
International Journal of Statistics and Probability; Vol. 11, No. 4; July 2022 
ISSN 1927-7032   E-ISSN 1927-7040 

Published by Canadian Center of Science and Education 

37 

Zero Truncated Poisson Harris Weibull Distribution: Properties and 
Applications to Lifetime Datas 

Okechukwu Bridget Nwanyibuife1, Chukwu Angela Unna2 Amahia Godwin Nwanzu3  
1Department of Statistics, Federal University of Technology Owerri, Imo State Nigeria 
2,3Department of Statistics, University of Ibadan, Oyo State, Nigeria 
Correspondence: Okechukwu Bridget Nwanyibuife, Department of Statistics, Federal University of Technology Owerri, 
Imo State Nigeria. E-mail: buife45@gmail.com 
 
Received: April 27, 2022   Accepted: June 27, 2022   Online Published: June 29, 2022 
doi:10.5539/ijsp.v11n4p37          URL: https://doi.org/10.5539/ijsp.v11n4p37 
 
Abstract 
In this study, we proposed and developed a more flexible distribution with wider applications called Zero Truncated 
Poisson Harris Weibull (ZTPHW) distribution. Some well-known mathematical properties such as ordinary moments 
and incomplete moment, moment generating function, quantile function, Renyi and Tsallis entropy of ZTPHW 
distribution are investigated. The expressions of order statistics are derived. Parameters of the derived distribution are 
obtained using the maximum likelihood method and simulation studied is carried out to examine the validity of the 
method of estimation. The flexibility of the proposed distribution in modeling real life data is demonstrated using two 
lifetime data set. 
Keywords: Quantile function, Moments, moment generating function, Tsallis entropy 
1. Introduction 
Weibull models are used to describe various types of observed failures of components and phenomena. They are mostly 
used in survival and reliability analysis. However, only mononically increasing and decreasing hazard functions can be 
obtained from the classical two-parameter Weibull distribution, and hence it cannot be used to model phenomena with 
non-monotone, unimodal or bathtub-shaped failure rate. Hence, there is need for extending the classical Weibull 
distribution in such a way that it can be used to model phenomena with different shapes of the hazard function. 
A random variable X is said to follows a Weibull distribution if its cumulative distribution function is given by 𝐹 (𝑥;  𝛼, 𝛽) = 1 − 𝑒    , 𝑥 > 0                                                                    (1) 
The corresponding probability density function and survival function is given respectively by 𝑓 (𝑥;  𝛼, 𝛽) = 𝛼𝛽𝑥 𝑒 ,            𝑥 > 0                                                            (2) 
And 𝑆 (𝑥;  𝛼, 𝛽) = 𝑒  ,                 𝑥 > 0                                                             (3) 
Where 𝛼 is a positive scale parameter and 𝛽 is a positive shape parameter 
The Weibull distribution has been applied in many areas of applied statistics which includes: Reliability studies, 
medicine, life testing, etc. In recent years, several generalizations of the classical Weibull distribution have been 
developed and studied by different authors to cope with bathtub-shaped failure rates. The procedure which entails 
adding one or two parameters to a family of distributions to obtain more flexibility is a well-known technique in the 
existing literature. It includes the Marshall-Olkin-G proposed and studied by Marshall and Olkin (1997), Eugene et al. 
(2002) developed the beta-G, Kumaraswamy-G was developed by Cordeiro and de Castro (2011), McDonald-G by 
Alexander et al. (2012), gamma-G was developed by Zografos and Balakrishnan (2009), Alizadeh et al. (2015) 
proposed and studied the Kumaraswamy odd log-logistic-G, beta odd log-logistic generalized was studied by Cordeiro 
et al. (2015), transmuted exponentiated generalized-G by Yousof et al.(2015), generalized transmuted-G by Nofal et al. 
(2017), Afify et al. (2016a) developed and studied transmuted geometric- G, Kumaraswamy transmuted-G by Afify et al. 
(2016b), Afify et al. (2017) studied the beta transmuted-H, Burr X-G by Yousof et al. (2016) and Alizadeh et al (2017) 
developed and studied the odd-Burr generalized-G (2017) families and many others. Aly and Benkherouf (2011) who 
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proposed and developed a new family of distributions, called the Harris extended (HE) family, by adding two new 
parameters to a baseline distribution. The new method is based on the probability generating function (𝑝𝑔𝑓) of the 
Harris (1948) distribution. If 𝐹(𝑥), 𝐹(𝑥), and 𝑓(𝑥) denote the 𝑐𝑑𝑓, survival function (𝑠𝑓) and probability density 
function of a parent distribution, respectively, then the survival function of the Harris Extended (HE) family of 
distributions is given by 

�̅�(𝑥) = 𝜃𝐹(𝑥)1 − �̅�𝐹(𝑥) , 𝑥 > 0, 𝜃 > 0, �̅� = 1 − 𝜃, 𝜆 > 0                                      (4) 

Here, the parameters 𝜆 𝑎𝑛𝑑 𝜃 are additional shape parameters that aim to induce flexibility. 
The HE cumulative and density function is respectively given as 

𝐺(𝑥) = 1 − 𝜃𝐹(𝑥)1 − �̅�𝐹(𝑥) , 𝑥 > 0, 𝜃 > 0, �̅� = 1 − 𝜃, 𝜆 > 0                          (5) 

