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Abstract

This article presents an application of three classical models to studies of ruminal degradation kinetics, namely Ørskov and
McDonald’s model (1979); Van Milgen, Murphy and Berger’s model (1991), and Richard’s model proposed in France,
Dijkstra, and Dhanoa (1996). Our approach is focused on accounting for animal effects given that measurements are
repeated in the same animal. The models were studied under the perspective of nonlinear mixed-effects (NLME) model-
s. In this way, we intended to accommodate the problems of response variance heterogeneity and correlations between
repeated measures. To apply the proposed method, we used data from an experiment conducted in a Latin square design
to assess the dry matter degradability of the following three silages: Elephant grass (Pennisetum purpureum Schumach.)
silage treated with bacterial inoculant, Elephant grass silage treated with enzyme-bacterial inoculant, and corn (Zea mays
L.) silage. Samples were incubation for 0, 2, 6, 12 , 24, 48, 72 and 96 h. For these experimental data, the Van Milgen,
Murphy, and Berger’s model showed better performance than the others. The proposed approach indicated that inclusion
of animal effects is important for obtaining more accurate information and can be considered in NLME modeling. Fur-
thermore, it was also possible to perform an easy-to-interpret analysis of contrasts between treatments by using Tukey’s
test.
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1. Introduction

Collections that generate correlated data are common in several areas of knowledge. In many situations, such collections
are carried out longitudinally, implying that observations on the same individual are correlated and not independent, which
limits the use of certain statistical methods and techniques. Correlations can be accounted for by using the mixed model
theory, which relates a response variable to predictor variables as fixed and random effects factors under the assumption
that the residual distribution is Gaussian (J. C. Pinheiro & Bates, 2000). Most of the time, however, linear mixed models
are not appropriate for explaining relationships between variables. In such analyses, nonlinear mixed effects (NLME)
models arise as an extension of linear mixed models for describing nonlinear parameters.

In the case of longitudinal data, the interest commonly lies in specific individual characteristics, given that the dependent
variable or response is measured several times and the effect associated with the individual/subject is included in the
model as a random effects factor. That is, mixed models are often used to deal with correlated or hierarchical data. Also,
recognizing that there are random effects factors influencing the observed response can increase the accuracy and precision
of fixed effects estimates, minimizing seriously inflated type I error rates (Wang, 2016).

The nonlinear mixed model is based on a mean curve that is fitted to the data, such that individual curves incorporating the
random effects of each individual appear as deviations from this mean curve. In literature, there are several methods pro-
posed to model continuous, unbalanced, and multilevel longitudinal data. One of the first models, proposed by Gregoire
and Schabenberger (1996) incorporates subject random effects, whereas that developed by Littell (2006) directly models
correlation structure. Gregoire and Schabenberger’s (1996) approach employs nonlinear fixed effects models, inducing
correlations in the marginal distribution of within-subject observations and using random effects that vary across subjects
to reduce the impact of autocorrelation. The second procedure (Littell, 2006) uses a covariance structure and generalized
least squares estimators, which are considered the best unbiased estimators (Tasissa & Burkhart, 1997).

In the field of cattle research, it is common to find articles that discuss longitudinal data without taking into account
possible animal correlations (among observation in the same subject). An example is seen in rumen degradability studies
using the model proposed by Mehrez and Ørskov (1977). This approach may lead to inappropriate conclusions because it
ignores important effects and makes assumptions that are inconsistent with the reality of the data.
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Rossi, Martins, Guedes, and Jobim (2010) noted that alternative and/or more innovative methods can provide a more
parsimonious explanation for data of this nature. The authors emphasized the importance of Bayesian inference to make
comparisons between parameters while considering different experimental treatments in a coherent manner, without hav-
ing to resort, for example, to asymptotic procedures.

