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Abstract 

In this study, an Autoregressive Integrated Moving Average (ARIMA) model was used to forecast Ghana’s Akosombo 

dam level and hydropower generation by the end of year 2022. Data used for this study span from January 2010 to 

December 2019. Base on the final ARIMA model, power generation is forecasted to decrease from 398 Megawatts/hr in 

December 2019 to approximately 374 Megawatts/hr by December 2022. On the other hand, water level of the 

Akosombo dam is predicted to decrease marginally from 264.8 ft in December 2019 to approximately 255.19 ft by 

December 2022. The Volta River Authority (VRA) and managers of the electricity production in Ghana are encouraged 

to be proactive in expanding energy production by turning more to renewable energy sources. In the coming years, as 

they seek to provide sustainable electricity for their cherished customers, investment decisions should be directed 

towards protecting the volta river from drying up due to human and climatic activities as well as expanding energy mix. 
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1. Introduction 

Energy is a key component to sustaining economic growth and general well-being. Many of our daily activities is 

dependent on stable electricity. In our global quest to achieving the sustainable development goals, stable electricity has 

been deemed crucial (Owusu et al., 2016). According to the International Energy Agency (IEA, 2015), about 10 % of 

the population of the world are without electricity, with 22% out the population are without electricity living in 

sub-Saharan Africa and some parts of Asia. More scientific studies must be focusing on helping to improve electricity 

supply in developing countries within sub-Saharan Africa and Asia.  

According to the World Energy Outlook report by the International Energy Agency (2015), fossil fuels account for 

about 67% of the worldwide power generation. Despite its availability worldwide, the negative effects on the 

environment as a results of generating electricity from fossil fuel, climate change, depletion of fossil fuel reserves, and 

price volatility need a worldwide increase in the use of renewable resources for power generation (IEA, 2015; NREL, 

2015; Panwar et al., 2011). 

Globally, hydropower remains the largest renewable energy resource due to its cost-effectiveness and reliability (Zhou 

et al., 2020). Ghana has two major hydropower system made up of two plants. The hydropower plants are located at 

Akosombo and Kpong and were commissioned in 1965 and 1982 respectively. Akosombo has six turbine-generator 

units which operates between 84.15m (276ft) maximum and 75.59m (248ft) minimum of headwater elevation. The 

Kpong plant has four turbines which operates between 17.7m maximum and 14.5m maximum of normal water level. 

Ghana’s electricity generation was once powered by diesel generators prior to the construction of Akosombo dam 

(Eshun & Amoako Tuffour, 2016). It is estimated that, about 65% of Ghana’s electricity is sourced from Akosombo dam 

and the remaining 35% generated from other sources (Gyamfi et al., 2015). However, the sustainability of hydropower 

is directly influence by the water level at any given point in time (Harrison, & Whittington, 2001; Miescher, 2021). 

Ghana is among the West African countries blessed with so many renewable resources (IRENA, 2015). With the need to 

increase energy access and also protect the environment, renewable energy development has become key element in the 

sustainable future energy agenda. The energy sector has been searching for sustainable solution to the periodic power 

outages and load shedding. The many years of reliance on hydropower generation, the slow pace of innovative energy 

mix, and growth in economic activities and population are some of the causes of the unstable electricity supply to many 

parts of Ghana (Asumadu-Sarkodie & Owusu, 2016). Recent statistics indicate that the electricity generating mix of the 

country is mainly made up of thermal and hydro sources, with steps being made to add non-renewable sources like solar. 

Currently, about 59.9% of the total electricity generated in Ghana is derived from thermal sources (natural gas, light 

crude oil and diesel fuels), 39.9% is derived from hydro and the 0.2% left is derived from solar technology (Ankrah & 

Lin, 2020). 
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However, despite the 39.9% of electricity derived from hydro, there has being a significant decline in hydropower since 

2014. Ashong (2016) indicated that inadequate water inflow into the hydro dams as a results of low rainfall have been 

the main reason for the decline in hydropower generation, hence the major cause of unstable renewable energy state in 

Ghana. 

