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Abstract

Here, we are investigating the possible association among three stochastic variables X,Y,Z . We compare the
performance under two separate variants of the copula models; Vine based copula and the hierarchical copula in the
context of discrimination.
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1. Introduction

We can use the Copula models when there is a reasonable correlation among the stochastic variables. This is to uncover
the structural relationships among the variables in the probabilistic sense. The use of Copulas and its applications began
after the pioneering work of Sklar (1959). There are several different types of copulas and each differ based on the
strength of the dependence and the direction of association. The Copulas help us to model the dependence structure
based on the margins.  For additional information, the interested readers are referred to Nelsen (2006), Joe (1993, 1996,
2014), Durante and Sempi (2016), and Mai and Scherer (2017). Here in this paper, we consider four copulas; Gaussian
Copula, Clayton Copula, Frank Copula, and Gumbel Copula. The main purpose of this study is to investigate the use of
the Vine and the Hierarchical versions of these copulas as discriminants.

The pairwise Vine Copulas and the ‘Hierarchical’ Copulas are mathematical transformations of the Copulas. In fact, the
Vine Copulas are two dimensional representations of higher dimensional copulas. The Vine is a nested structure of
connected trees. There are three different Vine structures; R Vine, C Vine, and D Vine. The Vine formulation is very
useful in many applications in areas such as Economics, Finance, Actuarial Science, and Engineering. On the other hand,
in the case of ‘Hierarchical ¢ Copulas of higher dimensions, we place emphasis in the order of importance. This paper is
devoted to the comparison of the Vine Copulas and the Hierarchical Copulas. Shi and Lu (2007) used hierarchical
copulas to model two-level clustered data. Prenen et al (2017) tried hierarchical copula on one- level clustered data.
Andersen (2004) used hierarchical copula to model familial data. Familial data was further studied by Zhao and Joe
(2005) and Othus and Li (2010).

In this paper, we investigate the properties of the Vine Copula and the ‘Hierarchical’ Copula for the purpose of
comparison in the context of discriminant analysis. In the case of higher dimensional multivariate distributions, there is
room for singularities when the covariance matrix is nearly singular. However, these transformations such as Vine and
‘Hierarchical’ Copulas are helpful to avoid such scenarios. We divide the paper into four sections; introduction,
methodology, numerical computations, and conclusion.

2. Methodology
We aim to compare the performance of the Vine and Hierarchical Copulas based on the discriminant properties.
2.1 Three Variate Hierarchical Copula

In this hierarchical investigation, we assume that the stochastic variable Z is more important than the other two
variables. As seen from the accompanying hierarchical copula diagram; at the top level, the generator function is v/, .
At the next level, the generator is y/,,. There is a hierarchy in the level arrangement. Note that «,and «,,are the
dependence parameters at the first level and second level respectively. The variables that exhibit the higher order of
correlation are placed at the higher level.
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Three variate Hierarchical Copula Diagram
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1
where U, =F (X), U,=F,(Y), U,=F,(Z) arethe respective marginal distributions.
The above diagram can be written as follows by using an Archimedean Copula.
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When o, =a,, then this three-variate hierarchical Clayton Copula will become a regular three-variate Clayton
Copula.

C(ul’uzlu3) = [(ul’”‘1 +u, —1)+ u, —1]_0%1 4

In the case of Gumbel Copula,

C(ulvuz!us):Wl_l('//l(cz(ul’uz))""/’1(“3)) (®)
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= ‘//1_l (’//1 (‘//1_21 (‘//12 (U1)+ Vi (u2 )))+ 4! (U3 ))
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Again, note that when o, =a,, then this three-variate hierarchical Gumbel Copula will become a regular
three-variate Gumbel Copula.