And 

𝑔(𝑥) = 𝜃 𝑓(𝑥)1 − �̅�𝐹(𝑥)                                                                              (6) 

When 𝜆 = 1, equation (6) reduces to Marshall-Olkin family of distributions. Hence the 𝐻𝐸 family of distributions 
generalizes the well-known Marshall-Olkin class of distributions. 
1.1 Zero Truncated Poisson Harris Weibull Distribution 
Given 𝑁 let 𝑋 , 𝑋 , … , 𝑋  be independent and identically distributed random variable from Harris G distribution. Let 𝑁 be distributed according to the zero truncated Poisson distribution with pdf 𝑃(𝑁 = 𝑛) = 𝑘 𝑒𝑛! (1 − 𝑒 ) ,   𝑛 = 1,2, … , 𝑘 > 0                                                         (7) 

Let 𝑋 = 𝑚𝑎𝑥〈𝑉 , 𝑉 , … , 𝑉 〉, then the cdf of 𝑋 𝑁 = 𝑛⁄  is given by 

𝐺(𝑥) = 1 − 𝜃𝐹(𝑥)1 − �̅�𝐹(𝑥)                                                                       (8) 

The zero truncated Harris G distribution is the marginal cdf of 𝑋, given by 

𝐹 = 1(1 − 𝑒 ) 1 − 𝑒𝑥𝑝 −𝑘 1 − 𝜃𝐹(𝑥)1 − �̅�𝐹(𝑥)                                     (9) 

Here, the parameters 𝑘, 𝜆 𝑎𝑛𝑑 𝜃 are additional shape parameters that aim to induce greater flexibility. 
Putting equation (1) in (9), we have a new distribution called Zero Truncated Poisson Harris extended Weibull (𝑍𝑇𝑃𝐻𝑊) distribution with the cdf given by 

𝐹(𝑥) = 11 − 𝑒 ⎝⎛1 − 𝑒 ⎠⎞ , 𝑥 > 0                                        (10) 

With positive shape parameters 𝑘, 𝛽, 𝜆, 𝜃 and positive scale parameter 𝛼. The figure 1 drawn below is the graph of the 
distribution function of 𝑍𝑇𝑃𝐻𝑊 distribution with fixed parameter values of λ and 𝜃 with different values of 𝑘, 𝛼, 
and 𝛽 
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Figure 1. Graph of the distribution function of 𝒁𝑻𝑷𝑯𝑾 distribution 

 Figure 1 drawn above clearly indicates that the 𝑍𝑇𝑃𝐻𝑊 distribution has a proper density function 
The associated pdf to (10) is given by 

𝑓(𝑥) = 𝛼𝛽𝑘𝜆𝜃1 − 𝑒 𝑥 𝑒 1 − �̅�𝑒 𝑒               (11) 

With positive shape parameters 𝑘, 𝛽, 𝜆, 𝜃 and positive scale parameter 𝛼. The figure 2 drawn below is the graph of the 
density function of 𝑍𝑇𝑃𝐻𝑊 distribution with fixed parameter values of λ and 𝜃 with different values of 𝑘, 𝛼, and 𝛽 

 
Figure 2 Graph of the distribution function of 𝒁𝑻𝑷𝑯𝑾 distribution 

 The graph of distribution function of 𝑍𝑇𝑃𝐻𝑊 distribution drawn above indicates that the distribution is unimodal 
1.2 Survival Function 
The survival function of 𝑍𝑇𝑃𝐻𝑊 distribution is given by 𝑆(𝑥) = 1 − 𝐹(𝑥)                                                                                                  (12) 
Putting equation (10) in (12), we obtain the survival function of ZTPHW distribution as 

𝑆(𝑥) = 1 − 11 − 𝑒 ⎝⎛1 − 𝑒 ⎠⎞                                      (13) 
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The figure 3 drawn below is the graph of the survival function of 𝑍𝑇𝑃𝐻𝑊 distribution with fixed parameter 
values of λ and 𝜃 with different values of 𝑘, 𝛼, and 𝛽 

 
Figure 3. Graph of the distribution function of 𝒁𝑻𝑷𝑯𝑾 distribution 

1.3 Hazard Function 
Then hazard function is given by ℎ(𝑥) = 𝑓(𝑥)𝑆(𝑥)                                                                                            (15) 

putting equation (10) and (11) in (15), we have the hazard model of 𝑍𝑇𝑃𝐻𝑊 distribution given by 

𝒉(𝒙) = 𝛼𝛽𝑘𝜆𝜃1 − 𝑒 𝑥 𝑒 1 − �̅�𝑒 𝑒
𝟏 − 11 − 𝑒 ⎝⎛1 − 𝑒 ⎠⎞

      (16) 

The figure 4 drawn below is the graph of the hazard function of 𝑍𝑇𝑃𝐻𝑊 model with fixed parameter values of λ and 𝜃 
with different values of 𝑘, 𝛼, and 𝛽 
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Figure 4. Graph of the hazard function of 𝒁𝑻𝑷𝑯𝑾 model 

Figure 4 drawn above indicates that the 𝑍𝑇𝑃𝐻𝑊 model can be used to model different shapes of the hazard function. 
1.4 Quantiles of the 𝒁𝑻𝑷𝑯𝑾 Distribution 
The quantile function of a distribution is a very important tool used in describing some important properties of a 
distribution. In this section, we present the quantile function of the 𝑍𝑇𝑃𝐻𝑊 distribution, as well as some of its related 
properties, applications, and functions. 
The 𝑢  quantile (𝑥 ) of the 𝑍𝑇𝑃𝐻𝑊 distribution is obtained by solving equation. 𝐹(𝑥 ) = u, 
Hence solving equation (10) we get 