Frequentist methods can be applied to data sets with a longitudinal structure, as performed byMedeiros, Lima, Savian,
Malheiros, and Werner (2020). The authors sought to address the problems of variance heterogeneity and correlations
between repeated longitudinal measurements in in situ ruminal degradation kinetic studies by using NLME. From a
statistical point of view, similar problems encountered in different contexts and areas can be properly addressed through
the use of mixed models, such as seen in J. C. Pinheiro and Bates (2000); Sartrio (2013); Luwanda and Mwambi (2016);
Wyzykowski, Custdio, Custdio, Gomes, and Morais (2015); Calama and Montero (2004); and Xu et al. (2014). The
proposal to apply a mixed effects methodology involving fixed and random effects parameters and the construction of a
data (co)variance matrix (Yang, Huang, Trincado, & Meng, 2009) seems adequate to capture between- and within-animal
variabilities and allows modeling the degradability of each animal (subject-specific) as the average degradability of all
animals (population specific) (Schabenberger & Pierce, 2002).

In this study we aimed to evaluate the ruminal degradation kinetics through the nonlinear models of Ørskov and McDonald
(1979), Van Milgen, Murphy, and Berger (1991), and France, Dijkstra, and Dhanoa (1996) and compare them in order to
determine the best berformance. For that, we will consider the three nonlinear models with the inclusion of mixed effects.
So that the models include fixed effects and random effects, allowing the variability between animals to be evaluated, with
different structures for the (co)variance matrix of errors and random effects. In addition, we will discuss the comparison
of experimental fixed effects treatments.

In this study, we aimed to evaluate ruminal degradation kinetics using the nonlinear models proposed by Ørskov and
McDonald (1979), Van Milgen, Murphy, and Berger (1991), and France, Dijkstra, and Dhanoa (1996) and compare the
results in order to determine the model with the best performance. For this, we considered the three nonlinear models
with the inclusion of mixed effects; that is, the models contain both fixed and random effects. Such an approach allowed
us to assess between-animal variability using different structures for the (co)variance matrix of errors and random effects.
We also provide a discussion of fixed effects treatments.

2. Materials and Methods

2.1 Material

For model comparison (Table 2), we used a set of observations from a ruminal degradability experiment carried out in
the Dairy Cattle Sector of the Iguatemi Experimental Farm (FEI), State University of Maringá, Maringá, Paraná, Brazil.
Ruminal degradation kinetics were assessed according to Rossi et al. (2010). Treatments consisted of Elephant grass
(Pennisetum purpureum Schumach.) silage with bacterial inoculant (SCE-IBC) (Propiolact MS01), Elephant grass silage
with enzyme-bacterial inoculant (SCE-IEZ) (Bacto Silo), and corn silage (SMI) (Zea mays L.), hereafter referred to as T1,
T2 and T3, respectively. Silages were stored in trench silos, without coating, with a capacity of approximately 20 t.

A 3×3 Latin square experimental design was used, with cows treated as a nuisance factor (three lactating Holstein cows,
C1, C2 and C3) and periods (P1, P2 and P3) and treatments (T1, T2 and T3) considered as factors of interest. For each ani-
mal/period/treatment combination, hereafter referred to as subject or individual (ind), ruminal degradation was evaluated
at the following incubation times: 0, 2, 6, 12, 24, 48, 72, and 96 h (Table 1). The observed and analyzed response was dry
matter (DM) disappearance. For more details on the experiment, see Rossi et al. (2010).

Table 1. Dataset structure.

Time (h)
ind Combination Treatment 0 2 6 12 24 48 72 96
1 C1P1 T1 y11 · · · y18
2 C1P2 T3 y21 · · · y28
3 C1P3 T2 y31 · · · y38
4 C2P1 T2 y41 · · · y48
5 C2P2 T1 y51 · · · y58
6 C2P3 T3 y61 · · · y68
7 C3P1 T3 y71 · · · y78
8 C3P2 T2 y81 · · · y88
9 C3P3 T1 y91 · · · y98

ind: animal/period/treatment combination.
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2.2 Methods

