768 0.2226 

𝝎𝟐(0.4) 0.4065 0.0386 0.0015 0.0309 

𝜹𝟏(𝟎. 𝟔) 0.5540 0.0433 0.0040 0.0524 

𝜹𝟐(0.4) 0.3669 0.0544 0.0040 0.0492 

𝝆(0.5) 0.4711 0.0493 0.0033 0.0441 

500 

𝝀𝟏 (3) 3.4105 0.1721 0.1980 0.4108 

𝝎𝟏(0.3) 0.3408 0.0365 0.0030 0.0456 

𝝀𝟐(5) 5.1843 0.1622 0.0602 0.2028 

𝝎𝟐(0.4) 0.4084 0.0293 0.0009 0.0246 

𝜹𝟏(𝟎. 𝟔) 0.5558 0.0320 0.0030 0.0465 

𝜹𝟐(0.4) 0.3700 0.0430 0.0027 0.0413 

𝝆(0.5) 0.4720 0.0392 0.0023 0.0379 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 

 
Figure 1. Plot of individual ZI count time series with positive cross-correlation 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 
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Figure 2. Joint probability density function for the bivariate ZI model with positive cross-correlation 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 

There are times when the correlation is negative and table 4 shows the parameter estimates for such scenarios. The 

Gaussian copula was again used in constructing marginal distributions for 300 replicates with sample sizes of 100, 300, 

500 and the true parameter values are presented in brackets. The count time series with negative cross correlation is 

illustrated in Figure 3, and the joint density is shown in Figure 4. The estimated parameters in Table 4 are more precise 

and converge to the true parameter values with increasing sample size as observed before. 

These results are new because a large body of the literature focuses on positive correlations. Therefore, our proposed 

algorithm can handle less restrictive cases of ZI count time series data. 

Table 3. Parameter estimates for the bivariate ZI Poisson model with negative cross correlation 

Sample Size Parameters Estimate St_Dev MSE MAE 

100 

𝝀𝟏 (3) 3.417 0.388 0.324 0.474 

𝝎𝟏(0.3) 0.341 0.084 0.074 0.074 

𝝀𝟐(5) 5.225 0.382 0.196 0.354 

𝝎𝟐(0.4) 0.408 0.070 0.056 0.056 

𝜹𝟏(𝟎. 𝟔) 0.549 0.085 0.010 0.077 

𝜹𝟐(0.4) 0.368 0.103 0.012 0.086 

𝝆(-0.4) -0.391 0.104 0.011 0.081 

300 

𝝀𝟏 (3) 3.4072 0.2016 0.2063 0.4110 

𝝎𝟏(0.3) 0.3378 0.0455 0.0035 0.0477 

𝝀𝟐(5) 5.2100 0.1965 0.0826 0.2331 

𝝎𝟐(0.4) 0.4077 0.0379 0.0015 0.0313 

𝜹𝟏(𝟎. 𝟔) 0.5529 0.0458 0.0043 0.0534 

𝜹𝟐(0.4) 0.3683 0.0537 0.0039 0.0499 

𝝆(-0.4) -0.3815 0.0559 0.0035 0.0465 

500 

𝝀𝟏 (3) 3.4181 0.1727 0.2045 0.4182 

𝝎𝟏(0.3) 0.3364 0.0348 0.0025 0.0412 

𝝀𝟐(5) 5.1984 0.1575 0.0641 0.2138 

𝝎𝟐(0.4) 0.4094 0.0304 0.0010 0.0254 

𝜹𝟏(𝟎. 𝟔) 0.5524 0.0321 0.0033 0.0493 

𝜹𝟐(0.4) 0.3731 0.0417 0.0025 0.0388 

𝝆(-0.4) -0.3794 0.0460 0.0025 0.0414 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 
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Figure 3. Plot of individual ZI count time series data with negative cross-correlation 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022) 

 

 

Figure 4. Joint probability density function for the bivariate ZI model with negative cross correlation 

Source: Fernando, D., Alqawba, M., Fernando, D., Diawara, N.& Samad, M. (2022). 

Applications  

The proposed class of method can be applied to model bivariate zero inflated count time series data in the presence of 

both temporal dependence and cross correlation. 

Wang et al. (2013) proposed a bivariate zero inflated poison model to analyze occupational injuries. Alqawba et al. 

(2021) applied this framework to model monthly counts of forgery and fraud in the 61st police car beat in Pittsburgh, 

PA. Two count time series were selected to fit the proposed bivariate Poisson class of models under the clear evidence 
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of the presence of serial dependence and cross correlation.  

4. Extensions of the Bivariate Copula for Count Time Series Data 

Many copulas have been proposed in the literature for the bivariate and multivariate distributions. The choice of the 

copula is mainly dictated by the dependence structure.   