𝑥 = ⎩⎪⎨
⎪⎧− 1𝛼 𝑙𝑛 ⎣⎢⎢

⎢⎡ 1𝜃 1 + 1𝑘 𝑙𝑛(1 − 𝑢 1 − 𝑒 )
1 + 1𝜃 1 + 1𝑘 𝑙𝑛(1 − 𝑢 1 − 𝑒 ) (1 − 𝜃)⎦⎥⎥

⎥⎤
⎭⎪⎬
⎪⎫ ,                       (17) 

the 𝑢  quantile for 𝑢 ∈ (0,1) 
for 𝑢 = 0.25, 0.5, 0.75, we have the lower quartile, middle quartile (median) and the upper quartile of the 𝑍𝑇𝑃𝐻𝑊 distribution respectively, given by 

𝑥 . = ⎩⎪⎨
⎪⎧− 1𝛼 𝑙𝑛 ⎣⎢⎢

⎢⎡ 1𝜃 1 + 1𝑘 𝑙𝑛(1 − 0.25 1 − 𝑒 )
1 + 1𝜃 1 + 1𝑘 𝑙𝑛(1 − 0.25 1 − 𝑒 ) (1 − 𝜃)⎦⎥⎥

⎥⎤
⎭⎪⎬
⎪⎫ , 

𝑥 . = ⎩⎪⎨
⎪⎧− 1𝛼 𝑙𝑛 ⎣⎢⎢

⎢⎡ 1𝜃 1 + 1𝑘 𝑙𝑛(1 − 0.5 1 − 𝑒 )
1 + 1𝜃 1 + 1𝑘 𝑙𝑛(1 − 0.5 1 − 𝑒 ) (1 − 𝜃)⎦⎥⎥

⎥⎤
⎭⎪⎬
⎪⎫ , 
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𝑥 . = ⎩⎪⎨
⎪⎧− 1𝛼 𝑙𝑛 ⎣⎢⎢

⎢⎡ 1𝜃 1 + 1𝑘 𝑙𝑛(1 − 0.75 1 − 𝑒 )
1 + 1𝜃 1 + 1𝑘 𝑙𝑛(1 − 0.75 1 − 𝑒 ) (1 − 𝜃)⎦⎥⎥

⎥⎤
⎭⎪⎬
⎪⎫ , 

Classical measures of skewness and kurtosis may be extremely difficult to obtain as a result of non-existence of higher 
moments in several heavy tailed distributions. When such a situation arises, the quantile measures can be considered to 
be a suitable measure. The Bowley skewness; Kenny and Keeping (1962) is one of the foremost measures of skewness 
that is based on quantile of a distribution. It is given by 𝐵 = 𝑞 − 2𝑞 + 𝑞𝑞 − 𝑞  

Also, the coefficient of Kurtosis can be estimated using Moor’s (1988) approach to estimating kurtosis based on octiles 
of a distribution and is given by 𝑀 = 𝑞 − 𝑞 − 𝑞 + 𝑞𝑞 − 𝑞  

It should be noted that the two measures are more robust to outliers. Table 1 drawn below gives the Bowley skewness 
and Moor’s kurtosis of 𝑍𝑇𝑃𝐻𝑊 distribution for a fixed values of 𝛼 = 0.1 and 𝛽 = 0.3 and varying the values of the 
parameters 𝑘, 𝜆 and 𝜃. 

Table 1. Values of Bowley Skewness and Moors Kurtosis for given values of the parameters 
Quartiles 𝑘 = 0.5, 𝜆 = 0.4 𝜃 = 1.4 𝑘 = 0.6,𝜆 = 0.6𝜃 = 1.0 𝑘 = 0.1,𝜆 = 0.3𝜃 = 0.2 𝑘 = 0.4𝜆 = 0.7𝜃 = 0.2 𝑘 = 1.2, 𝜆 = 0.5 𝜃 = 1.5 𝑞 (𝑋) 0.0017 0.0250 0.2971 5.9638𝑒 − 05 0.3836 𝑞 (𝑋) 0.0418 0.6420 7.3166 0.0013 8.0809 𝑞 (𝑋) 0.6084 11.0557 113.6864 0.0172 96.6217 𝑞 (𝑋) 0.0001 0.0017 0.0207 4.336𝑒 − 06 0.0283 𝑞 (𝑋) 0.0101 0.1479 1.7269 0.0003 2.0795 𝑞 (𝑋) 0.1554 2.5541 28.0249 0.0047 27.7049 𝑞 (𝑋) 3.3089 70.9733 638.2892 0.0852 429.8091 𝐵  1.4304 0.0805 0.0077 49.980 0.0087 𝑀  5.2143 6.2170 5.3971 −2737.331 4.1995 

From Table 1, we can conclude that the ZTPHW distribution can be used to model data that skewed to the right 
(positively skewed) with various degree of kurtosis  
1.5 Expansion for the Density Function 
Consider the power series given by 

𝑒 = 𝑥𝑗!                                                                                                   (19) 

Which holds for |𝑓| < 1 and 𝑚 > 0 is a real non-integer. Using the power series in equation (19) 