The sampling structure induces a correlation among observations of the same subject. When faced with this type of
problem, several authors adopted a mixed effects modeling approach(Medeiros et al., 2020; Xu et al., 2014; Calama
& Montero, 2004; J. C. Pinheiro & Bates, 2000). A mixed nonlinear model (1) considering the i-th subject in the j-th
evaluation time, according to J. C. Pinheiro and Bates (2000), is such that:

yi = f (φi, vi) + εi i = 1, . . . ,N = 9 (1)

where, yi = [yi1, . . . , yi j, . . . , yini ]
′ denotes the vector of measurements from i-th subject (animal/period/treatment) in the

j-th observation time, f is the differentiable function of parameter vector φi (k × 1), k is the number of parameters in the
model, vi = [vi1, . . . , vi j, . . . , vini ]

′ is the predictor vector, and εi = [εi1, . . . , εi j, . . . , εini ]
′ is the vector residual terms. Still

according to J. C. Pinheiro and Bates (2000) (2):

φi = Xiβ + Zibi (2)

where Xi and Zi are, the incidence matrix (or design) for fixed and random effects, respectively, with the respective pa-
rameter vectors β and bi. As demonstrated by Calama and Montero (2004), the NLME model has as its basic assumptions:

bi
iid
∼ Nq(0, D)

εi
iid
∼ NJ(0, Ri(β, bi, ρ))

here N denotes a multivariate normal distribution with a null mean vector and D is the q × q positive-definite vari-
anceCcovariance matrix for random effects, representing among subject variability. In this formulation Ri(β, bi, ρ) is the
ni × ni intraindividual varianceCcovariance matrix defining within-subject variability. Ri is allowed to depend on both
random and fixed effects, and ρ represents a set of common but unknown parameters. The Ri matrix is able to describe
within-subject heteroscedasticity and autocorrelation by including both correlation effects and weighting factors. It can
be decomposed and written as (3):

Ri(β, bi, ρ) = σ2G1/2
i ΓiG1/2

i (3)

where, for the i-th subject with ni measurements, σ2 is the scaling factor for the error dispersion, Gi is the ni × ni diagonal
matrix that accommodates the variability of the error due to time, and Γi is the ni × ni of within-time error autocorrelation
(Crecente-Campo, Tom, Soares, & Diguez-Aranda, 2010; Davidian & Giltinan, 2003).

Among the nonlinear f functions proposed in the literature, we focused on the exponential model (Ørskov & McDonald,
1979), Van Milgen’s model (Van Milgen, Murphy, & Berger, 1991), and Richards model (France, Dijkstra, & Dhanoa,
1996), as depicted in Table 2. We used the parameterization presented in Teixeira et al. (2016).

Table 2. Candidate statistical models for describing ruminal degradability

Model Statistical expression
Ørskov (OR) yi j = β1 + β2(1 − e−β3ti j/2) + εi j

Van Milgen (VM) yi j = β1 + β2
[
1 − (1 + β3ti j)e−β3ti j

]
+ εi j

Richard’s (RI) yi j = β1 + β1β2
[
β
β4
1 + (ββ4

2 − β
β4
1 )e−β3ti j/2

]−1/β4 + εi j

β1: soluble fraction (%) (β1 ≥ 0);
β2: potentially degraded insoluble fraction (%) (β2 ≥ 0);
β3: joint fractional rate of latency and degradation (β3 ≥ 0);
β4: parameter without biological meaning (β4 ≥ −1).

To adjust the models and analyze the data, we used the resources available in the nlme package (linear and nonlinear
mixed effects models) (J. Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2021) of the R statistical environment (R
Core Team, 2021). The following steps were taken:

• nonlinear models were fitted to individual curves considering only fixed effects, using the nlsList function to
determine whether this approach would be sufficient to explain ruminal degradation kinetics. In the analyzed case,
this model structure was not sufficient;

• random effects were added to all model parameters for selection of the D matrix;
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• after the D matrix was chosen, models were adjusted by incorporating different random effects components into
parameters;

• the best structure for the varianceCcovariance matrix of residuals (Ri) was defined;

• the variance components of all three adjusted models were defined, and the final model was selected; and

• parameter estimates for the final model and pairwise contrasts were analyzed to compare the performance of treat-
ments.

