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Abstract

For square contingency tables with ordered categories, Iki, Ishihara and Tomizawa (2013) considered the t-distribution
type symmetry model and Iki, Okada and Tomizawa (2018) extended this model. These models are appropriate for
a square contingency table if it is reasonable to assume an underlying bivariate t-distribution having any degrees of
freedom. This study proposes three kinds of parsimonious models for these models. Additionally, this paper provides
the decompositions of the parsimonious symmetry model using the proposed model. Some simulation studies based on
bivariate t-distribution show the performances of the proposed models.
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1. Introduction

For analysis of contingency tables, we are interested in whether the two classificatory variables are independent of each
another. When the independence does not hold, we may use Pearson’s correlation coefficient to estimate the correla-
tion between the two variables. Additionally, it is important to interpret the data, and propose models that fit the data
well. Goodman (1979) considered the uniform association model, and Agresti (1983a) considered the linear-by-linear
association model.

In particular, we consider tables with the same row and column classifications, which are known as square contingency
tables. For square contingency tables, the independence between the row and column is unlikely to hold because many
observations fall in the main diagonal cells, which indicates that the value of the row category is the same as the value of
the column category. Therefore, for the analysis of square contingency tables, instead of independence, we are interested
in whether or not the row variable is symmetric with the column variable. The symmetry (S) model (Bowker, 1948),
the marginal homogeneity model (Stuart, 1955) and the quasi-symmetry model (Caussinus, 1965) have been proposed as
models of symmetry. Moreover, for the research of the symmetry model, see Yoshimoto et al. (2019), Ando et al. (2021)
and Shinoda et al. (2021).

We consider an r × r square contingency table with the same row and column ordinal classifications. Let pi j denote the
probability that an observation will fall in the ith row and jth column of the table (i = 1, . . . , r; j = 1, . . . , r). The S model
is defined by

pi j = p ji (i < j);

see Bishop et al. (1975, p.282). This model indicates a structure of symmetry of the probabilities with respect to the main
diagonal of the table. Agresti (1983b) considered the linear diagonals-parameter symmetry (LDPS) model defined by

pi j = θ j−i p ji (i < j).

This indicates that the probability of an observation falling in the (i, j)th cell, i < j , is θ j−i times higher than the probability
of it falling in the ( j, i)th cell. A special case of the LDPS model obtained by putting θ = 1 is the S model. Tomizawa
(1991) proposed an extended linear diagonals-parameter symmetry (ELDPS) model defined by

pi j = θ
j−i
1 θ

j2−i2

2 p ji (i < j).

This indicates that the probability of an observation falling in the (i, j)th cell, i < j , is θ j−i
1 θ

j2−i2

2 times higher than the
probability of it falling in the ( j, i)th cell. Agresti (1983; 1984, p.216) described the relationship between the LDPS model
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and the joint bivariate normal distribution as follows: the LDPS model may be appropriate for a square ordinal table if it
is reasonable to assume an underlying bivariate normal distribution with equal marginal variances. Moreover, Tomizawa
(1991) pointed out that the ELDPS model may be appropriate for a square ordinal table if it is reasonable to assume an
underlying bivariate normal distribution with different marginal variances.

For any fixed constant m (m > 2), Iki et al. (2013) proposed the t-distribution type symmetry (TS(m)) model defined by

p
− 2

m+2
i j − p

− 2
m+2

ji = ηm( j − i) (i < j).

A special case of this model can be obtained by putting ηm = 0 in the S model. The TS(m) model indicates that the
difference between the two symmetric probabilities raised to the power [= −2/(m+2)] is proportional to the distance from
the main diagonal of the r × r table. The TS(m) model may be appropriate if it is reasonable to assume an underlying
bivariate t-distribution with equal marginal variances having m degrees of freedom (see Iki et al., 2013). For any fixed
constant m (m > 2), Iki et al. (2018) proposed the extended t-distribution type symmetry (ETS(m)) model defined by

p
− 2

m+2
i j − p

− 2
m+2

ji = γm( j2 − i2) + ηm( j − i) (i < j).