𝑒 = (−1) (𝑘)𝑖! 1 − 𝜃 𝑒 1 − �̅�𝑒  

Subsequently, 

1 − 𝜃 𝑒 1 − �̅�𝑒 = (−1) 𝑖𝑗 𝜃 𝑒 1 − �̅�𝑒  

Finally, we have 
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𝑓(𝑥) = 𝛼𝛽𝜃 (−1) (𝑘)𝜆(𝑗 + 𝑙 + 1) 𝑖!𝒊,𝒋,𝒍 𝟎
𝑖𝑗 𝑙 + 𝑗 + 1𝜆𝑙 𝜃 �̅� 𝜆(𝑗 + 𝑙 + 1)𝑥 𝑒 ( )     (20) 

2. The Ordinary and Incomplete Moments of 𝒁𝑻𝑷𝑯𝑾 Distribution 
Moments are defined as the expected value of certain function of a random variable. The moments of different types of 𝑍𝑇𝑃𝐻𝑊 distribution can be obtained by direct calculations due to its mathematical tractability. In a related manner, the 
first incomplete moment can be used for the computation of Bonferroni and Lorenz curves, the mean waiting time and 
the mean residual life which plays an important role in reliability studies. Thus, the 𝑟  ordinary moment of a 
distribution is given by 𝜇 = 𝐸(𝑥)  

Thus the 𝑟  moment of ZTPHW distribution is given by 

𝜇 = 𝑥 𝑓(𝑥)𝑑𝑥                                                                                   (21) 

Putting equation (20) in (21), we have 

𝜇 = 𝛼𝛽𝜃 (−1) (𝑘)𝜆(𝑗 + 𝑙 + 1) 𝑖!𝒊,𝒋,𝒍 𝟎
𝑖𝑗 𝑙 + 𝑗 + 1𝜆𝑙 𝜃 �̅� 𝜆(𝑗 + 𝑙 + 1) 𝑥 𝑒 ( )𝑑𝑥 

(22) 

Suppose, we let 

𝐽(𝑥) = 𝑥 𝑒 ( )𝑑𝑥                                                           (23) 

Letting  𝑧 = 𝛼𝑥 𝜆(𝑗 + 𝑙 + 1), 𝑥 = 𝑧 𝛼𝜆(𝑗 + 𝑙 + 1) , 𝑑𝑥 = 1 𝛽 𝑧 𝛼𝜆(𝑗 + 𝑙 + 1)  and putting that in equation (23), 
we have 

𝐽(𝑥) = 1 𝛽 𝛼𝜆(𝑗 + 𝑙 + 1) 𝑧 𝑒 𝑑𝑧                                                           (24) 

Then, we have 𝐽(𝑥) = 1 𝛽 𝛼𝜆(𝑗 + 𝑙 + 1) 𝛤 𝑟𝛽 + 1  

Finally, we have 𝜇 = 𝛼 𝑊, ,, , 𝛼𝜆(𝑗 + 𝑙 + 1) 𝛤 𝑟𝛽 + 1 , 𝛽 > 𝑟                            (25) 

Where, 

𝑊, ,, , = 𝜃 (−1) (𝑘)𝜆(𝑗 + 𝑙 + 1) 𝑖!𝒊,𝒋,𝒍 𝟎
𝑖𝑗 𝑙 + 𝑗 + 1𝜆𝑙 𝜃 �̅�                            (25.1) 

Equation (25) is an expression for the 𝑟  moment of ZTPHW distribution. For 𝑟 = 1, we obtain the first moment 
(mean) of ZTPHW distribution as 𝜇 = 𝛼 𝑊, ,, , 𝛼𝜆(𝑗 + 𝑙 + 1) 𝛤 1𝛽 + 1                                            (26) 
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For 𝑟 = 2, we obtain the second moment of 𝑍𝑇𝑃𝐻𝑊 distribution as 𝜇 = 𝛼 𝑊, ,, , �̅� 𝛼𝜆(𝑗 + 𝑙 + 1) 𝛤 2𝛽 + 1                                        (27) 

And the variance (𝜇) can be obtained as 𝜇 = 𝜇 − (𝜇 )  
Table 2 drawn below gives the first six moments of ZTPHW distribution for a fixed parameters of 𝛼 = 0.5 and 𝛽 = 6.1 
 

Table 2. First six moments and variance of ZTPHW distribution 
 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 

𝑘 = 0.1 𝜆 = 0.1 𝜃 = 0.2 𝑘 = 0.3𝜆 = 1.3𝜃 = 1.5 𝑘 = 0.8𝜆 = 2.0𝜃 = 2.5 𝑘 = 2.5𝜆 = 3.5𝜃 = 4.5 𝑘 = 4.5 𝜆 = 5.5 𝜃 = 6.5 𝑘 = 10.8 𝜆 = 10.5 𝜃 = 15.2 𝜇  0.8242 1.0648 1.0751 1.0230 0.9635 0.8870 𝜇  0.7122 1.1712 1.1889 1.0726 0.9480 0.7974 𝜇  0.6416 1.3234 1.3459 1.1487 0.9500 0.7250 𝜇  0.6000 1.5301 1.5551 1.2540 0.9678 0.6656 𝜇  0.5804 1.8049 1.8294 1.3909 1.0013 0.6165 𝜇  0.5793 2.1672 2.1875 1.5732 1.0514 0.5756 𝜇 0.0329 0.0374 0.0331 0.0261 0.0197 0.0106 
 