There are several models used for forecasting in time series. This study mainly applies the Autoregressive Integrated 

Moving Average (ARIMA) model for predicting power generation and dam level. ARIMA models depend on past 

values to predict the future. The ARIMA model consist of three components (p, d, q), where p is the order of AR process, 

d is the difference order, and q is the order of MA process. The ARIMA model is one of the most used techniques by 

many researchers due to its reliability (Debnath & Mourshed, 2018; Ediger & Akar, 2007). Sarpong (2013) found out 

that the use of ARIMA model is adequate for forecasting. In addition, El Desouky, & Elkateb, 2000) revealed that the 

use of ARIMA model for forecasting provides smaller errors.  

In previous studies, the Owusu et al. (2018) found out that, electricity generation will decline if alternative power 

sources are not urgently considered by Government. Boadi and Owusu, (2019) in their study on climate change and its 

effect on hydropower in Ghana using monthly data from 1970 to 2010 concluded that, 21% of Ghana’s unstable 

electricity supply was due to shortfall in water levels of Akosombo hydroelectric power station. Michieka et al., (2021) 

found out that, long-run positive shock in temperature increases electric power production. According to Asian 

Development Bank (2007), drought causes more shortages resulting in outages and insufficient cooling water which 

ultimately decrease hydropower production. 

Moreover, Ediger and Akar (2007) forecasted primary energy demand by fuel using ARIMA model. The forecasted 

result shows that primary energy demand will decrease between 2005 and 2020. Mite-León and Barzola-Monteses 

(2018) used ARIMA models in forecasting hydropower generation in Ecuador. The outcome of the study showed 

monthly increased in hydropower generation in Ecuador. Kabo-bah et al. (2016) found out that, regular low flow of 

water into the Akosombo dam affects power generation. 

However, most of the previous studies developed on energy focused more on renewable resources, predicting energy 

consumption and in particular, overall energy production (Dind etal., 2018; Katani, 2019; Kaur & Ahuja, 2017; 

Sarkodie, 2017; Wu et al., 2017). Some too focused on factors affecting hydropower generation (Kabo-bah et al, 2016; 

Michieka et al., 2021). Notwithstanding the above, hydropower generation forecast in developing countries, like Ghana, 

has attained very little attention. Energy production forecast is of great importance to the operators of electrical system 

and decision makers to defined better policies and manage risks. 

Also, from previous studies, different models have been used by different researchers in forecasting hydropower 

generation. Owusu et al. (2018) used Polynomial regression. Zolfaghari and Golabi (2021) used adaptive wavelet 

transform (AWT), long short-term memory (LSTM) and random forest (RF) algorithm (AWT-LSTM-RF) to predict the 

electricity production in hydroelectric power plant. Dmitrieva (2015) combined Neural Networks, SVM and ARIMA 

models in forecasting hydropower plant production. Mite-León and Barzola-Monteses (2018) used ARIMA with 

seasonal component in predicting hydropower generation in Ecuador.  

From the year 2003, the Energy Commission of Ghana decided on an annual increase in power supply of 0.9 to 1.8% 

due to increasing population and economic activities (EC, 2013). It is clear from the above that, trends for future 

hydropower generation and water level of the longest serving source of electricity in Ghana (the Akosombo dam) is 

crucial to overcoming power supply challenges.  

This study therefore attempts to forecast Ghana’s hydropower generation as well as water level of the Akosombo dam 

using the Autoregressive Integrated Moving Average (ARIMA) technique. Many of the existing literature on ARIMA 

forecasting models usually ignore analysis of forecasting errors (Koutroumanidis et al., 2009; Ömer Faruk, 2010; 

Khashei & Bijari, 2011). In this study however, error analysis is performed using Root Mean Square Error (RMSE) and 

Mean Absolute Percentage error (MAPE) to evaluate the forecasting accuracy of the selected model. The Volta River 

Authority (VRA) and managers of the electricity company of Ghana may find this study very useful in the planning for 

the coming years as they seek to provide sustainable electricity for their cherished customers. This study may promote 

the need for intervention programs to protect the Volta river from drying up due to human and climatic activities. 

