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Abstract

The purpose of this study is to do a review of logistic regression and its applications. In addition to the review, a compar-
ison of four different methods of standardization of the β - coefficients was done using publicly available Heart Disease
Data. The methods were compared using their performance in testing accuracy, training accuracy, and area under the
curve (AUC). Based on the comparisons, it was evident that standardizing the coefficient did not affect the overall pre-
diction accuracy of the model regardless of the method used. Although there was some difference found in the training
and testing accuracies, the AUC’s were similar to the unstandardized model for all methods. In essence, standardizing
facilitates better interpretation and does not affect the predictive accuracy of the model.
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1. Introduction

Logistic regression analysis is a specialized case of regression analysis, where the variable to be predicted is classified
into two or more categories. In such cases, the traditional regression technique fails to explain the association between
the independent variables and the response variable. Binary logistic regression model or logit model is the most common
form of this method of analysis in which the response variable takes only two values (Menard, 2000).

The specific form of a binary logistic regression model generally used is

P (Y = 1) =
eβ0+β1X1+β2X2+...+βpXp

1 + eβ0+β1X1+β2X2+...+βpXp
=

1
1 + e−(β0+β1X1+β2X2+...+βpXp) , (1)

where Y is the dependent variable and X1, X2, ..., Xp are the independent variables. The dependent variable Y takes on the
values either 0 or 1; where 1 indicates the occurrence of a specific event and 0 indicates the absence. Therefore, P(Y = 1)
represents the probability of that event happening and P(Y = 0) depicts the probability of the event is absent.

Logistic regression has a wide range of applications in various fields and its functionality has increased dramatically in
the past several decades. While multiple linear regression falls short in analyzing data with response variable that is not
continuous, logistic regression gives an essential tool is such cases. Application of this method is not limited to only
binary cases as it can be easily modified for cases where response variables have more than two categories. Risk factor
analysis and predictive modeling is one of the main implementations of logistic regression (Peterson, L. E. et al., 1995).
Logistic regression can also be used in survival analysis by grouping event times into intervals and converting them to
categories (Abbott, 1985). Hence, is broadly used in medical research fields to examine the association between risk
factors and diseases (Kurt, I. et al., 2008; Hassanipour, S. et al., 2019).

The parameters, the standard error of the parameters, and the measures of the goodness of it are estimated using the
methods of maximum likelihood estimation (Greene, 1993, Peng et al., 2002)

The logit transformation of P(Y = 1) is defined as

logit (Y) = ln (
p(Y = 1)
p(Y = 0)

) = β0 + β1X1 + β2X2 + . . . + βpXp. (2)

The model converts the nonlinear relationship between P(Y = 1) and the independent variables to a linear equation
that explains the effect they may have on the dependent variable. This linear form gives the opportunity to interpret the
coefficients of the proposed model.
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The interpretation of results is rendered using the widely used odds ratio technique for both categorical and continuous
predictors (Peng et al., 2002). Even though the odds ratio can give an idea of the direction of the relationship between
the response variable and explanatory variables, it is not enough to explain the overall extent of how they are related and
also it falls short of comparing over models (Allison, 1999). It should also be noted that some alternate methods based
on the effect measures are proposed in several papers to explain the effects of covariates on binary response variables in a
logistic regression model (Agresti A., Kateri M.,2017; Agresti A., Tarantola C.,2018).

However, the primary focus of this paper is on the β-coefficients and does not investigate these alternate methods. S-
tandardizing the β -coefficients is another approach found in various literature studies (Long J. S., 1997; Menard S.W. ,
1995) , and different techniques to standardize the β-coefficients have also been proposed to allow for more meaningful
interpretations. Standardized coefficients become invariant to the change in scale of measurement which enables one to
compare the relative influence of different explanatory variables within logistic regression (Agresti A., 2018; Agresti A. ,
Finlay B., 1997). However, even though there are some proposed standardized, semi-standardized coefficients for logistic
regression none of them can be universally defined. Robert L. Kaufman (Kaufman R.L. ,1996) in his study found that
semi-standardized coefficients measuring the change in predictive probability of outcomes are preferable because they
are intuitively appealing and as they are bounded in the interval [-1, +1], interpretation of their magnitude becomes eas-
ier. Some approaches of standardizing the coefficients were analyzed using a practical example by Scott Menard, which
included both semi-standardized and completely standardized techniques (Menard S. , 2004).