2.1 Incomplete Moment of 𝑍𝑇𝑃𝐻𝑊 Distribution 
The incomplete moment of 𝑍𝑇𝑃𝐻𝑊 distribution can be obtained using 

𝜙(𝑥) = 𝑥 𝑓(𝑥)𝑑𝑥                                                                         (28) 

Putting equation (12) in (28), we have 

𝜇 = 𝛼𝛽𝜃 (−1) (𝑘)𝜆(𝑗 + 𝑙 + 1) 𝑖!𝒊,𝒋,𝒍 𝟎
𝑖𝑗 𝑙 + 𝑗 + 1𝜆𝑙 𝜃 �̅� 𝜆(𝑗 + 𝑙 + 1) 

          × 𝑥 𝑒 ( )𝑑𝑥              
Suppose, we let 

𝐻(𝑡) = 𝑥 𝑒 ( )𝑑𝑥                                                            (29) 

Letting,  𝑧 = 𝛼𝑥 𝜆(𝑗 + 𝑙 + 1), 𝑥 = 𝑧 𝛼𝜆(𝑗 + 𝑙 + 1) , 𝑑𝑥 = 1 𝛽 𝑧 𝛼𝜆(𝑗 + 𝑙 + 1)  and putting that in equation (), 

we have 

𝐻(𝑡) = 1 𝛽 𝛼𝜆(𝑗 + 𝑙 + 1) 𝑧 𝑒 𝑑𝑧                                                           (30) 

Then, we have 
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𝐻(𝑡) = 1 𝛽 𝛼𝜆(𝑗 + 𝑙 + 1) 𝛤 𝑟𝛽 + 1 ; 𝛼𝑡 𝜆(𝑗 + 𝑙 + 1)  

Finally we have 𝜙(𝑥) = 𝛼 𝑊, ,, , 𝛤 𝑟𝛽 + 1 ; 𝛼𝑡 𝜆(𝑗 + 𝑙 + 1)                                                  (31) 

2.2 Moment Generating Function 𝑍𝑇𝑃𝐻𝑊 Distribution 
Moment generating function is a very useful function that can be useful in describing certain properties of the 
distribution. It can be used to obtain moments of a distribution. The moment generating function of 𝑍𝑇𝑃𝐻𝑊 
distribution is obtained as follows: The moment generating function of a random variable 𝑋 is given by 

𝑀 (𝑡) = 𝐸(𝑒 ) = 𝑒 𝑓(𝑥)𝑑𝑥                                                   (32) 

Where 𝑓(𝑥) is given in (12). Using series expansion for 𝑒  given by 

𝑒 = 𝑡𝑟! 𝑥                                                                                          (33) 

Using (33), we can re-write equation (32) as follows 

𝑀 (𝑡) = 𝑡𝑟! 𝑥 𝑓(𝑥)𝑑𝑡 = 𝑡𝑟! 𝐸(𝑋 )                                                      (34) 

Putting equation (25) in (34), we have an expression for the moment generating function of 𝑍𝑇𝑃𝐻𝑊 distribution as 

𝑀 (𝑡) = 𝑡 𝛼(𝑟)!𝒓 𝟎 𝑊, ,, , 𝛼𝜆(𝑗 + 𝑙 + 1) 𝛤 𝑟𝛽 + 1                                  (35) 

2.3 Bonferroni and Lorenz Curves of 𝒁𝑻𝑷𝑯𝑾 Distribution 

The Bonferroni and Lorenz curves have been found suitable to have applications not only in economics to study 

income and poverty, but also in other field like demography, insurance, medicine, and reliability. The Bonferroni 

and Lorenz curves are defined by 

𝐵(𝑝) = 1𝑝𝜇 𝑥𝑓(𝑥; 𝑣, 𝑤, 𝜆)𝑑𝑥                                                                        (36) 

and 

𝐿(𝑝) = 1𝜇 𝑥𝑓(𝑥; 𝑣, 𝑤, 𝜆)𝑑𝑥                                                                                (𝟑𝟕) 

Respectively, where 𝜇 = 𝐸(𝑋) and 𝑞 = 𝐹 (𝑢). In the case of 𝑍𝑇𝑃𝐻𝑊 distribution, we obtain 𝐵(𝑝) = 1𝑝𝜇 𝛼 𝑊, ,, , 𝛤 𝑟𝛽 + 1 ; 𝛼𝑞 𝜆(𝑗 + 𝑙 + 1)                               (38) 

And 
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𝐿(𝑝) = 1𝜇 𝛼 𝑊, ,, , 𝛤 𝑟𝛽 + 1 ; 𝛼𝑞 𝜆(𝑗 + 𝑙 + 1)                                                 (39) 

Where 𝑊, ,, ,  is as define in equation (25.1) 

3. Information Measures 
In this section some information measures of the 𝑍𝑇𝑃𝐻𝑊 distribution are considered. Namely, Renyi entropy and the 
Tsallis entropy measures, both measures the variation or uncertainty that may exist in the distribution considered. 
3.1 Renyi Entropy 
Renyi (1961), gave a useful mathematical expression that can be used to measure the entropy of a 𝑍𝑇𝑃𝐻𝑊 
distribution given by 

𝐼( ) = 11 − 𝑣 𝑙𝑜𝑔 𝑓 (𝑥; 𝜁)  ,     𝑣 > 0, 𝑣 ≠ 1                                       (39) 