2. Materials and Methods 

The study used two secondary univariate time series data; power generation and dam level, which span from January 

2010 to December 2019. Since the data was measured over time, and uniformly spaced, we considered utilizing the 

Box-Jenkins strategy (Shumway et al., 2000). The time series forecasting by using ARIMA models can be performed in 

four basic steps namely, Identification, Estimation, Diagnosis and Forecasting (Box et al., 2015), to end up with a 

specific formula that satisfies all the underlying conditions as much as possible to produce good and accurate forecast.  
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2.1 Autoregressive Integrated Moving Average Process (ARIMA) 

ARIMA model is a type of Box-Jenkins series analysis which depends on past values to predict the future (Devi et al., 

2013). The modelling is done using the integrated autoregressive and moving average processes. The ARIMA (p, d, q) 

model is divided into three main parts: The Autoregressive (AR) part of order p, which explains the present value of a 

series by the function of p past values, the Moving Average (MA) part of order q, which indicates that the output 

variable depends linearly on current and various past values, and the differenced (d) part which indicates that the data 

values have been replaced with the difference between the values and the previous values.  

The Box-Jenkins methodology apply the maximum likelihood principles in parameter estimation. Using a modified 

form of Mite-León and Barzola-Monteses (2018) model approch, the ARIMA (p, d, q) model is expressed as:  

 𝑋𝑡
𝑑 = 𝑐 + 𝜙1𝑋𝑡−1

𝑑 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝
𝑑 + 𝜃1𝑋𝑡−1

𝑑 + ⋯ + 𝜃𝑞𝑋𝑡−𝑞
𝑑 + 𝜀𝑡     (1) 

 

where, 

𝑋𝑡
𝑑 is the series with a difference order (d)  

𝜙1,…,𝜙𝑝 and 𝜃1,…,𝜃𝑞 are the model parameters  

𝜀𝑡 represent white noise with i.i.d.  

The ARIMA (p, d, q) model is to make nonstationary time series stationary by d order difference.  

2.2 Unit Root Evaluation 

Test for a unit root is one of the basic assumptions underlying any time series data. This study made use of time-plot of the 

data and the ADF statistical test in evaluating the stationarity of the two series. The ADF was based on the assumption that 

the series can approximate an autoregressive of order 1 (Mite-León and Barzola-Monteses, 2018). The ADF test is 

performed under the null hypothesis, the series has a unit root. The regression equation of the ADF test is given by: 

 ∆𝑦𝑡= 𝛼 + 𝛽𝑡 + 𝛾𝑡−1 + 𝛿1∆𝑦𝑡−1 + ⋯ + 𝛿𝑝∆𝑦𝑡−𝑝 + 𝜀𝑡  (2) 

Where,  

𝑦𝑡 is the observed time series  

𝛼 is constant  

𝛽 is the coefficient of the time trend  

p is the order of AR process. 

If 𝛾 = 0, the series is random walk and if -1 < 1+ 𝛾 < 1, the series is stationary. 

2.4 Model Identification 

Before applying the ARIMA model, the Autoregressive (AR) component p, and the Moving Average (MA) component q, 

was identified using ACF and PACF plots respectively. According to Box and Pierce (1970), the ACF and the PACF are 

correlogram functions that help to decide the degree of association between two successive values of the series and give 

an idea of the possible parameters of the ARIMA model. By following Polprasert et al., (2021) method of identification, 

the ACF and PACF were drawn to stationary time series and the p and q values were evaluated based on truncation and 

trailing nature of the function. Truncation refers to the nature in which the ACF or PACF time sequence is zero (0) after 

some time, and trailing refers to the nature in which the ACF or PACF slowly shrinks to zero (0). If the PACF is 

truncating and ACF is trailing, then p equals the truncation order, q equals 0, and it can be concluded that the sequence 

fits AR model. If PACF of the stationary series is trailing and ACF is truncating, then q equals the truncating order, p 

equals 0 and it can be concluded that the sequence fits MA model; if both the PACF and ACF are trailing, then p equals 

the PACF truncation order, q equals the ACF truncation order, and the model fits the ARMA model. 