In this paper, we will discuss the four methods discussed by Menard and in addition to that, we propose a modification of
these four methods for standardization of logistic regression coefficient. These methods will also be compared based on
the resulting testing accuracy, training accuracy, AUC (area under the curve).

The simplest method of partial standardization of logistic regression coefficients is to multiply the coefficients by their
individual standard deviation. This method was mentioned by Menard (Menard S.W., 1995).

b1 = b ∗ S x, (3)

where, the standard deviation of the explanatory variable X (S x) is multiplied with the unstandardized estimated coefficient
of the corresponding variable b. This can be considered as the only predictor-based standardization technique. Another
similar approach is to change the scale of both the dependent variable and the predictors using the standard deviation of
the standard logistic distribution. That is,

b2 =
b ∗ S x

π
√

3

, (4)

where, (π
√

3) = 1.8. This method has been adapted in SAS to standardize the coefficients in the PROC LOGISTIC
procedure. Long suggested another approach for standardization which includes the standard deviation of the standard
normal distribution (Long J. S., 1997).

The calculation of this method is similar to the previous one, the only difference is the standard deviation of the standard
normal distribution is added with the standard deviation of the logistic distribution. Hence Equation (4) becomes,

b3 =
b ∗ S x
π
√

3
+ 1

. (5)

All of these standardized coefficients only take into account the variation of the independent variable. Hence, they cannot
be considered as fully standardized. To standardize the response variable standard deviation of logit (y) needs to be
calculated, which is tricky. A way out of this is to use the standardization followed in OLS, which is defined as follows,

b∗∗ = b ∗
S x
S y

.

Again, from the definition of Coefficient of Determination (R2), we get

R2 =
S 2

ŷ

S 2
y
,

where, ŷ is the estimated value of y. Adjusting the equation for OLS we get,
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S 2
y =

S 2
ŷ

R2 ,

Substituting logit(y) in case of y and logit(ŷ) in the place of ŷ we get for logistic regression,

S 2
logit(y) =

S 2
logit(ŷ)

R2 .

Hence, using the similar strategy used in OLS the estimated coefficients can be standardized as follows

b4 =
(b ∗ S x) (R)

S logit(ŷ)
. (6)

This coefficient can be considered as fully standardized as it also takes into account the variance of the response variable
in contrast to the other coefficients discussed before where only the variation of the predictor was studied. For the purpose
of comparing the above four standardization methods, they will be applied to z- scaled data using the mean and standard
deviation. Since median and MAD may be better measures for scaling asymmetric data, we propose applying these
standardization techniques to the median and the MAD scaled data.

In the next section, these standardized logistic regression coefficients for both z-scaled and median/MAD scaled data will
be compared by applying the methods to Heart Disease Data.

2. Implementation of Standardization Methods

In order to illustrate the calculation of the standardization techniques and to review the outcomes, the Cleveland Heart
disease dataset was used. It is a widely used dataset that is publicly available online (Detrano R., 1989). The aim was to
apply logistic regression to develop a predictive model for heart diseases using the predictors. The four different coefficient
standardization methods were applied to the coefficients of the customary model. After that, the resultant models were
compared based on their prediction accuracy.

2.1 Dataset Details

Originally, the data set contained 76 attributes, but a subset of 14 variables are generally used by the researchers in all
published experiments with a total of 313 observations. The 14 variables include a response variable ”target” which refers
to the presence of heart disease in the patient. For the target variable, a value of 0 indicates no/ less chance of heart attack
while a value of 1 indicates yes/ high chance of heart attack.