We considered pdSymm (positive definite matrix), pdDiag (diagonal matrix), and pdIdent (identity matrix) as structures
for the (co)variance matrix (D) of random effects of parameters (e.g. J. C. Pinheiro and Bates (2000), section 4.2.2).

Regarding the residual matrix (R), three other correlation structures were considered for Γ, namely corAR1 (autoregres-
sive of order 1 - AR1), corCompSymm (compound symmetry), and corLin (General Linear). The nlm package implements
the corARMA function (autoregressive moving average - ARMA), which can be useful to decide between an AR1 and AR-
MA(p,q) correlation structures. A useful approach is to generate all possible combinations of ARMA models (for p = 0
to p = 2 and q = 0 to q = 2) and choose the one with the lowest Akaike information criterion (AIC) and/or Bayesian in-
formation criterion (BIC). The three matrices were considered with and without the varIdent class matrix (G) to correct
for possible heteroscedasticity within groups (treatments or times) (J. C. Pinheiro & Bates, 2000). To obtain the estimates
presented in Tables 4, 5, 6, and 8, we used restricted maximum likelihood estimation (method = "REML" of the nlme
function).

Several authors do not recommend the use of the determination of coefficient (R2) to select an NLME model, according to
Spiess and Neumeyer (2010). Therefore, of the models described in Table 2, that with the best performance in predicting
DM was determined using the following criteria: intercept, slope, residual sum of squares (RSS), mean squared error
(MSE), root-mean-square error (RMSE), and (R2) of the simple linear model fit between DM values observed and DM
values predicted by NLME model. Furthermore, model efficiency (ME), normalized model efficiency (NME), correlation
between observed and fitted values (Corr), and concordance correlation (ConCorr) were determined after adjusting the
models. These statistics were obtained by using the IA tab function of the nlraa package (Miguez, 2021; Miguez,
Archontoulis, & Dokoohaki, 2018).

3. Results

The observed response (DM) for each subject (animal/period/treatment) is displayed in Figure 1. The curves indicate that
the proposed models are plausible and suggest differences between treatments.

Figure 1. Rumen degradability of dry matter (DM) per animal and treatment

The models presented in Table 2 were adjusted for each individual (Table 1), totaling nine adjustments for each model.
Adjustments were made using the nlsList function of the nlme package, which uses a nonlinear least squares procedure.
Because of the difficulty in estimating Richards model parameters, we opted for a first fit considering β4 = 1. With this
adjustment, we obtained initial values for the simultaneous adjustment of the four parameters. A summary of parameter
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estimates is presented in Table 3. For all models, the coefficient of variation (CV) was high (Table 3), indicating a large
variation in parameter estimates. This suggests that an effect can be added through a probability distribution, that is, by
including random effects components in the model. Such a procedure affords a mixed effects model.

Table 3. Summary of parameter estimates for models fitted to each curve (ind)

Parameter
Model Statistic β1 β2 β3 β4

mean 27.6786 52.0225 0.0523 -
OR SD 12.5968 8.8589 0.0177 -

CV(%) 45.5108 17.0290 33.8497 -

mean 30.0505 42.9881 0.0711 -
VM SD 12.3312 7.2544 0.0190 -

CV(%) 41.0349 16.8754 26.7380 -

mean 14.6044 58.2513 0.1431 1
RI* SD 5.9844 2.5824 0.0538 1

CV(%) 40.9764 4.4332 37.6296 1

mean 14.7507 60.2679 0.0990 0.4716
RI SD 6.4449 3.2281 0.0342 1.5911

CV(%) 43.6919 5.3562 34.5448 337.3897

RI*: Richard’s model with β4 = 1; SD: standard deviation of parameter

estimates; and CV(%): coefficient of variation of parameter estimates.

In this next step, we made adjustments considering mixed effects models. First, we considered that all model parameters
(Table 2) were associated with a random effect of subjects and a fixed effect of treatments.