1
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D-Vine Copula (5 dimensional) description
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Note: In the case of 3 dimensional Copulas, C-Vine = D-Vine
Comparison of Vine based Copulas

X
Let | Y |be a three variable vector and f(X, Y, Z)be the density function. Then, by using the properties of the Vine
z

copulas, one can write

f (X’ Y, Z) = fl(x)' fz(Y)- fS(Z)'ClZ'C23'Cl3\2
where, fl(x) is the marginal density of X
fz(y)is the marginal density of Y
fs(Z) is the marginal density of Z
C,, is the pairwise copula density of X and Y
C,4 is the pairwise copula density of Y and Z
C,3\» Is the pairwise copula density of X and Z given Y
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Let us assume that the marginal densities are normal.

X — - z-
Then, ulzd{—‘ul) uzz(l)(y ’UZJ, u3:(1)[ ﬂ3J
0, 0, O,

Vine based on the Gaussian Copula:

Here we investigate the construction of the vine based on the Gaussian Copula. The Gaussian Copula densities are
given as follows.

1 1 2 2
_ 2 Xty 2| Y-Ho | _ X—py || Y=
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For an arbitrary tri-variate normal population, the conditional density

fia (X, z\ y) = f(é,T);’)Z)

_— No_zi/z . _%-{all-(x_ﬂl )i +[ azz—aizzj-(y—ﬂz VP +agg (2413 ) + 2,805 (x=p10 ) (Y=t W 2245 (= ) 2113 )+ 2.5 ( y— 2 ) 2125 )} (12)

“onf e

Where is the (i, j)thentry of the inverse covariance matrix of X, and O is the (i, j)thentry of the covariance

matrix X .
Note that,
E(X.Z \Y)=A11-,Ug+( 2-843 _311-3;3)_%.(3,_#2)_ (312-333_313-3223).()/_#2)
81.853 — 5 (311-333_313 ) 12
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+ 2
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VO2
= i+ (a13-a12 _a“'a23).(y—y2) (14)

(aﬁ-ass - 3132)
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Also,

Cov(x,Z\Y)z(ﬁ)
14433 3

015093
= O3~ (15)
Oy

2
O

Var(X\Y)=0,, - (16)
O3
2
Var(Z \Y)=c,, - 22 (17)
O
X _ cov(X,Z\Y)
Note that Li3\2 \/V&I‘(X \Y).\/Var(Z \Y) (18)

For the Vine Copula based approach, the likelihood ratio which depends on the Gaussian model is

I_G - fl(Z)(X) f2(2)(y) f3(2)(z)'ClZ(Z)'CZS(Z)'ClIS\Z(Z) (19)
fl(l)(x)' fZ(l)(y) f3(1)(z)'CIZ(l)'C23(l)'Cl3\2(l)

The log-likelihood ratio is given by

@) @) (2) (2) () ()
In(Lg)=1In fl(l) (X) +1In fz(l)(y) +1In f3(1)(z) +1In Clz(l) +In 023(1) +1In C13\2(1) (20)
fi (X) f, (Y) f3 (Z) Cp Cs Ciav

where the superscripts (1) and (2) represent populations (1) and (2) respectively.

Vine based on Clayton Copula
So for the Clayton Copula based on the Vine,

1
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Cpy = (L+ ){q{ Y 0”2 J.cp[ 0”3 J} . (q{%} + (D{a—’u?’j 1} (22)
2 3 2 3

)(— ,_ ~(L+a,) X — —a32 7_ —Qy3\2 _[2+?t\z]
Crap = (1+ Uiy ){q{ Hao Jq{ Hav J} . (I)( Hio ] " (1)( Hav J 1 (23)
One O3 One O3

So for the Vine based Clayton Copula, the joint density function
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Vine based on the Gumbel Copula

_ g lon )y (e, )y fe (29)
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The Copula density is given by

1
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So, the joint density function for the Vine based Gumbel Copula is
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Hierarchical Clayton Copula
From equation (3), it follows that the Hierarchical Clayton Copula is
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For the hierarchical copula, the Clayton Copula based joint density function
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Hierarchical Gumbel Copula
From equation (6), it follows that the Hierarchical Gumbel Copula is
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Again for the hierarchical copula, the Gumbel Copula based joint density function is