The 13 predictors considered in the dataset are as follows (Detrano R., 1989):

1. AGE: Continuous

2. SEX: Categorical ( 0 = Female, 1 = Male)

3. Chest Pain Type(CP): Categorical (4 values) 0: typical angina 1: atypical angina 2: non - anginal pain 3: asymp-
tomatic

4. Trestbps: Continuous, represents resting blood pressure on admission

5. Chol: Continuous, represents Serum cholesterol in mg/dl

6. Fbs: Categorical , represents fasting blood sugar level, (2 values) 1: True - fasting blood sugar is greater than 120
mg/dl 0: False - fasting blood sugar is less than 120 mg/dl

7. Restecg: Categorical,represents resting electrocardiographic outcomes (4 values) 0: normal 1: having ST-T wave
abnormality (T wave inversions and/or ST elevation or depression of >0.05 mV) 2: showing probable or definite
left ventricular hypertrophy by Estes’ criteria)

8. Thalach: Continuous, represents maximum heart rate achieved

9. Exang: Categorical, represents the existence of exercise-induced angina (2 values Yes/No)

10. Oldpeak: Continuous, ST depression induced by exercise relative to rest

11. Slope: Categorical, represents the slope characteristics of the peak exercise ST segment
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12. Ca: Discrete, represents the number of fluoroscopy colored major vessels (values 0-3);

13. Thal: Categorical, (3 values) 0: normal 1: fixed defect 2: reversible defect

2.2 Methodology and Results

Primarily, logistic regression was applied to the complete dataset. Four standardization techniques of the coefficients
discussed in the previous section were applied to this result. Calculation of b1 is done by simply multiplying the standard
deviation of each explanatory variable with their corresponding coefficients. For instance, for Age b1 = (-0.004908) *
(9.0821010) = -0.04457922 and so on Table ??.

Table 1. Modified coefficients using different standardization methods

Customary model (Pvalue) Method 1 Method 2 Method 3 Method 4

Intercept 3.4505

Age - 0.0049(0.8323) - 0.0446 - 0.0246 - 0.0158 - 0.0110

Sex - 1.7582 (0.0002) - 0.8193 - 0.4517 -0.2912 - 0.2019

Cp 0.8599 (0.000) -0.8874 0.4893 0.3154 0.2189

Trestbps -0.0195 (0.0596) -0.3416 -0.1883 -0.1214 -0.0842

Chol -0.0046 (0.2209) -0.2400 -0.1323 -0.0853 -0.0591

Fbs 0.0349 (0.9475) 0.0124 0.0069 0.0044 0.0031

Restecg 0.4663 (0.1806) 0.2452 0.1352 0.0871 0.06043

Thalach 0.0232 (0.0265) 0.5317 0.2931 0.1889 0.1310

Exang -0.9800 (0.0168) -0.4604 -0.2538 -0.1636 -0.1135

Oldpeak -0.5403 (0.0115) -0.6273 -0.3458 -0.2229 -0.1546

Slope 0.5793 (0.0977) 0.3570 0.1968 0.1269 0.0880

Ca -0.7733 (0.0000) -0.7908 -0.4360 -0.2811 -0.1949

Thal -0.9004 (0.0019) -0.5513 -0.3040 -0.1959 -0.1359

Table 2. Logistic regression coefficients (Mean/SD scaled data)