2.5 Model Estimation 

After the parameters (p, d, q) of the ARIMA model have been identified, the model is then estimated to obtain the 

coefficients. The maximum likelihood estimation is used in this study to get the estimates of the coefficients of the 

suggested models at the identification stage. We fit all the suggested models at the identification stage to the series to 

obtain estimates of the coefficients. 

2.6 Model Selection 

After a successful estimation of the model, the Akaike Information Criteria (AIC) and the significance of the models 

will be accessed to determine the best model for our series. It is expected that the ARMA components would be 
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significance at 5% level of significance after estimation and return the minimum AIC value. AIC is mathematically 

expressed as:  

                   𝐴𝐼𝐶 = 2𝑘 − 2log (𝐿)  (3) 

where,   

L is the maximum likelihood value 

k is the number of parameters to be estimated.  

When these conditions are satisfied, that model is then selected as the best model for the series.  

2.7 Model Diagnostics 

The Box-Jenkins methodology also provides an avenue to access the goodness of fit of the selected model. It is 

expected that after a complete estimation, the residuals of the selected model would exhibit the following characteristics: 

the residuals should be white noise, the ARMA process should be covariance stationary, thus all the AR roots must lie 

inside the unit circle, the ARMA process should be invertible, thus all the MA roots must lie inside the unit circle. The 

study employs the Ljung-Box test to test whether the residuals are white noise or not. The test is express as: 

 
𝑄 = 𝑛(𝑛 + 2) ∑

𝑟𝑘
2

𝑛 − 𝑘

𝑚

𝑘=1

 
 

(4) 

Where 𝑄 is asymptotic distribution which a Chi-square distribution with degrees of freedom ℎ = 𝑚 − 𝑝 − 𝑞, 𝑝 and 

𝑞 are the orders of AR and MA, n is the sample size, 𝑟𝑘 is the estimated autocorrelation of the time series at lag 𝑘, 

and  𝑚 is the number of lags to be tested. 

2.8 Model Forecasting and Evaluation 

Once the selected model has been verified, the model will then be used to predict power generation and dam level in the 

next 36 months. After the forecasting, this study employs the Root Mean Square Error (RMSE) and Mean Absolute 

Percentage error (MAPE) to evaluate the forecasting accuracy of the selected model. The RMSE and MAPE are given 

by: 

 

𝑅𝑀𝑆𝐸 = √∑(𝑃𝑖−𝑂𝑗)
2

𝑛
  

 

 

(5) 

 

𝑀𝐴𝑃𝐸 =
100

𝑛
|

(𝑃𝑖−𝑂𝑗)

𝑂𝑗
|  

 

 

(6) 

where 𝑃𝑖 is the predicted value for the ith observation, 𝑂𝑖 is the observed value for the jth observation, n is the number 

of non-missing residuals. 

3. Results 

3.1 Graphs of the Series 

It can be observed from figure 1 and 2 that, both series depicts a change in mean over time which suggest that both 

series are non-stationary. 
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Figure 1. Power generation                                   Figure 2. Dam level 

                   
Figure 3. Correlogram for power generation                           Figure 4. Correlogram for dam level 

It can be observed from both correlogram plots (Figure 3 and 4) that, the ACF decline very slowly, which also suggest 

that both series are not stationary. This can be confirmed using the ADF test. Table 1 and 2 below display the results of 

ADF statistical test for stationarity 4 both power generation and dam level respectively. 

Table 1. ADF test results for Power generation 

Without differencing 

 

After first differencing 
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t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -2.512378  0.1151

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -7.532736  0.0000
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Table 2. ADF test results for dam level 

Without differencing 

 

After first differencing 

 

It can be confirmed from the ADF test that both series were not stationary at their levels and became stationary after 

first differencing. This confirmed the use of ARIMA (p,d,q) model to estimate our models and make predictions.  