A special case of this model can be obtained by putting γm = 0 in the TS(m) model. The ETS(m) model may be appropriate
if it is reasonable to assume an underlying bivariate t-distribution with different marginal variances having m degrees of
freedom (see Iki et al., 2018).

Now, we are interested in considering more parsimonious t-distribution type symmetry models, which can be described
in terms of fewer parameters than the TS(m) (ETS(m)) models.

The purpose of this paper is to propose new models which may appropriate for a square ordinal table if it is reasonable
to assume an underlying bivariate t-distribution. The new models are different from the S, TS(m) and ETS(m) models.
Section 2 proposes models and describes the properties of the new models. Section 3 includes the decompositions using
the proposed models. Section 4 shows the maximum likelihood estimates of expected frequencies under the proposed
models. Section 5 describes the relationships between the proposed models and t-distribution by the simulation study.
Section 6 provides some concluding remarks.

2. Models

We consider random variables U and V having a joint bivariate t-distribution with m (m > 2) degrees of freedom, meaning
E(U) = µ1, E(V) = µ2, variances Var(U) = mσ2

1/(m−2),Var(V) = mσ2
2/(m−2), and correlation coefficient Corr(U,V) = ρ.

The probability density function f (u, v) is

f (u, v) =
1

2πσ1σ2
√

1 − ρ2

(
1 +

Q(u, v)
m

)− m+2
2

,

where,

Q(u, v) =
1

1 − ρ2

[(u − µ1

σ1

)2
−

2ρ
σ1σ2

(u − µ1)(v − µ2) +

(v − µ2

σ2

)2]
;

see Muirhead (2005, p.48). The probability density function is also expressed as

f (u, v) = c
[
1 +

1
m

(a1u + b1v + a2u2 + b2v2 + d(u, v))
]− m+2

2

, (1)

where

c =
1

2πσ1σ2
√

1 − ρ2
,

a1 =
2

σ1(1 − ρ2)

(
ρµ2

σ2
−
µ1

σ1

)
, b1 =

2
σ2(1 − ρ2)

(
ρµ1

σ1
−
µ2

σ2

)
,

a2 =
1

σ2
1(1 − ρ2)

, b2 =
1

σ2
2(1 − ρ2)

,

d(u, v) =
1

1 − ρ2

− 2ρ
σ1σ2

uv +
µ2

1

σ2
1

+
µ2

2

σ2
2

−
2ρµ1µ2

σ1σ2

 ,
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and d(u, v) = d(v, u). When Var(U) = Var(V), that is, σ2
1 = σ2

2 (= σ2), f (u, v) is expressed as

f (u, v) = c
[
1 +

1
m

(
a1u + b1v + t(u2 + v2) + d(u, v)

)]− m+2
2

, (2)

where

c =
1

2πσ2
√

1 − ρ2
,

a1 =
2

σ2(1 − ρ2)
(ρµ2 − µ1) , b1 =

2
σ2(1 − ρ2)

(ρµ1 − µ2) ,

t =
1

σ2(1 − ρ2)

d(u, v) =
1

σ2(1 − ρ2)

(
−2ρuv + µ2

1 + µ2
2 − 2ρµ1µ2

)
,

and d(u, v) = d(v, u). Moreover, when E(U) = E(V) and Var(U) = Var(V), that is, µ1 = µ2 (= µ) and σ2
1 = σ2

2 (= σ2),
f (u, v) is expressed as

f (u, v) = c
[
1 +

1
m

(
k(u + v) + t(u2 + v2) + d(u, v)

)]− m+2
2

, (3)

where

c =
1

2πσ2
√

1 − ρ2
,

k = −
2µ

σ2(1 + ρ)

t =
1

σ2(1 − ρ2)

d(u, v) =
2

σ2(1 − ρ2)

(
−ρuv + µ2 − ρµ2

)
,

and d(u, v) = d(v, u).