Customary model (Pvalue) Method 1 Method 2 Method 3 Method 4

Intercept 0.2319

Age -0.0419 (0.8323) -0.0419 -0.0231 -0.0365 -0.0101

Sex -0.8188 (0.0002) -0.8172 -0.4505 -0.7106 -0.1966

Cp 1.0425 (0.0000) 1.0317 0.5688 0.8972 0.2483

Trestbps -0.2409 (0.0596) -0.2340 -0.1323 -0.2087 -0.0577

Chol -0.2510 (0.2209) -0.2297 -0.1266 -0.1997 -0.0553

Fbs -0.0730 (0.9475) -0.0755 -0.0416 -0.0657 -0.0182

Restecg 0.3668 (0.1806) 0.3711 0.2046 0.3228 0.0893

Thalach 0.3420 (0.0265) 0.3385 0.1866 0.2944 0.0815

Exang -0.4276 (0.0168) -0.4304 -0.2373 -0.3743 -0.1036

Oldpeak -0.5950 (0.0115) -0.6236 -0.3438 -0.5423 -0.1501

Slope 0.5568 (0.0977) 0.5641 0.3110 0.4905 0.1357

Ca -0.7673 (0.0000) -0.7983 -0.4402 -0.6943 -0.1921
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Table 2 continued from previous page
Customary model (Pvalue) Method 1 Method 2 Method 3 Method 4

Thal -0.5539 (0.0019) -0.5676 -0.3129 -0.4936 -0.1366

To get b2, (Equation 4) above result has to be divided by π
√

3, the numerical value of which is approximately 1.814.
Hence, for Age the standardized coefficient becomes b2 = (-0.004908) * (9.0821010)/ 1.814 = -0.02457. To obtain the
standardized coefficient by the third method (Equation 5) discussed in the previous section, the calculation is similar but
instead of dividing by [π

√
3] the unstandardized coefficients are divided by [π

√
3 + 1] which is equal to approximately

2.814. Therefore, for Age the calculation of the standardized coefficients is as follows: b3 = (-0.004908) * (9.0821010)/
2.814 = -0.01584. The fully standardized fourth approach utilizes the value of the coefficient of determination (R2) to
calculate the modified coefficients. This method, multiplies the first approach explained in equation 3 by R/S logit(ŷ). In
this example, the value of the square root of R2 divided by the standard deviation of the logit(ŷ) was calculated to be
0.246434. So the modified coefficient for predictor Age changed in to b4 = (-0.004908) * (9.0821010) * (0.246434) = -
0.01098. Similar calculations have been done for all other variables and are presented in Table 1.

The column ‘Customary model’ in Table 1 refers to the calculated unstandardized coefficients from the logistic regression
model. ‘Method 1’, ‘Method 2’, ‘Method 3’, and ‘Method 4’ represent the standardized coefficients computed using
Equation 3, Equation 4, Equation 5, Equation 6 respectively. From the results in Table 1 it is evident that as the coefficients
start from being partially standardized using method 1 to fully standardized in method 4, they seem to decrease in terms
of magnitude. Techniques used in SAS have the closest values to the method suggested by Long. Predictor cp (chest pain)
seems to have a comparatively higher relative effectiveness among the significant variables.

Table 3. Logistic regression coefficients (Median/MAD scaled data)