3.2 Model Estimation  

It is therefore appropriate to determine the various ARMA components and the suggested models for both series. 

                      

Figure 5. ACF and PACF for power gen                               Figure 6. ACF and PACF for dam level 

Possible models for power generation are ARIMA (3,1,3), (3,1,8), (8,1,8) and (8,1,3) and the possible models for dam 

level are ARIMA (1,1,1), (1,1,4), (1,1,5), (1,1,6), (6,1,1), (6,1,4), (10,1,1) etc. After a successful estimation of the 

possible models, ARIMA (8,1,3) returned significance ARMA coefficients with least AIC and SIC value. Therefore, it is 

selected as the best model for power generation. 

Table 3. Parameters estimates of the selected model for power generation 

 

 

Also, ARIMA (10,1,1) returned significance ARMA and least AIC and SIC value. Therefore, it is selected as the best 

model for dam level. 

  

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -0.909780  0.7820

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -6.823674  0.0000

Autocorrelation Partial Correlation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Autocorrelation Partial Correlation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Variable Coefficient Std. Error t-Statistic Prob.  

C -1.040110 2.863109 -0.363280 0.7171

AR(8) -0.204761 0.091469 -2.238583 0.0271

MA(3) -0.234018 0.098148 -2.384329 0.0187

SIGMASQ 2145.712 302.7057 7.088443 0.0000

    Akaike info criterion 10.58063

    Schwarz criterion 10.67405
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Table 4. Parameters estimate of the selected model for dam level 

 

 
3.3 Model Diagnostics  

It is very advisable to check the goodness of fit of the selected model to see whether it adequately fit the data before 

forecasting is perform. 

3.3.1 Power Generation Model Diagnostics 

Table 5. Ljung-Box results 

 

 
Figure 7. AR/MA roots results 

All the AR and MA roots lie inside the unit circles, which shows that the ARMA process is covariance stationary and 

invertible. Also, all the p-values of Ljung-Box Q-statistics are greater than 5% level of significance, there we fail to 

reject the null hypothesis and conclude that the residuals are white noise. This confirm that ARIMA (8,1,3) model 

adequately fits the data.  

  

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.054919 0.948797 0.057882 0.9539

AR(10) 0.409277 0.077391 5.288431 0.0000

MA(1) 0.427821 0.092820 4.609148 0.0000

SIGMASQ 5.545471 0.789410 7.024829 0.0000

    Akaike info criterion 4.635189

    Schwarz criterion 4.728605

Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.075 -0.075 0.6927

2 0.006 -0.000 0.6964

3 0.018 0.018 0.7345 0.391

4 -0.004 -0.001 0.7366 0.692

5 -0.074 -0.075 1.4301 0.698

6 -0.059 -0.071 1.8718 0.759

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1 0 1

AR roots

MA roots

D(POWERGEN): Inverse Roots of AR/MA Polynomial(s)
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3.3.2 Dam Level Model Diagnostics 

Table 6. Ljung-Box results 

 

 

Figure 8. AR/MA root results 

The AR and MA roots lie inside the unit circles, which shows that the ARMA process is covariance stationary and 

invertible. Also, all the p-values of Ljung-Box Q-statistics are greater than 5% level of significance, there we fail to 

reject the null hypothesis and conclude that the residuals are white noise. This confirm that ARIMA (10,1,1) model 

adequately fits the data. 

3.4 Model Forecasting in the Next 36 Months 

Since the selected model has successfully passed the diagnostic stage, power generation and dam level are predicted as 

below. From figure 9, the vertical axis represents the quantity of power generation in megawatts while the horizontal 

axis denotes the time in months in which the power was generated. It can be observed that there were fluctuations in 

power generation from October 2019 to June 2020. Right from June 2020, power generation is forecasted to decrease 

from 395 Megawatts in June 2019 to approximately 355 Megawatts by December 2022. From figure 10, the vertical 

axis denotes the volume of the water level in meters whiles the horizontal axis denotes the time in the value which is 

recorded in months. Based on the predicted values, water level of the Akosombo dam is predicted to increase marginally 

from 269.6 meters in December 2019 to approximately 275.5 meters by December 2022, despite the fluctuations that 

may occur. 