And 

𝑓 (𝑑𝑥) = 𝑥 𝑒 1 − �̅�𝑒 𝑒 𝑑𝑥 (40) 

𝑓(𝑥; 𝜁)  = (−1)𝑖!, , 𝑘 (𝛼𝛽) 𝑖𝑗 𝑣 1 + 1𝜆 + 𝑗𝜆 − 1𝑙 𝜃 �̅�  

× 𝑥 ( )𝑒 ( ) 𝑑𝑥                                                                                (41) 

From equation (41), letting 

𝐻(𝑥) = 𝑥 ( )𝑒 ( ) 𝑑𝑥                                                                           (42) 

Then substitute, 𝑤 = 𝛼𝑥 (𝑗 + 𝑣 + 𝜆𝑙), 𝑥 = 𝑤 𝛼(𝑗 + 𝑣 + 𝜆𝑙) , 𝑑𝑥 = 1 𝛽 𝑤 𝛼(𝑗 + 𝑣 + 𝜆𝑙)  in equation (42), we 

have 

𝐻(𝑥) = 1 𝛽 𝛼(𝑗 + 𝑣 + 𝜆𝑙) ( ) 𝑤 ( ) 𝑒 𝑑𝑤 

Subsequently, 𝐻(𝑥) = 1 𝛽 𝛼(𝑗 + 𝑣 + 𝜆𝑙) ( ) 𝛤 𝑣(𝛽 − 1) + 1𝛽  

Therefore, 

𝑓(𝑥; 𝜁)  = 𝜙 , ,, , 𝑘 𝛤 𝑣(𝛽 − 1) + 1𝛽  

where 
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𝜙 , ,, , = (−1)𝑖!, ,
𝑖𝑗 𝑣 1 + 1𝜆 + 𝑗𝜆 − 1𝑙 𝜃 �̅� 𝛼(𝑗 + 𝑣 + 𝜆𝑙) ( ) 𝛼 𝛽            (44) 

Finally, 𝐼( ) = 11 − 𝑣 𝑙𝑜𝑔 𝜙 , ,, , 𝑘 𝛤 𝑣(𝛽 − 1) + 1𝛽                                                           (45) 

3.2 Tsallis Entropy 
The Tsallis entropy was first discovered by Havrda and Charvat (1967) and later developed by Tsallis (1988). The 
Tsallis entropy of the 𝑍𝑇𝑃𝐻𝑊 distribution can be defined as 

𝐼( ) = 1𝑣 − 1 1 − 𝑓(𝑥; 𝜁)  ,     𝑣 > 0, 𝑣 ≠ 1                                                        (46) 

Since, 

𝑓(𝑥; 𝜁)  = 𝑓(𝑥; 𝜁)  = 𝜙 , ,, , 𝑘 𝛤 𝑣(𝛽 − 1) + 1𝛽  

Where 𝜙 , ,, ,  is as define is equation (44) 

Therefore, 𝐼( ) = 1𝑣 − 1 1 − 𝜙 , ,, , 𝑘 𝛤 𝑣(𝛽 − 1) + 1𝛽                                                    (47) 

4. Simulation Study 
We perform the simulation study to evaluate the performance of MLEs of 𝑍𝑇𝑃𝐻𝑊 distribution. The random number 
generation is obtained with its quantile function (qf). We note that the 𝑢  qf of the 𝑍𝑇𝑃𝐻𝑊 is given in equation (17). 
Hence, if U has a uniform random variable on interval 0 and 1, then 𝑋  has the 𝑍𝑇𝑃𝐻𝑊 random variable. 
We generated 𝑁 = 1000 samples of sizes 50, 100, 200, 300 and 500 from PHW distribution with its qf. Afterward, we 
computed the empirical means, standard deviation (SE), absolute bias (AB), mean square errors (MSE) of the MLEs 
with 𝐴𝐵 = ∑ 𝑓 − 𝑓  and 𝑀𝑆𝐸 = ∑ 𝑓 − 𝑓 , where 𝑓 = 𝛼, 𝛽, 𝜃, 𝜆, 𝑘. All results were obtained by using 
optim’s CG routine in the R program. The results obtained from simulation are reported in Table 3. The result shows 
that as the sample sizes increases the mean square error decreases as expected. 

Table 3. The empirical means, AB, SE and MSE of ZTPHW distribution’ parameters 𝑝𝑎𝑟. 𝑠𝑎𝑚𝑝𝑙𝑒 𝑀𝑒𝑎𝑛 𝐴𝐵 𝑆𝐸 𝑀𝑆𝐸 𝛼 𝑛 = 50 0.4830 0.6170 0.3840 0.5281 𝑛 = 100 0.5116 0.5884 0.3378 0.4563 𝑛 = 200 0.5385 0.5615 0.4202 0.4919 𝑛 = 300 0.7383 0.3617 0.5963 0.4864 𝑛 = 400 0.6636 0.4364 0.4817 0.4225 𝑛 = 500 0.7121 0.3879 0.2503 0.2131 
 
 𝑘 

𝑛 = 50 2.0104 0.8104 2.9177 9.1697 𝑛 = 100 1.7560 0.5560 1.8964 3.9055 𝑛 = 200 1.1950 0.0050 1.5067 2.2702 𝑛 = 300 0.5975 0.6025 0.2566 0.4288 𝑛 = 400 0.6790 0.5210 0.2163 0.3182 𝑛 = 500 1.3023 0.1023 0.1667 0.0383 
 