We consider the r × r square contingency table with ordered categories. For any fixed constant m (m > 2), we propose a
model defined by

pi j =

[
1 +

1
m

(
µ + κ(i + j) + τ(i2 + j2) + φi j

)]− m+2
2

(i = 1, . . . , r; j = 1, . . . , r).

We shall refer to this model as a parsimonious symmetry (PaS(m)) model. From the form of equation (3), the PaS(m)
model may be appropriate if it is reasonable to assume an underlying bivariate t-distribution with same marginal means
and variances having m degrees of freedom. Under the PaS(m) model, we see that

pi j = p ji (i < j).

Namely, the PaS(m) model implies the S model.

Next, for any fixed constant m (m > 2), we propose a model defined by

pi j =

[
1 +

1
m

(
µ + α1i + β1 j + τ(i2 + j2) + φi j

)]− m+2
2

(i = 1, . . . , r; j = 1, . . . , r).

We shall refer to this model as a parsimonious t-distribution type symmetry (PaTS(m)) model. From the form of equation
(2), the PaTS(m) model may be appropriate if it is reasonable to assume an underlying bivariate t-distribution with same
marginal variances (and different marginal means) having m degrees of freedom. A special case of the PaTS(m) can be
obtained by putting α1 = β1 in the PaS(m) model. Under the PaTS(m) model,

p
− 2

m+2
i j − p

− 2
m+2

ji =
β1 − α1

m
( j − i) (i < j).
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Namely, the PaTS(m) model implies the TS(m) model. Additionally, under the PaTS(m) model, setting ωi j = µ + α1i +

β1 j + τ(i2 + j2) + φi j, we see that

lim
m→∞

pi j

p ji
= lim

m→∞

(1 +
ωi j

m )−
m+2

2

(1 +
ω ji

m )−
m+2

2

= lim
m→∞

{(1 +
ωi j

m )
m
ωi j }−

ωi j
2 (1+ 2

m )

{(1 +
ω ji

m )
m
ω ji }−

ω ji
2 (1+ 2

m )

=
exp[−ωi j

2 ]

exp[−ω ji

2 ]

= exp
[1
2

(α1 − β1)( j − i)
]

= θ j−i (i < j),

where
θ = exp

[
α1 − β1

2

]
.

Namely, the PaTS(m) model approaches the LDPS model as m becomes larger.

Moreover, for any fixed constant m (m > 2), we propose a model defined by

pi j =

[
1 +

1
m

(
µ + α1i + β1 j + α2i2 + β2 j2 + φi j

)]− m+2
2

(i = 1, . . . , r; j = 1, . . . , r).

We shall refer to this model as a parsimonious t-distribution type symmetry (PaETS(m)) model. From the form of equation
(1), the PaTS(m) model may be appropriate if it is reasonable to assume an underlying bivariate t-distribution with different
marginal means and variances having m degrees of freedom. A special case of the PaETS(m) can be obtained by putting
α2 = β2 in the PaTS(m) model. Under the PaETS(m) model,

p
− 2

m+2
i j − p

− 2
m+2

ji =
β1 − α1

m
( j − i) +

β2 − α2

m
( j2 − i2) (i < j).

Namely, the PaETS(m) model implies the ETS(m) model. Further, under the PaETS(m) model, we see that

lim
m→∞

pi j

p ji
= exp

[1
2

(α1 − β1)( j − i) +
1
2

(α2 − β2)( j2 − i2)
]

= θ
j−i
1 θ

j2−i2

2 (i < j),

where
θ1 = exp

[
α1 − β1

2

]
, θ2 = exp

[
α2 − β2

2

]
.

Namely, the PaETS(m) model approaches the ELDPS model as m becomes larger.