Customary model (Pvalue) Method 1 Method 2 Method 3 Method 4

Intercept 0.6920

Age 0.0650 (0.9446) 0.0844 0.0465 0.0734 0.0177

Sex -0.8415 (0.0007) -0.8398 -0.4630 -0.7303 -0.1760

Cp 1.1343 (0.0000) 1.1226 0.6189 0.9762 0.2353

Trestbps -0.1610 (0.5814) -0.2322 -0.1280 -0.2019 -0.0487

Chol 0.1072 (0.9692) 0.1527 0.0842 0.1328 0.0320

Fbs 0.0673 (0.7820) 0.0696 0.0384 0.0606 0.0146

Restecg 0.1261 (0.7370) 0.1276 0.0703 0.1109 0.0267

Thalach 0.6672 (0.0004) 0.9032 0.4979 0.7854 0.1893

Exang -0.7237 (0.0004) -0.7284 -0.4016 -0.6335 -0.1527

Oldpeak -0.8915 (0.0000) -1.1391 -0.6280 -0.9906 -0.2387

Slope 0.9685 (0.0002) 0.9811 0.5409 0.8532 0.2056

Ca -0.7982 (0.0000) -0.8305 -0.4579 -0.7222 -0.1741

Thal -0.6699 (0.0011) -0.6864 -0.3784 -0.5969 -0.1439

In the next step, the target was to set up four different models using standardized coefficients calculated by these ap-
proaches and compare their performance based on prediction accuracy. To measure the prediction accuracy, the dataset
was randomly divided into two sets; the testing set which contains 20% of the data and the training set which contains
the rest of the data. The models were developed using the training set and the testing set was used to verify the overall
accuracy. One of the major hurdles faced while setting up models to calculate their accuracies is that the predictors were
measured using different scales. Hence, to make the comparison easier, the predictors were scaled before any kind of
analysis was done. Firstly, all the variables were standardized using the mean and standard deviation of the corresponding
independent variable. In addition, we computed standardized coefficients using the Median/ MAD standardized data.

Previously explained four methods of standardizing the coefficients were then applied to both of these scaled datasets. All
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these calculations were done with the help of statistical software R. Outcomes of standardization of the coefficients are
given in Table 2 and Table 3. Here in the Table 2 column ’Customary model’ refers to the unstandardized coefficients of
the dataset scaled by the mean and the standard deviation along with the four standardization methods for the coefficients
in the following columns. Similarly, in the Table 3 column ‘Customary model’ refers to the unstandardized coefficients
of the dataset scaled by the median and the mean absolute deviation along with the four standardization methods for the
coefficients in the following columns.

2.3 Evaluation Criteria

To compare the performance of the models with different standardization techniques, we have used training accuracy and
testing accuracy of the models. In predictive modeling for binary outcome variable the term accuracy refers to the fraction
of correctly specified predictions made by the proposed model. The complete data is divided into two sets namely the
training set and the testing set by a random split for instance in this analysis we have used 80% of the data for the training
set and 20% for the test set. At first the prediction model is built on the training set and later applied on the test set to
asses its prediction accuracy.

One predicament in this process is that, as the data are divided into training and testing sets randomly using R software,
there is a chance of getting different results for different subsets which may result in bias. To solve this issue the complete
process was repeated 1000 times and the average of these repetitions was taken for calculations of testing and training
accuracy. Another criteria that is use in comparing the accuracy in binary predictive modeling is area under the Receiver
operating characteristics (ROC) . The plot represents the proportion of correctly specification events versus the proportion
incorrect specification of the non-events for different probability cutoff’s. A high area under the ROC curve indicates a
better predictive accuracy.

2.4 Results

Table 4 shows the testing accuracy and training accuracy of the models constructed by applying each of the four coefficient
standardization methods along with the model of unstandardized coefficients, which is represented by the ‘Customary
model’ column.

Results indicate that the testing accuracy of the customary model was slightly higher than all standardized models for
median/MAD scaled data. However, for the mean/SD scaled data, the testing accuracy for the customary model and the
models for the 4 methods were similar. Similarly, the training accuracies were somewhat similar for the unstandardized
and standardized coefficients. Moreover, method 4 was seen to have the lowest prediction accuracy among all four
methods. On the other hand, by comparing the testing and training accuracies for mean/SD scaled data and median/MAD
scaled data it can be seen that median/MAD scaled data has approximately 4% to 5% higher accuracy overall.

Table 4. Table for Testing and Training Accuracy

Data Customary model Method 1 Method 2 Method 3 Method 4
Mean
Standardized
(Test set)

0.8193 0.8218 0.8193 0.8221 0.8126

Median
Standardized
(Train set)

0.8754 0.8767 0.8646 0.8766 0.7813

Mean
Standardized
(Test set)

0.8576 0.8574 0.8540 0.8569 0.8472

Median
Standardized
(Train set)

0.9005 0.9000 0.8859 0.8987 0.8083

However, by taking a look at the AUCs for these models in Table 5 it can be seen that even though the unstandardized
model had slightly different AUCs, there was no difference in AUCs of the models constructed from different standard-
ization techniques. This indicates that in terms of distinguishing between the two diagnostic groups, all of these models
show similar performance.