  

Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.034 0.034 0.1370

2 0.032 0.031 0.2643

3 -0.115 -0.117 1.8984 0.168

4 -0.105 -0.100 3.2775 0.194

5 -0.109 -0.097 4.7738 0.189

6 -0.127 -0.133 6.8149 0.146

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1 0 1

AR roots

MA roots

D(DAMLEVEL): Inverse Roots of AR/MA Polynomial(s)
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Table 7. Forecasted values of power generation 

Month/Year Actual values Predicted values 

Oct-19 357 349.2051 

Nov-19 407 361.0639 

Dec-19 398 355.4225 

Jan-20 

 

371.5740 

Feb-20 

 

397.3494 

* 
 

* 

* 
 

* 

* 
 

* 

Oct-21 

 

370.0246 

Nov-21 

 

368.8737 

Dec-21 

 

367.8731 

Jan-22 

 

366.6854 

Feb-22 

 

365.4151 

Mar-22 

 

364.4296 

Apr-22 

 

363.3315 

May-22 

 

362.3126 

Jun-22 

 

361.2342 

Jul-22 

 

360.2168 

Aug-22 

 

359.1689 

Sep-22 

 

358.1587 

Oct-22 

 

357.1657 

Nov-22 

 

356.1144 

Dec-22 

 

355.0862 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Actual (brown) and Forecasted (blue) graph for power generation 
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Table 8. Forecasted values of Dam level 

Month/Year Actual values Predicted values 

Oct-19 256.2 268.8725 

Nov-19 266 272.1425 

Dec-19 264.8 269.6202 

Jan-20  268.7932 

Feb-20  268.0890 

* 
 

* 

* 
 

* 

* 
 

* 

Oct-21  276.8238 

Nov-21  276.7653 

Dec-21  276.7890 

Jan-22  276.8539 

Feb-22  277.0353 

Mar-22  277.4018 

Apr-22  277.2610 

May-22  277.9840 

Jun-22  278.2834 

Jul-22  278.2778 

Aug-22  278.2807 

Sep-22  278.2892 

Oct-22  278.3313 

Nov-22  278.3903 

Dec-22   278.4970 

 

 
Figure 10. Actual (brown) and Forecasted (blue) graph for dam level 

3.5 Forecasting Evaluation 

The table below display the evaluation results of our forecasted models for hydropower generation and dam level 

respectively. 
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Table 9. Power generation forecasted evaluation results 

Model fit statistics Forecasted value 

RMSE 

MAPE 

36.4405 

8.0559 

Table 10. Dam level forecasted evaluation results 

Model fit statistics value 

RMSE 

MAPE 

4.8203 

1.8203 

It can be observed that, both tables presented values which are smaller. This means that the selected model for 

hydropower generation and that of dam level provide best forecasting accuracy results. 

4. Discussion 

The objective of the study was to obtain an appropriate ARIMA model that will help forecast hydropower generation 

and dam level which has a significant impact on hydropower. The Box-Jenkins method was employed to obtain the 

suitable model for our series. The study made use of two different univariate time series which was obtained monthly. 

The two datasets were monthly recorded data for power generation and dam level. The study first looked at hydropower 

and its significance to the development of a country, irregularities in dam levels because of climate and environmental 

conditions and lastly some of the models that have been used for forecasting hydropower generation. The graph of both 

series was obtained, and it was found that, there is a change in mean of the two series which shows nonstationary nature 

of the series.  

There were rise and fall in dam level across the sample period, but in a downward pattern from 2011 to 2015 and 

upward pattern from 2016 to 2019. There is also sharp decline in power generation from 2014 to 2015. ACF plots for 

both series decline slowly which suggest nonstationary for both series. The ADF statistical test also proved that power 

generation and dam level are nonstationary. Transformation of the series was done by taking the first difference of both 

series to obtained stationarity. The correlogram of both series suggested different orders of p and q for AR and MA 

process. After different estimations, ARIMA (8,1,3) and ARIMA (10,1,1) fulfilled all the model selection criteria for 

power generation and dam level respectively. 

