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Abstract 

Here, we are investigating the possible association among three stochastic variables ZYX ,, . We compare the 

performance under two separate variants of the copula models; Vine based copula and the hierarchical copula in the 

context of discrimination. 

Keywords: vine, hierarchical, discriminant, copula 

1. Introduction 

We can use the Copula models when there is a reasonable correlation among the stochastic variables. This is to uncover 

the structural relationships among the variables in the probabilistic sense. The use of Copulas and its applications began 

after the pioneering work of Sklar (1959). There are several different types of copulas and each differ based on the 

strength of the dependence and the direction of association. The Copulas help us to model the dependence structure 

based on the margins.  For additional information, the interested readers are referred to Nelsen (2006), Joe (1993, 1996, 

2014), Durante and Sempi (2016), and Mai and Scherer (2017). Here in this paper, we consider four copulas; Gaussian 

Copula, Clayton Copula, Frank Copula, and Gumbel Copula. The main purpose of this study is to investigate the use of 

the Vine and the Hierarchical versions of these copulas as discriminants.  

The pairwise Vine Copulas and the ‘Hierarchical’ Copulas are mathematical transformations of the Copulas. In fact, the 

Vine Copulas are two dimensional representations of higher dimensional copulas. The Vine is a nested structure of 

connected trees. There are three different Vine structures; R Vine, C Vine, and D Vine. The Vine formulation is very 

useful in many applications in areas such as Economics, Finance, Actuarial Science, and Engineering. On the other hand, 

in the case of ‘Hierarchical ‘ Copulas of higher dimensions, we place emphasis in the order of importance. This paper is 

devoted to the comparison of the Vine Copulas and the Hierarchical Copulas. Shi and Lu (2007) used hierarchical 

copulas to model two-level clustered data. Prenen et al (2017) tried hierarchical copula on one- level clustered data. 

Andersen (2004) used hierarchical copula to model familial data. Familial data was further studied by Zhao and Joe 

(2005) and Othus and Li (2010). 

In this paper, we investigate the properties of the Vine Copula and the ‘Hierarchical’ Copula for the purpose of 

comparison in the context of discriminant analysis. In the case of higher dimensional multivariate distributions, there is 

room for singularities when the covariance matrix is nearly singular. However, these transformations such as Vine and 

‘Hierarchical’ Copulas are helpful to avoid such scenarios. We divide the paper into four sections; introduction, 

methodology, numerical computations, and conclusion. 

2. Methodology 

We aim to compare the performance of the Vine and Hierarchical Copulas based on the discriminant properties. 

2.1 Three Variate Hierarchical Copula 

In this hierarchical investigation, we assume that the stochastic variable Z is more important than the other two 

variables. As seen from the accompanying hierarchical copula diagram; at the top level, the generator function is 
1 . 

At the next level, the generator is 
12 . There is a hierarchy in the level arrangement. Note that 1 and 

12 are the 

dependence parameters at the first level and second level respectively. The variables that exhibit the higher order of 

correlation are placed at the higher level.  
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Three variate Hierarchical Copula Diagram   

 

where      1 1 2 2 3 3, , arg .U F X U F Y U F Z are the respective m inal distributions      

The above diagram can be written as follows by using an Archimedean Copula. 

       312121

1

1321 ,,, uuuCuuuC  


                          (1) 

In the case of Clayton Copula 

                               1

1

312121 ,1 


 uuuC                                  (2) 

                                  1

1

31212112

1

1211 


 uuu  

                                 
1

1
1

1

31212112

1

12 11 




 uuu
 

                                11
1

1

3212112

1

12 1 





 uuu  

                               1
1

12

1

1

3212112 11

















 uuu  

                            1
1

12

1

1212

1

321 121



















 uuu  

                            1
1

12

1

1212

1

321 11



















 uuu                               (3) 

When 121    then this three-variate hierarchical Clayton Copula will become a regular three-variate Clayton 