In terms of improving the sensitivity or specificity of the models the standardization techniques seem to have no signifi-
cant effect. As the overall accuracy for the standardized models were lower than the un-standardized one, evidently the
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sensitivity ans specificity was also found to be less than the prior. Moreover, method 4 seems to have the higher sensitivity
than all other models, which also means lower specificity than others.

Table 5. AUC’s for Testing and training set

Data Customary model Method 1 Method 2 Method 3 Method 4
Mean
Standardized
(Test set)

0.8895 0.8899 0.8899 0.8899 0.8899

Median
Standardized
(Train set)

0.9230 0.9210 0.9210 0.9210 0.9210

Mean
Standardized
(Test set)

0.9262 0.9261 0.9261 0.9261 0.9261

Median
Standardized
(Train set)

0.9280 0.9279 0.9279 0.9279 0.9279

It is worth mentioning that the techniques used to scale the dataset seem to have some effect on improving the overall
accuracy of the models. Test sets taken from the dataset for which the numerical variables were scaled using median/MAD
standardization performed better than the one which was scaled using mean/standard deviation. For instance, for the
customary model and the first three models, the testing accuracies were approximately 4% higher in the case of the
dataset standardized by median/MAD Table 3. Additionally, from Table 5 it can be seen that the AUCs are slightly higher
for the data which was standardized using median/MAD.

3. Discussion

The primary purpose of standardizing logistic regression coefficients is to set a ground on the basis of which the predictors
can be ranked. The absolute value of the standardized coefficients enables one to order the independent variables in terms
of importance. According to Menard (Menard S.W., 1995) standardized coefficients render a more precise idea than the
un-standardized logistic regression coefficients. However, adapting such measures for the sake of interpretation may effect
the overall performance of the model. In this study, the goal was to investigate how different standardization techniques
effect the accuracy of the logistic regression model under study.

Different methods of standardizing the coefficients assist in explaining the variation in the dependent variable and allow
one to compare their contributions. It was also investigated if standardizing the coefficients would change the performance
of the model. From the results, it can be seen that if the standardized values are only used in the case of relative comparison
of the predictors, there is not much difference between the four methods. The overall magnitude of the influence is
comparatively lower for the 4th method but if the influences of the predictors were ranked, the ranking was found to be
the same for all four methods.

By taking a closer look at the results it can be seen that standardizing the coefficients did not affect the overall prediction
accuracy of the predictive logistic regression model. Similarly, no evidence was found that following a certain type
of standardization technique would show better performance than the others; the unstandardized regression model, in
general, had higher accuracy. However, method 4 would be a better approach compared to others, as method 2 suggested
by Long and method 3 used in SAS, partially standardizes by only considering the predictors and does not include the
outcome variable in calculation. Both of these methods make little difference to the outcomes thus are not recommended.

In essence, standardizing facilitates better interpretation and does not affect the predictive capacity of the model. This
is evident from the AUC’s computed for both unstandardized and standardized regression coefficients showen in Table
5. As the AUCs calculated from taking the average of multiple iterations, they turned out to be exactly equal for all
standardization techniques, which was also similar to the un-standardized logistic regression model.

4. Conclusion

Logistic regression facilitates a wide range of techniques in conducting statistical analyses. In logistic regression like any
other regression technique, the primary aim is to construct an equation based on the set of explanatory variables, which as
a whole would explain the variation and predict the dependent variable better.

Therefore, it could be inferred that standardized coefficients can also be used for predictive modeling. Similarly, selecting
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any specific method for standardizing the coefficients for interpretation is completely based on how one wants to interpret
it. If the primary goal of conducting a logistic regression analysis is building up a predictive model which can also be
used for comparing the predictor effects and does not affect the overall accuracy of the model, standardizing the regression
coefficients may be advisable.
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