&°C(u,,u,,u,)
= ——= =2 f(x)f f
h(X! y’ Z) éul 8u2 6U3 1(X) Z(y) S(Z)

3. Numerical Results

(40)

In this section, we present the numerical results based on 1000 simulation runs. The samples were generated at random
by using the multivariate normal distributions associated with the mean vectors and covariance matrices as indicated
below. The misclassification error rate P12 which is classifying Population 1 as Population 2, and the misclassification
error rate P21 which is classifying Population 2 as Population 1 were estimated empirically through this simulation.
This simulation was done for the Vine structures based on the Gaussian, Clayton, and Gumbel Copula models, and the

‘Hierarchy” models based on the Clayton and Gumbel Copulas.

We present the numerical results for dimension p = 3. The mean vectors and the covariance matrices are assumed to be

known. As noted earlier, the mean vectors and the covariance matrices studied are listed below.

=22, =24, =19 px?=-17, x,? =11 u'" =14
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Table 1. Misclassification Error rate Comparison

2 X
3
(19 18
118 26
(13 10
(30 16
16 10
6 4
"19 18
118 26
(13 10
6 1
1 13
(-2 4
(3() 16
116 10
{_6 4
(6 6 1
16 8 2
(1 2
(4 1
19
(2 -3

9

ik
o W

()
wn

25)

g

4 1 2
1 9 -3
[ 3 25
(6 6 1°
L) 8 2
v 2 1)
(6 6 1
HE
11 2
(']l 8 3
|1-8 9 -3
\3 -3 2
11 8 3
-8 9 -3
3 3 2
11 -8 3
8 9 3
L 3 3 2
(11 -8 3 )
8 9 3
3 3 2

4. Discussion and Conclusion

As is seen from Table 1, Vine based Copula Gaussian Copula is doing better than Vine based Clayton and Gumbel
Copulas, and ‘Hierarchy’ based Clayton and Gumbel Copulas. This conclusion is based on the average error rates P12
and P21. This is an interesting result. Usually, the dimensional reductions leads to loss of information and hence we
expect to see higher error rates. However, this was not the case here. Maybe, it is possible that the Vine structures do not
lose too much of information. Maybe, this is the reason that Vine Copulas are extensively used in many fields such as
Actuarial Science, Economics, and Finance. Furthermore, the Vine Copulas help us to avoid the possibility for
singularities in the context of higher dimensional covariance matrices. In this paper, we considered a three dimensional
situation. For this situation all three types of Vine Copulas; R Vine, C Vine, and D Vine are the same. However, this
is not the case for dimensions higher than 3. The authors plan to investigate the misclassification error rate of Vine

Clayton

PI12(P21)

0.358(0.407)

0.350(0,390)

0.32000.310)

0.A4R7(0.476)

0.352(0.316)

0.440(0.375)

0.456(0477)
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Vine Copula

Gaussian

P12(P21)

0.306(0.310)

0302(0.315) 0.490{(0.472)

0.165(0,185) 0487(0.464)

0.430(0.525)

0.219(0.180)

0.267(0.325)

0.366(0375)

Higrarchical Copula

Gumbel Clayton

P12{P21) P12(P21)

0.495(0.485)

0.482(0.480)

0.565(0496)

0.486(0.481) 0.190(0.476)

0.490{0.478) 0.245(0.488)

0.475(0.473)  0.480(0.485)

Gunbel

P12(P21)

0.380(0.482) 0.300(0.490)

0.40%5(0.464) 0.400(0.472)

0.180(0.452) 0.285(0.460)

0.660(0.490)

0.170{0.494)

0.492(0.464)

0.550(0.496)
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based comparisons for the higher dimensions in the future.
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