To determine the best varianceCcovariance matrix for random effects (D), we considered three matrix structures: multiple
of the identity (pdIdent), diagonal (pdDiag), and general positive-definite (pdSymm).

According to the likelihood ratio test results, matrices were not considered to have significant differences, despite p =

0.0485 (see Table 4). AIC values of OR and VM models indicated better results for the identity matrix. For the RI model,
the diagonal matrix was indicated as the best; however, the values obtained for identity and diagonal matrices were very
similar. Considering the lowest BIC value, we concluded that the identity matrix afforded the best results, in addition to
requiring the estimation of fewer parameters.

Table 4. Assessment of different D matrix structures for the three models

Model D Matrix df AIC BIC logLik LRT p−value

OR
pdIdent 11 361.31 385.72 -169.66
pdDiag 13 365.31 394.16 -169.66 0.0000 1.0000
pdSymm 16 365.81 401.32 -166.91 5.4994 0.1387

VM
pdIdent 11 348.99 373.40 -163.49
pdDiag 13 352.99 381.84 -163.49 0.0006 0.9997
pdSymm 16 354.15 389.66 -161.07 4.8402 0.1839

RI
pdIdent 14 355.77 386.84 -163.88
pdDiag 17 353.88 391.62 -159.94 7.8838 0.0485
pdSymm 23 365.01 416.06 -159.50 0.8710 0.9900

df: degrees of freedom; logLik: log-likelihood value; LRT: likelihood ratio statistic.
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VarianceCcovariance identity matrices of the fitted models had the following estimates: D̂OR = 2.12 × 10−5I(3); D̂V M =

10.27 × 10−5I(3); D̂RI = 9.48 × 10−5I(4) (where I is a matrix of ones on the main diagonal and zero otherwise).

A random effect was considered for each model parameter with a varianceCcovariance identity matrix. In Table 5, we
present the results of model adjustments. All possibilities for incorporating random effects were tested. Ørskovs and
Van Milgens models had the lowest AIC, BIC, and logLik values when random effects were attributed to parameter β3
only, being hereafter referred to as OR3 and VM3, respectively. For Richards model, this behavior was observed when
random effects were attributed to β4 only (RI4). For these models, the estimated varianceCcovariance matrices were
D̂OR3 = 2.12 × 10−5I(1), D̂V M3 = 10.27 × 10−5I(1), and D̂RI4 = 0.1188I(1).

Table 5. Evaluation of the mixed effects of each model parameter using the identity varianceCcovariance matrix (D)

Mixed
Model i parameters AIC BIC logLik

ORi

1 β1 362.9761(5) 387.3906(5) -170.4880
2 β2 364.2511(7) 388.6657(7) -171.1255
3 β3 361.3103(1) 385.7249(1) -169.6552
4 β1β2 363.5209(6) 387.9354(6) -170.7604
5 β1β3 361.3112(4) 385.7258(4) -169.6556
6 β2β3 361.3112(3) 385.7258(3) -169.6556
7 β1β2β3 361.3104(2) 385.7249(2) -169.6552

VMi

1 β1 359.7734(5) 384.1880(5) -168.8867
2 β2 360.9057(7) 385.3203(7) -169.4528
3 β3 348.9860(1) 373.4005(1) -163.4930
4 β1β2 360.4013(6) 384.8159(6) -169.2007
5 β1β3 348.9864(3) 373.4010(3) -163.4932
6 β2β3 348.9861(2) 373.4007(2) -163.4931
7 β1β2β3 348.9866(4) 373.4012(4) -163.4933