 𝛽 

𝑛 = 50 1.1848 0.1152 0.2606 0.0812 𝑛 = 100 1.1263 0.1737 0.1837 0.0639 𝑛 = 200 1.1769 0.1231 0.1692 0.0438 
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𝑛 = 300 1.1748 0.1252 0.1800 0.0481 𝑛 = 400 1.1490 2.1510 0.1017 0.0331 𝑛 = 500 1.2399 0.0601 0.0777 0.0096 𝜃 𝑛 = 50 0.1111 0.0111 0.1497 0.0225 𝑛 = 100 0.1551 0.0551 0.1696 0.0318 𝑛 = 200 0.2352 0.1352 0.2312 0.0717 𝑛 = 300 0.0598 0.0402 0.0541 0.0045 𝑛 = 400 0.0487 0.0513 0.0333 0.0037 𝑛 = 500 0.1194 0.0194 0.0098 0.0005 𝜆 𝑛 = 50 2.1961 1.6961 3.9891 18.7897 𝑛 = 100 2.7017 2.2017 2.5334 11.2656 𝑛 = 200 2.6531 2.1531 2.3870 10.3336 𝑛 = 300 −2.2189 2.7189 1.6396 10.0807 𝑛 = 400 −1.9947 2.4947 1.5155 8.5203 𝑛 = 500 1.0453 0.5453 1.3382 2.0881 
 
4.1 Maximum Likelihood Estimates of the Parameters 
The maximum likelihood approach is used to estimates the unknown parameters of the distribution. Let 𝑥 = 𝑥 … , 𝑥  
represent a random sample drawn from the 𝑍𝑇𝑃𝐻𝑊  distribution with parameters (𝜁 = 𝑘, 𝛼, 𝛽, 𝜆, 𝜃). Then the 
likelihood function 𝐿(𝑥; 𝜁)  and the log-likelihood function 𝑙𝑜𝑔𝐿(𝑥; 𝜁) = 𝑙(𝑥; 𝜁) corresponding to (48) are 
respectively given as 

𝐿(𝑥) = 𝛼𝛽𝑘𝜆𝜃1 − 𝑒 𝑥 𝑒 1 − �̅�𝑒 𝑒                (48) 

and 

𝑙(𝑥) = 𝑛𝑙𝑜𝑔 𝛼𝛽𝑘𝜆𝜃1 − 𝑒 + (𝛽 − 1) 𝑥 − 1 + 1𝜆 𝑙𝑜𝑔 1 − (1 − 𝜃)𝑒  

−𝛼 𝑥 − 𝑘 1 − 𝜃 𝑒 1 − (1 − 𝜃)𝑒                             (49) 

The maximum likelihood (ML) method and its procedures can be obtained from literature with details. 
4.2 Applications 
In this subsection, we evaluate the performance of the 𝑍𝑇𝑃𝐻𝑊 model by fitting the distribution to two reliability data 
sets with other competing distributions namely: Kumaraswamy Lomax (KL) model, Kumaraswamy power Lomax 
(KPL) model and the Weibull (W) model under the estimated log-likelihood (𝑙) value, Akaike information criterion 
(AIC), Consistent Akaike information criterion (CAIC), Bayesian information criterion (BIC), and Hannan-Quinn 
information criterion (HQIC), Cramer-von Misses (W) and Kolmogorov-Smirnov (KS) statistic with its p-value (𝑃) 
are used to compare these distributions, where the smaller values of these statistics and larger p-value give the best fit to 
the data.  
The first data set (data set 1) represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle 
bacilli, observed and reported by Bjerkedal et al. (1960). The observations are as follows: 0.1, 0.33, 0.44, 0.56, 0.59, 
0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 
1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63,1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 
2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 
5.55. The exploratory data analysis of the data is given below in Table 4 and Table 5 and 6 gives the estimates of the 
parameters and measures of goodness of fit of ZTPHW distribution. We observe that the data is positively skewed and 
mesokurtic. Also since the value of variance is less than the value of mean for the pig data it shows that the data is 
under-dispersed. The total time on test plot in figure 5 shows a concave transform, indicating that the hazard rate 
function is possibly increasing. The graph of the kernel density for the data is drawn in figure 6 which shows that the 
data is moderately skewed to the right. 
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The second data set (data set 2) consists of data of cancer patients. The data represents the remission times (in months) 
of a random sample of 128 bladder cancer patients from Lee and Wang (2003). The data point is given as: 0.08, 2.09, 
3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 
25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 
5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 
36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 
7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 
8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 
21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. The exploratory data analysis of the data is given below in Table7, Table 8 
and 9 gives the estimates of the parameters and measures of goodness of fit of 𝑍𝑇𝑃𝐻𝑊 distribution. We observe that 
the data is positively skewed and kleptokurtic. Also, Since the value of mean is less than the value of variance for 
cancer data, it can be concluded that the data is over-dispersed. The total time on test plot in figure 7 shows a concave 
transform, indicating that the hazard rate function is possibly increasing. The graph of the kernel density for the data is 
drawn in figure 8 which shows that the data is moderately skewed to the right. Estimates of the parameters 𝑍𝑇𝑃𝐻𝑊, 𝐾𝑃𝐿, 𝐾𝐿 and 𝑊 distribution; AIC, BIC, CAIC, W and KS and P values 
Table 4. Exploratory Data Analysis (EDA) of survival time of pigs 𝑚𝑖𝑛 𝑄  𝑚𝑒𝑑𝑖𝑎𝑛 𝑚𝑒𝑎𝑛 𝑄  𝑚𝑎𝑥 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝑠𝑘𝑒𝑤. 𝑣𝑎𝑟. 𝑟𝑎𝑛𝑔𝑒 0.10 1.08 1.495 1.768 2.240 5.550 2.225 1.371 1.070 5.45 