PaS (m) PaTS (m) PaETS (m)

S TS (m) ETS (m)

- -

- -

A
AAU

A
AAU

A
AAU

Figure 1. Relationships among models

In Figure 1, we show the relationships among models. In Figure, A→ B indicates that model A implies model B.
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3. Decompositions of Models

Consider the r × r square contingency table. Let X and Y denote the row and column variables, respectively. We refer
to the model of equality of marginal means, that is, E(X) = E(Y), as the ME model. Additionally, we refer to model of
equality of marginal means and variances, that is, E(X) = E(Y) and Var(X) = Var(Y), as the MVE model. Then, we obtain
the following theorems.

Theorem 1 The PaS(m) model holds, if and only if both the PaETS(m) and MVE models hold.

Proof. If the PaS(m) model holds, then the PaETS(m) and MVE models hold. Assuming that the PaETS(m) and MVE
models hold, then we shall show that the PaS(m) model holds. From the PaETS(m) model, we see

p
− 2

m+2
i j − p

− 2
m+2

ji =
1
m

[
(α1 − β1) (i − j) + (α2 − β2)

(
i2 − j2

)]
(i < j).

Then, because the MVE model is given by to E(X) = E(Y) and E(X2) = E(Y2),

r∑
i=1

r∑
j=1

pi j

(
p
− 2

m+2
i j − p

− 2
m+2

ji

)
=

r∑
i=1

r∑
j=1

pi j

m

[
(α1 − β1) (i − j) + (α2 − β2)

(
i2 − j2

)]
=
α1 − β1

m

r∑
i=1

r∑
j=1

(i − j) pi j +
α2 − β2

m

r∑
i=1

r∑
j=1

(
i2 − j2

)
pi j

=
α1 − β1

m
(E(X) − E(Y)) +

α2 − β2

m

(
E(X2) − E(Y2)

)
= 0.

Additionally, we have

r∑
i=1

r∑
j=1

pi j

(
p
− 2

m+2
i j − p

− 2
m+2

ji

)
=

∑∑
i< j

pi j

(
p
− 2

m+2
i j − p

− 2
m+2

ji

)
+

∑∑
i> j

pi j

(
p
− 2

m+2
i j − p

− 2
m+2

ji

)
=

∑∑
i< j

(
pi j − p ji

) (
p
− 2

m+2
i j − p

− 2
m+2

ji

)
.

For any i < j, if pi j , p ji, then (pi j − p ji)(p
− 2

m+2
i j − p

− 2
m+2

ji ) < 0, if pi j = p ji, then (pi j − p ji)(p
− 2

m+2
i j − p

− 2
m+2

ji ) = 0. Thus, when
we assume that the PaETS(m) and MVE models hold, we can obtain pi j = p ji for all i < j. Moreover, pi j − p ji = 0 for all
i < j, that is,

(α1 − β1)(i − j) + (α2 − β2)(i2 − j2) = 0 for all i < j.

Therefore we obtain α1 = β1 and α2 = β2. Namely, the PaS(m) model holds. The proof is completed.

Theorem 2 The PaS(m) model holds, if and only if both the PaTS(m) and ME models hold.

The proof of Theorem 2 is omitted because that is obtained in a way similar to Theorem 1.

4. Goodness-of-fit Test

For an r × r contingency table, let ni j denote the observed frequency in the ith row and jth column of the table, where
n =

∑∑
ni j and let mi j denote the corresponding expected frequency (i = 1, . . . , r; j = 1, . . . , r). Assume that the observed

frequencies have a multinomial distribution. Let G2(M) denote the likelihood ratio chi-squared statistic, defined by

G2(M) =

r∑
i=1

r∑
j=1

ni j log
(

ni j

m̂i j

)
,

where m̂i j is the maximum likelihood estimate of expected frequency mi j under model M. Under model M, these statistics
have a asymptotically central chi-squared distribution with the corresponding degrees of freedom. For the PaS(m) model,
{pi j} are determined by µ, κ, τ and φ. Therefore, the numbers of degrees of freedom for the PaS(m) model are r2 − 4.
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Similarly, the numbers of degrees of freedom for the PaTS(m) and PaETS(m) models are r2 − 5 and r2 − 6, respectively.
We consider the maximum likelihood estimates of expected frequencies {mi j} under the PaS(m), PaTS(m) and PaETS(m)
models in the log-likelihood equation. For the PaS(m) model, we must maximize the Lagrangian