Copula. 
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In the case of Gumbel Copula, 
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Again, note that when 121    then this three-variate hierarchical Gumbel Copula will become a regular 

three-variate Gumbel Copula. 
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D-Vine Copula (5 dimensional) description 

 

C-Vine Copula (5 dimensional) description 

 

Note: In the case of 3 dimensional Copulas, C-Vine = D-Vine 

Comparison of Vine based Copulas 

Let 

















z

y

x

be a three variable vector and  zyxf ,, be the density function. Then, by using the properties of the Vine 

copulas, one can write 

        2\132312321 .....,, ccczfyfxfzyxf   

where,  xf1
is the marginal density of X  

          yf2
is the marginal density of Y  

          zf3  is the marginal density of Z   

         
12c is the pairwise copula density of X and Y      

         23c is the pairwise copula density of Y and Z  

         2\13c is the pairwise copula density of X and Z given Y    
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Let us assume that the marginal densities are normal.  

Then, 
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Vine based on the Gaussian Copula: 

Here we investigate the construction of the vine based on the Gaussian Copula. The Gaussian Copula densities are 

given as follows. 
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For an arbitrary tri-variate normal population, the conditional density 
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Where is the  thji, entry of the inverse covariance matrix of  , and ij is the  thji, entry of the covariance 

matrix  . 

Note that, 
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Also, note that    2
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Also, 
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Note that 
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For the Vine Copula based approach, the likelihood ratio which depends on the Gaussian model is 

GL =
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The log-likelihood ratio is given by 

ln( GL ) = ln
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where the superscripts (1) and (2) represent populations (1) and (2) respectively. 

Vine based on Clayton Copula 

So for the Clayton Copula based on the Vine, 
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So for the Vine based Clayton Copula, the joint density function 
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Note that, 
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Vine based on the Gumbel Copula 
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So, the joint density function for the Vine based Gumbel Copula is 
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Hierarchical Clayton Copula 

From equation (3), it follows that the Hierarchical Clayton Copula is  
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For the hierarchical copula, the Clayton Copula based joint density function 
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This in turn means, 
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Hierarchical Gumbel Copula 

From equation (6), it follows that the Hierarchical Gumbel Copula is  
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Again for the hierarchical copula, the Gumbel Copula based joint density function is 
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3. Numerical Results 

In this section, we present the numerical results based on 1000 simulation runs. The samples were generated at random 

by using the multivariate normal distributions associated with the mean vectors and covariance matrices as indicated 

below. The misclassification error rate P12 which is classifying Population 1 as Population 2, and the misclassification 

error rate P21 which is classifying Population 2 as Population 1 were estimated empirically through this simulation. 

This simulation was done for the Vine structures based on the Gaussian, Clayton, and Gumbel Copula models, and the 

‘Hierarchy’ models based on the Clayton and Gumbel Copulas. 

We present the numerical results for dimension p = 3. The mean vectors and the covariance matrices are assumed to be 

known. As noted earlier, the mean vectors and the covariance matrices studied are listed below. 
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Table 1. Misclassification Error rate Comparison  

 

4. Discussion and Conclusion 

As is seen from Table 1, Vine based Copula Gaussian Copula is doing better than Vine based Clayton and Gumbel 

Copulas, and ‘Hierarchy’ based Clayton and Gumbel Copulas. This conclusion is based on the average error rates P12 

and P21. This is an interesting result. Usually, the dimensional reductions leads to loss of information and hence we 

expect to see higher error rates. However, this was not the case here. Maybe, it is possible that the Vine structures do not 

lose too much of information. Maybe, this is the reason that Vine Copulas are extensively used in many fields such as 

Actuarial Science, Economics, and Finance. Furthermore, the Vine Copulas help us to avoid the possibility for 

singularities in the context of higher dimensional covariance matrices. In this paper, we considered a three dimensional 

situation. For this situation all three types of Vine Copulas; R Vine, C Vine, and D Vine are the same. However, this 

is not the case for dimensions higher than 3. The authors plan to investigate the misclassification error rate of Vine 
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based comparisons for the higher dimensions in the future. 
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