 
 
 
 
 
 
 
 
 
 

Figure 5. TTT plot for pig data 

 
Figure 6. Kernel density plot for pig data 

Table 5. Estimates of the parameters of ZTPHW model for pig data 𝑚𝑜𝑑𝑒𝑙 𝛼 𝛽 𝜆 𝜃 𝑘𝑍𝑇𝑃𝐻𝑊 6.7415 (3.3138) 0.4579(0.2487) 11.9713(12.7845 ) 1.3733 (0.2743) 1.0471(1.2408)
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𝐾𝑃𝐿 10.9947 (1.1577) 0.6672(0.9233) 2.5119(2.8190) 2.8679 (0.0114) 7.0135(6.9522)𝐾𝐿 3.0086 (0.9339 ) 2.0675(8.0888) 6.7747(2.6373) 4.4996 (1.7179) − (−) 𝑊 0.2835 (0.0542) 1.8253(0.1588) −(−) −(−) −(−)
 
Table 6. Measures of goodness of fit for 𝑍𝑇𝑃𝐻𝑊 model for the pig data 𝑚𝑜𝑑𝑒𝑙 𝑙 𝐴𝐼𝐶 𝐻𝑄𝐼𝐶 𝐶𝐴𝐼𝐶 𝐵𝐼𝐶 𝑊 𝐾 𝑃𝑍𝑇𝑃𝐻𝑊 91.725 193.504 198.036 194.413 204.888 0.0520 0.0779 0.7753 𝐾𝑃𝐿 93.556 197.111 201.642 198.020 208.494 0.0611 0.7555 2.2e-16 𝐾𝐿 93.9379 195.876 199.591 196.473 204.982 0.0823 0.9863 2.2e-16 𝑊 95.7898 195.580 197.392 195.754 200.133 0.1649 0.1050 0.4055 
 
Table 7. Exploratory Data Analysis of the Cancer data 𝑚𝑖𝑛 𝑄  𝑚𝑒𝑑𝑖𝑎𝑛 𝑚𝑒𝑎𝑛 𝑄  𝑚𝑎𝑥 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝑠𝑘𝑒𝑤. 𝑣𝑎𝑟. 𝑟𝑎𝑛𝑔𝑒 0.08 3.348 6.395 9.366 11.840 79.05 16.154 3.326 110.425 78.85 

 

Figure 7. TTT plot for cancer data 

 
Figure 8. Kernel density plot for cancer data 

Table 8. Estimates of the parameters of ZTPHW model for Cancer data 𝑚𝑜𝑑𝑒𝑙 𝛼 𝛽 𝜆 𝜃 𝑘 𝑍𝑇𝑃𝐻𝑊 4.0375 (1.4410) 0.2810(0.1575) 8.5689(7.1957) 0.7445(0.1176) 0.3370 (1.5338)
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𝐾𝑃𝐿 1.1325 (0.5450) 0.2288(0.3261) 1.3093(0.5305) 10.5116 (1.5057) 22.2195(1.1052)𝐾𝐿 0.2678 (0.2678) 0.5600(3.2362) 7.9419(1.9495) 13.3280 (0.0289) − (−) 𝑊 0.0932 (0.0932) 1.0502(0.0675) −(−) −(−) − (−) 
 

Table 9. Measures of goodness of fit of ZTPHW model for cancer data 𝑚𝑜𝑑𝑒𝑙 𝑙 𝐴𝐼𝐶 𝐻𝑄𝐼𝐶 𝐶𝐴𝐼𝐶 𝐵𝐼𝐶 𝑊 𝐾 𝑃𝑍𝑇𝑃𝐻𝑊 409.691 829.382 835.176 829.874 843.642 0.0201 0.0401 0.9864 𝐾𝑃𝐿 409.802 829.604 835.398 830.096 843.864 0.0923 0.9999 2.2e-16 𝐾𝐿 411.312 830.624 835.729 830.949 842.032 0.0939 0.9931 2.2e-16 𝑊 414.088 832.175 834.493 832.271 837.879 0.1320 0.0771 0.5437
 
5. Conclusion 
In this work, some properties of the newly developed Zero truncated Poisson Harris Weibull model is proposed and 
studied. The Zero truncated Poisson Harris Weibull model is a generalization of Weibull model. Various properties of 
the newly developed model are investigated, including ordinary and incomplete moment, Bonferroni and Lorenz curve, 
Renyl and Tsallis Entropy, moment generating function and hazard function. Simulation study is carried out to 
investigate the reliability of the method of estimated which shows the adequacy of the method adopted. Two real data 
sets are fitted to the Zero truncated Poisson Harris Weibull model and compared with other known competing 
distributions and its sub-model. The results show that the Zero Truncated Harris Weibull model provides a good fit to 
each data set indicating its flexibility and adaptability in modeling data of various forms of the shape of the hazard 
function.  
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