L =

r∑
i=1

r∑
j=1

ni j log pi j − λ

 r∑
i=1

r∑
j=1

pi j − 1

 −∑∑
i< j

ψi j(pi j − p ji)

−
∑∑

(i, j)∈D

λi j

{
p
− 2

m+2
i j −

(
µ + κ(i + j) + τ(i2 + j2) + φi j

)}
,

where

µ =
1
2

(
11p

− 2
m+2

11 − 13p
− 2

m+2
12 + 3p

− 2
m+2

13 + p
− 2

m+2
23

)
,

κ =
1
2

(
−6p

− 2
m+2

11 + 9p
− 2

m+2
12 − 2p

− 2
m+2

13 − p
− 2

m+2
23

)
,

τ =
1
2

(
p
− 2

m+2
11 − 2p

− 2
m+2

12 + p
− 2

m+2
13

)
,

φ =
1
2

(
p
− 2

m+2
11 − p

− 2
m+2

12 − p
− 2

m+2
13 + p

− 2
m+2

23

)
,

D = {(i, j)|i < j, (i, j) , (1, 1), (1, 2), (1, 3), (2, 3)},

with respect to {pi j}, λ, {ψi j} and {λi j}. For the PaTS(m) model, we must maximize the Lagrangian

L =

r∑
i=1

r∑
j=1

ni j log pi j − λ

 r∑
i=1

r∑
j=1

pi j − 1


−

∑∑
(i, j)∈E1

ψi j

(
p
− 2

m+2
i j − p

− 2
m+2

ji − ( j − i)p
− 2

m+2
12 + ( j − i)p

− 2
m+2

21

)
−

∑∑
(i, j)∈E2

λi j

{
p
− 2

m+2
i j −

(
µ + αi + β j + τ(i2 + j2) + φi j

)}
,

where

µ =
1
2

(
11p

− 2
m+2

11 − 10p
− 2

m+2
12 + 3p

− 2
m+2

13 − 3p
− 2

m+2
21 + p

− 2
m+2

23

)
,

α =
1
2

(
−6p

− 2
m+2

11 + 6p
− 2

m+2
12 − 2p

− 2
m+2

13 + 3p
− 2

m+2
21 − p

− 2
m+2

23

)
,

β =
1
2

(
−6p

− 2
m+2

11 + 8p
− 2

m+2
12 − 2p

− 2
m+2

13 + p
− 2

m+2
21 − p

− 2
m+2

23

)
,

τ =
1
2

(
p
− 2

m+2
11 − 2p

− 2
m+2

12 + p
− 2

m+2
13

)
,

φ =
1
2

(
p
− 2

m+2
11 − p

− 2
m+2

13 − p
− 2

m+2
21 + p

− 2
m+2

23

)
,

E1 = {(i, j)|i < j, (i, j) , (1, 2)},
E2 = {(i, j)|i < j, (i, j) , (1, 1), (1, 2), (1, 3), (2, 3)},

with respect to {pi j}, λ, {ψi j} and {λi j}. For the PaETS(m) model, we must maximize the Lagrangian

L =

r∑
i=1

r∑
j=1

ni j log pi j − λ

 r∑
i=1

r∑
j=1

pi j − 1


−

∑∑
(i, j)∈F1

ψi j

[
p
− 2

m+2
i j − p

− 2
m+2

ji +
( j − i)

2

{
(2i + 2 j − 8)(p

− 2
m+2

12 − p
− 2

m+2
21 )

−(i + j − 3)(p
− 2

m+2
13 − p

− 2
m+2

31 )
}]