RIi

1 β1 359.6773(13) 390.7504(13) -165.8386
2 β2 363.1060(15) 394.1791(15) -167.5530
3 β3 355.7812(10) 386.8543(10) -163.8906
4 β4 347.8875(1) 378.9606(1) -159.9437
5 β1β2 360.2088(14) 391.2819(14) -166.1044
6 β1β3 355.7872(12) 386.8603(12) -163.8936
7 β1β4 348.7045(3) 379.7776(3) -160.3522
8 β2β3 355.7867(11) 386.8598(11) -163.8933
9 β2β4 348.0757(2) 379.1488(2) -160.0378
10 β3β4 355.7630(8) 386.8361(8) -163.8815
11 β1β2β3 355.7809(9) 386.8540(9) -163.8905
12 β1β2β4 348.8564(4) 379.9295(4) -160.4282
13 β1β3β4 355.7562(6) 386.8293(6) -163.8781
14 β2β3β4 355.7557(5) 386.8288(5) -163.8779
15 β1β2β3β4 355.7579(7) 386.8310(7) -163.8790

(·):column values ranks by model

Having decided in which parameters to use random effects and their varianceCcovariance structure, we then applied the
within-subject variance-covariance structure Ri, in Eq. (3). The graphs depicted in Figure 2 show that the variability of
residuals differs between models but not over time.
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(a) Ørskov’s Model (b) Vam Milgen’s Model

(c) Richard’s Model

Figure 2. Time versus Standardized residuals

In an attempt to remove such effect, we modeled residual variance as a function of time. For this, we considered different
variances for each time period using the varIdent variance function class of the nlme package in Gi (3). For the
autocorrelation Γi matrix, we used three standard structures from the nlme package, namely autoregressive of order 1
(AR), compound symmetry (CS), and general linear (GL). We fitted the three models using the proposed Γi matrices with
and without varIdent (ID). The results demonstrated that CS associated with ID produced the best results for all models
(Table 6).

Table 6. Comparison of model performance for different alternatives of the R matrix

Model R df AIC BIC logLik Test LRT p−value

OR3

11 361.3103 385.7249 -169.6552
AR 12 363.3103 389.9444 -169.6552 1 X 2 0.0000 0.9999
AR+ID 19 349.3578 391.5285 -155.6789 2 X 3 27.9525 0.0002
CS 12 362.9669 389.6010 -169.4835 3 X 4 27.6091 0.0003
CS+ID 19 345.8534 388.0241 -153.9267 4 X 5 31.1135 0.0001
GL 12 363.3103 389.9444 -169.6552 5 X 6 31.4569 0.0001
GL+ID 19 349.3578 391.5285 -155.6789 6 X 7 27.9525 0.0002

VM3

11 348.9860 373.4005 -163.4930
AR 12 350.9860 377.6200 -163.4930 1 X 2 0.0000 1.0000
AR+ID 19 346.3521 388.5227 -154.1760 2 X 3 18.6339 0.0094
CS 12 347.9360 374.5701 -161.9680 3 X 4 15.5839 0.0292
CS+ID 19 346.0176 388.1883 -154.0088 4 X 5 15.9184 0.0259
GL 12 350.9860 377.6200 -163.4930 5 X 6 18.9683 0.0083
GL+ID not convergence

RI4

14 347.8875 378.9606 -159.9437
AR 15 349.8874 383.1800 -159.9437 1 X 2 0.000075 0.9931
AR+ID 22 340.7743 389.6035 -148.3872 2 X 3 23.113090 0.0016
CS 15 353.9218 387.2145 -161.9609 3 X 4 27.147531 0.0003
CS+ID 22 340.7083 389.5375 -148.3542 4 X 5 27.213515 0.0003
GL 15 349.8836 383.1763 -159.9418 5 X 6 23.175322 0.0016
GL+ID 22 340.7605 389.5897 -148.3803 6 X 7 23.123121 0.0016

After analyzing the predictive capacity of models, as shown in Table 7 and Figures 3 and 4, we concluded that the
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VM3+CS+ID model had the best performance. The graph of observed versus predicted values of the model showed high
linearity, with low RSS, MSE, and RMSE values. Furthermore, the high statistics for the NLME model corroborate this
result.