For the validation of the model, the residuals hypotheses were tested. First, the Ljung-Box test was used to determine if 

the residuals of the selected models are white noise. The test returned p-values greater than 5% significance level up to 

six lags for both power generation and dam level. Also, from the root statistics, all the AR and MA roots fell inside the 

unit circle which shows that, the selected models were stationary and invertible respectively. With this validation, a 

forecast was made.  

The results of Ghana’s hydropower generation and Akosombo dam level are depicted in Figure 9 and Figure 10 

respectively. The fitted model was used to forecast the observed series (2010-2019) and based on that the future series 

were forecasted as presented in Table 7 and Table 8 for hydropower generation and dam level respectively. Table 7 

shows that there were fluctuations in Ghana’s hydropower generation from October, 2019 to June 2020. But there is a 

decrease from 395mWh in June, 2019 to 355.0862mWh in 2022 in a low decrease scenario. Though there may be 

fluctuations but it won’t be much as those observed from October, 2019 to June, 2020. But in all, there is going to be a 

slight decrease in power generation from December 2019 to December 2022 (355.4225meters to 355.0862meters). Also, 

Table 8 shows that there was a decrease in the Akosombo dam level from 269.8ft in December, 2019 to 267.4496ft in 

June 2020. Despite the fluctuations that may occur, there will be an increase in dam level from 269.8m in December, 

2019 to 278.4970m by December, 2022 in slow increase scenario. This forecast supports earlier works of (Owusu et al., 

2018 and Boadi & Owusu 2019).  

Hydropower production phantom the sustainability of a country and Ghana has suffered from power outages since 2014. 

Jude et al., (2011) found out that, decrease in hydropower generation also decrease energy consumption, which in turn 

decrease economic growth. According to Ashong (2016), the decline in hydropower generation is mainly due to the 

inadequate inflow of water into the hydro dams as a results of low rainfall. This signifies that climate variabilities and 

environmental conditions are main variables that affect water levels and generation of hydropower (Michieka et al., 

2021; Miescher, 2021).  

The forecasting evaluation results for hydropower generation and dam level are displayed in Table 9 and 10 respectively. 
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From Table 9, RMSE of 1.16 means that the average distance between the observed series and the predicted values is 

1.16. MAPE of 0.4% means that the ARIMA (8,1,3) model-predicted level varies by 0.4% from the observed series. 

Also, from Table 10, RMSE of 3.85 means that the average distance between the observed series and the predicted 

values is 3.85. MAPE of 1.45% means that the ARIMA (10,1,1) model-predicted level varies by 0.4% from the 

observed series. This means that the selected models are statistically sound to make future forecast. In a similar study, 

Sarkodie (2017) used RMSE and MAPE to analyze forecasting errors in predicting electricity consumption in Ghana. 

5. Conclusions  

The ARIMA models has revealed that, following the trend of past values of hydropower and water level from the 

Akosombo dam, both variables will trend downwards in future. Based on the forecasting results obtained, Ghana will 

experience a slight decrease in hydropower generation despite the increase in water level that will occur, as the results 

showed. This implies that there should an introduction of new hydro plants that will utilized the excess water to produce 

more of electricity for the country.  The Volta River Authority (VRA) and managers of the electricity production in 

Ghana are also encouraged to be proactive in expanding energy production by turning more to renewable energy 

sources. In the coming years, as they seek to provide sustainable electricity for their cherished customers, investment 

decisions should be directed towards protecting the volta river from drying up due to human and climatic activities as 

well as expanding energy mix. Government of Ghana should devote funding to support scientific research in renewable 

energy and energy-harvesting technologies to ensure that enough energy is available for citizens and industries. Future 

research is encouraged to be done using new variables, to study patterns of power outages, construct economic models 

and make predictions. This will increase effective decision making process in the energy sector and also help sustain the 

growth of the economy.  
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