−
∑∑
(i, j)∈F2

λi j

{
p
− 2

m+2
i j −

(
µ + α1i + β1 j + α2i2 + β2 j2 + φi j

)}
,
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where

µ =
1
2

(
11p

− 2
m+2

11 − 6p
− 2

m+2
12 + p

− 2
m+2

13 − 7p
− 2

m+2
21 + p

− 2
m+2

23 + 2p
− 2

m+2
31

)
,

α1 =
1
2

(
−6p

− 2
m+2

11 + p
− 2

m+2
13 + 9p

− 2
m+2

21 − p
− 2

m+2
23 − 3p

− 2
m+2

31

)
,

β1 =
1
2

(
−6p

− 2
m+2

11 + 8p
− 2

m+2
12 − 2p

− 2
m+2

13 + p
− 2

m+2
21 − p

− 2
m+2

23

)
,

α2 =
1
2

(
p
− 2

m+2
11 − 2p

− 2
m+2

21 + p
− 2

m+2
31

)
,

β2 =
1
2

(
p
− 2

m+2
11 − 2p

− 2
m+2

12 + p
− 2

m+2
13

)
,

φ =
1
2

(
p
− 2

m+2
11 − p

− 2
m+2

13 − p
− 2

m+2
21 + p

− 2
m+2

23

)
,

F1 = {(i, j)|i < j, (i, j) , (1, 2), (1, 3)},
F2 = {(i, j)|i < j, (i, j) , (1, 1), (1, 2), (1, 3), (2, 3)},

with respect to {pi j}, λ, {ψi j} and {λi j}. Setting the partial derivations of L equal to zero using the Newton-Raphson method,
we can obtain the maximum likelihood estimates of {mi j} under the PaS(m), PaTS(m) and PaETS(m) models.

5. Simulation Study

As described in Section 2, the PaS(m), PaTS(m) and PaETS(m) models may be appropriate for a square ordinal table
if it is reasonable to assume an underlying bivariate t-distribution having m degrees of freedom. We shall consider the
relationships between the proposed models and bivariate t-distribution in terms of simulation studies, and the comparison
between the proposed models and S, TS(m) and ETS(m) models.

Consider random variables U and V having a bivariate t-distribution with m degrees of freedom, meaning E(U) = 0,
E(V) = µ2, variances Var(U) = m/(m − 2),Var(V) = mσ2

2/(m − 2), and correlation coefficient Corr(U,V) = ρ. Suppose
that there are some conditions; m = 30, 100, µ2 = 0, 0.2, σ2

2 = 1, 1.2, ρ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, a 4 × 4 table of sample
size 5000 is formed using cut points for each variable at −0.7, 0, 0.7.

We count the frequencies of acceptance (at the 0.05 significance level) based on the likelihood ratio chi-squared statistic
for testing the hypothesis that the models with the corresponding m degrees of freedom hold per 10000 times for 4 × 4
tables on each condition.

From Tables 1 and 2, we see that the ETS(m) model is a good fit for all conditions. Further the TS(m) model is a good fit
when σ2

2 = 1, and the S model gives good fit on when µ2 = 0 and σ2
2 = 1. In contrast, the PaS(m), PaTS(m) and PaETS(m)

models show a similar trend when ρ is close to 0. Thus, from the result of this simulation, we obtain that if it is reasonable
to assume an underlying bivariate t-distribution with a low correlation coefficient, the parsimonious models would fit the
data well.

6. Concluding Remarks

Each of the S, TS(m) and ETS(m) models is saturated on the main diagonal cells of the table, but the PaS(m), PaTS(m)
and PaETS(m) models are unsaturated on them. Thus, under the PaS(m), PaTS(m) and PaETS(m) models, the estimated
expected frequencies on the main diagonal are always not equal to the observed frequencies on the main diagonal. The
PaS(m), PaTS(m) and PaETS(m) models may be useful when we want to utilize the information on the main diagonal.