As shown in Größer and Okhrin (2021), the research on time series dependence and copula direction is productive and 

has numerous applications. They showed examples of bivariate copulas. Count time series data are observed in several 

applied disciplines such as environmental science, biostatistics, economics, public health, and finance. Sometimes, a 

specific count, usually zero, may occur more often than other counts. Moreover, overlooking the frequent occurrence of 

zeros could result in misleading inferences. A copula-based time series regression model for zero-inflated counts is 

developed. Applying ordinary Poisson and Negative Binomial distributions to these time series of counts may not be 

appropriate due to the frequent occurrence of zeros. A new form of ZI is called the Conway-Maxwell Poisson (CMP). 

Alqawba et al. (2021) have extended the work done by Masarotto (2012) to include a class of models that accounts for 

ZI. The marginals are assumed to follow one of the ZIP, ZINB, and ZICMP distributions, and the serial dependence was 

modeled by a Gaussian copula with a correlation matrix that of a stationary ARMA process. Likelihood inference was 

carried out using sequential importance sampling. Simulated studies were conducted to evaluate the parameter 

estimation procedures. Model description and parameter misspecification or unidentifiability are always concerns from 

the data generation to real data analysis (Faugeras, 2017). Model assessment to check the goodness of fit for the 

proposed models was done via residual analysis. The proposed models were applied to the occupational health data. 

According to the residual analysis, the model fits the data adequately, but both ZINB and ZICMP seem to have a slight 

advantage over ZIP distribution. Future direction is to consider different model construction methods from the marginal 

regression such as Markov models to handle zero-inflated count time series data. Recently, the use of copula-based time 

series for ZI counts in the presence of covariates has been proposed in Alqawba et al. (2019) and Alqawba and Diawara 

(2020). The work considered the cases of ZIP, ZINB, and ZICMP distributed marginals. Likelihood-based inference is 

considered under a sequential sampling method to estimate both the marginal regression parameters and copula 

parameters. Improvements in the Bayesian Information Criteria were noted, as discussed in Joe (2014) and Dalla Valle 

et al. (2018). The applications of these models include occupational injury counts, arson counts, and sandstorm counts. 

5. Further Developments and Conclusion 

Several high-dimensional copulas are obtained from the bivariate version seen in the previous section. The bivariate 

time series copula becomes then very important. The vine copula is built from blocks of bivariate version of higher 

dimension (Acar et al. 2019, Czado). We will only mention the Hierachical Archimedean copula, the Multivariate 

Archimax copula, the Factor copula, and the Vine copula. Copula functions are particularly interesting in capturing 

dependence with pairwise Kendall’s correlations for invariance to monotonic transformations of marginal distributions. 

The copula is Archemedian and is applicable for higher than bivariate dimensions of the correlation between marginals 

(McNeil and Nešlehová, 2009). There is research on the symmetry of copula, and the family of measures under 

non-degenerate asymptotic distributions (Quessy and Bahraoui, 2018). The disentangling of features with copula 

transformation is also gaining popularity in so called deep Information bottleneck (DIB) to yield higher convergence 

rates (Wieczorek et al. 2018, Wieczorek and Roth 2020). As a measure, the copula can be thought as a transformation 

on a set, which is also a measure preserving transformation. Copulas are also obtained under non-monotonic 

transformations. Bardossy and Li (2008) proposed a v-transformed copula.  

The ideas of Levy processes modelled via copula offer many areas of research (Liu et al., 2021). 

The spatio-temporal dependence will become more of a priority as the research evolves. See more in Krupskii and 

Genton (2017). Bivariate time varying copulas are proposed in Acar et al. (2019). The dynamic vine copula is also 

adapted to the Bayesian inference (Kreuzer and Czado, 2019). 

In this review, we have shown statistical and computational methods for bivariate count time series data analyses using 

copula distributions. The general framework for discrete count data and the bivariate nature of data are presented. The 

copula structure is described with details on its analytic perspectives. The identifiability and the choice of copula are 

very challenging in any discrete data setting and in the case of negative associations between components. As 

mentioned in Genest et al. (2011), Faugeras (2017) and in Trivedi and Zimmer (2007, 2017), the copula may not 

generate the perfect data distributions. Such concern is also pointed out in Durante and Sempi (2016).  Copula can 

model bivariate dependence that are invariant under monotonic transformation only (Größer and Okhrin, 2021).  When 

the dependence is weak, the FGM copula offers great alternative, but determining the most appropriate type of FGM 

copula to fit data is an open problem. Trivedi and Zimmer (2017) proposed several simulations to show these concerns.  

Similar to any other functions, the copula functions cannot be deemed as the solution to all data problems. However, 
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they offer a valuable alternative, especially in the case of discrete data. The research on discrete time series data is more 

important in this class of functions, especially for bivariate cases as the characterization of bivariate count dependence 

structure provides tools for may applied problems. 
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