Table 7. Comparison of model performance

Models
Statistics OR3+CS+ID VM3+CS+ID RI4+CS+ID

DM

intercept 0.8130 0.4242 1.4514
slope 0.9716 0.9941 0.9785
RSS 764.1455 638.3976 686.9378
MSE 11.2374 9.3882 10.1020
RMSE 3.3522 3.0640 3.1784
R2 0.9707 0.9756 0.9737

NLME

ME 0.9690 0.9755 0.9728
NME 0.9699 0.9761 0.9735
Corr 0.9853 0.9877 0.9868
ConCorr 0.9847 0.9877 0.9865

DM, curve of observed versus predicted dry matter degradability values;

RSS, residual sum of squares; MSE, mean squared error; RMSE, root-mean-square

error; ME, model efficiency; NME, normalized model efficiency.

(a) Ørskov’s Model

(b) Van Milgen’s Model (c) Richard’s Model

Figure 3. Observed dry matter (DM) degradability values versus DM values predicted using the with SC+ID
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(a) Ørskov’s Model

(b) Vam Milgen’s Model (c) Richard’s Model

Figure 4. Simulated envelope for models fitted with the CS+ID

Table 8 shows the results of Tukeys test, obtained by the function emmeans of the package emmeans (Lenth, 2021). T3
afforded a higher soluble fraction (β̂1 = 47.4471), differing significantly from treatments T1 and T2 at the 5% significance
level. The largest degradable fraction was obtained with T2 (β̂2 = 51.2885), and all treatments differed from each other
in this parameter. Joint fractional rate of latency and degradation (β3), however, did not differ between treatments. The
results depicted in Figure 5 support the previous discussion, as T3 starts at time zero with DM values clearly higher than
that of other treatments. Total degradability was virtually equal for all treatments at 45 h; thus, the degradability rates of
T1 and T2 were higher up to 45 h.
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Table 8. Estimates and contrasts of parameters β1, β2 and β3, with standard errors (SE) and 95% confidence limits (CL)
of the model VM3+CS+ID

Parameter Ti Estimate SE df Lower CL Upper CL

1 23.6593 0.51416 8 22.4736 24.8449
β1 2 22.4619 0.52545 8 21.2502 23.6735

3 47.4471 0.50861 8 46.2742 48.6200

1 46.1181 1.11124 52 43.8882 48.3479
β2 2 51.2885 1.01282 52 49.2561 53.3208

3 33.9917 1.06929 52 31.8460 36.1374

1 0.0541 0.00306 52 0.0480 0.0603
β3 2 0.0621 0.00320 52 0.0557 0.0686

3 0.0547 0.00341 52 0.0479 0.0616

Ti contrast Estimate SE df t−ratio p−value*

1 - 3 -23.7878 0.7232 8 -32.892 0.0000
β1 2 - 3 -24.9852 0.7312 52 -34.166 0.0000

2 - 1 -1.1974 0.7351 8 -1.629 0.2890

1 - 3 12.1263 1.5421 52 7.863 0.0000
β2 2 - 3 17.2967 1.4728 52 11.744 0.0000

2 - 1 5.1703 1.5035 52 3.439 0.0032

1 - 3 -0.0005 0.0045 52 -0.128 0.9909
β3 2 - 3 0.0074 0.0046 52 1.587 0.2600

2 - 1 0.0080 0.0044 52 1.809 0.1765

*: Tukey test

Figure 5. Prediction curves of the adjusted VM3+CS+ID model

4. Conclusion

This study aimed to identify a nonlinear mathematical model for the study of ruminal degradability. The model proposed
by Van Milgen provided better results than Ørskovs and Richards models.

Originally, these are fixed effects models that do not contemplate the addition of random effects to parameters nor the
modeling of their variance and covariance structures.

However, assuming fixed effects for each animal/period/treatment combination, we observed high coefficient of variations
of estimates, indicating that random effects components could improve the results. This observation was confirmed by
addition of random effects of animals using NLME. This method made it possible to consider the compound symmetry
autocorrelation matrix and identity covariance structure, resulting in improvements in model residuals and, consequently,
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greater precision in parameter estimates.

In addition, it was possible and easy compare treatments by the parameters contrasts test using the EMM function.
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