From Section 5, when observations are not so concentrated in the main diagonal cells, that is, a correlation coefficient
between row and column variables is close to 0, the proposed models (PaS(m), PaTS(m) and PaETS(m)) may be better for
application to a square table than the S, TS(m) and ETS(m) models.
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Table 1. The frequencies of acceptance (at the 0.05 significance level) per 10000 times for 4 × 4 tables based on the like-
lihood ratio chi-squared statistic for testing the hypothesis that the S, TS(30), ETS(30), PaS(30), PaTS(30) or PaETS(30)
model hold

µ2 σ2
2 ρ S TS(30) ETS(30) PaS(30) PaTS(30) PaETS(30)

0 1 0.1 9501 9520 9494 9156 9150 9116
0.2 1 0.1 0 9273 9241 0 8888 8837
0 1.2 0.1 1535 1308 9490 2403 2234 9082

0.2 1.2 0.1 0 1107 9289 0 1806 8927
0 1 0.2 9474 9460 9483 8589 8549 8489

0.2 1 0.2 0 9265 9246 0 8336 8304
0 1.2 0.2 1575 1317 9508 1936 1779 8462

0.2 1.2 0.2 0 1055 9294 0 1418 8258
0 1 0.3 9490 9493 9472 7417 7316 7171

0.2 1 0.3 0 9168 9137 0 7064 6935
0 1.2 0.3 1437 1212 9489 1237 1118 7124

0.2 1.2 0.3 0 983 9117 0 922 6765
0 1 0.4 9459 9505 9497 5159 4981 4751

0.2 1 0.4 0 9133 9058 0 4720 4565
0 1.2 0.4 1338 1111 9478 567 486 4599

0.2 1.2 0.4 0 901 9086 0 400 4390
0 1 0.5 9504 9491 9504 2349 2211 2025

0.2 1 0.5 0 9068 9003 0 2081 1866
0 1.2 0.5 1214 1017 9480 145 126 1888

0.2 1.2 0.5 0 765 8990 0 92 1755
0 1 0.6 9499 9487 9518 533 449 384

0.2 1 0.6 0 9028 8993 0 424 350
0 1.2 0.6 897 737 9455 7 7 315

0.2 1.2 0.6 0 636 8921 0 8 263

Table 2. The frequencies of acceptance (at the 0.05 significance level) per 10000 times for 4 × 4 tables based on the
likelihood ratio chi-squared statistic for testing the hypothesis that the S, TS(100), ETS(100), PaS(100), PaTS(100) or
PaETS(100) model hold

µ2 σ2
2 ρ S TS(100) ETS(100) PaS(100) PaTS(100) PaETS(100)

0 1 0.1 9486 9485 9495 9350 9350 9352
0.2 1 0.1 0 9271 9259 0 9117 9089
0 1.2 0.1 1525 1283 9502 2583 2412 9371

0.2 1.2 0.1 0 1062 9225 0 1840 9108
0 1 0.2 9480 9490 9486 8970 8951 8880

0.2 1 0.2 0 9242 9175 0 8647 8610
0 1.2 0.2 1469 1222 9489 2060 1897 8854

0.2 1.2 0.2 0 981 9247 0 1516 8585
0 1 0.3 9497 9483 9496 7942 7842 7739

0.2 1 0.3 0 9174 9154 0 7560 7445
0 1.2 0.3 1407 1168 9480 1397 1272 7700

0.2 1.2 0.3 0 921 9102 0 973 7252
0 1 0.4 9501 9521 9492 6038 5857 5672

0.2 1 0.4 0 9087 9049 0 5324 5151
0 1.2 0.4 1358 1145 9485 694 597 5407

0.2 1.2 0.4 0 785 8994 0 419 4833
0 1 0.5 9468 9470 9481 2880 2728 2508

0.2 1 0.5 0 8942 8847 0 2531 2337
0 1.2 0.5 1122 917 9465 165 141 2269

0.2 1.2 0.5 0 651 8881 0 110 1959
0 1 0.6 9529 9517 9512 669 609 541

0.2 1 0.6 0 8907 8844 0 525 467
0 1.2 0.6 838 651 9451 14 11 396

0.2 1.2 0.6 0 534 8764 0 6 326
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