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Abstract 

Risk ratios or p-values from multiple, independent studies – observational or randomized – can be pooled to address a 

common research question in meta-analysis. However, reliability of independent studies should not be assumed as 

claimed risk factor−disease relationships may fail to reproduce. An independent evaluation was undertaken of a 

published meta-analysis of cohort studies examining diet−disease associations; specifically between red and processed 

meat and six disease outcomes (all-cause mortality, cardiovascular mortality, all cancer mortality, breast cancer 

incidence, colorectal cancer incidence, type 2 diabetes incidence). The number of hypotheses examined were counted in 

15 random base papers (14%) of 105 used in the meta-analysis. Test statistics (relative risk values with 95% confidence 

limits) for 125 results used in the meta-analysis were converted to p-values; p-value plots were used to examine the 

effect heterogeneity of the p-values. The possible number of hypotheses examined in the 15 base papers was large, 

median = 20,736 (interquartile range = 1,728–331,776). Each p-value plot for selected health effects showed either a 

random pattern (p-values > 0.05), or a two-component mixture (small p-values < 0.001 while other p-values appeared 

random). Given potentially large numbers of hypotheses examined in the base studies, questionable research practices 

cannot be ruled out as explanations for some test statistics with small p-values. Like the original findings of the 

published meta-analysis, our independent evaluation concludes that base papers used in the meta-analysis do not 

support evidence for an association between red and processed meat and the six health effects investigated. 
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1. Introduction 

Food and dietary intake habits represent a complex system of interacting components that may affect health status and 

disease over an individual’s lifetime. Nutritional epidemiology uses methods to study how diet might affect health status 

and disease. These methodologies require a strong statistical component to develop useful and interpretable diet−disease 

associations (Prentice & Huang, 2018). The semi-quantitative food frequency questionnaire (FFQ) – a self-administered 

dietary assessment instrument – is commonly used to assess dietary intake (Boeing, 2013). A FFQ distributes a 

structured food list and a frequency response section to study participants, who indicate their usual frequency of intake 

of each food over a set period of time (Satija et al., 2015). 

Causal criteria in nutritional epidemiology include (Potischman & Weed, 1999): consistency, strength of association, 

dose response, plausibility, and temporality. A longstanding critique of nutritional epidemiology in establishing 

causality is that it relies predominantly on observational study data, which researchers generally judge to be less reliable 

than experimental data (Satija et al., 2015). Bias – systematic alteration of research findings due to factors related to 

study design, data acquisition, statistical analysis, or reporting of results (Boffetta et al., 2008; NASEM, 2016, 2019; 

Randall & Welser, 2018) – can undermine a study’s reliability to apply these causal criteria. Further, selective reporting 

occurs in published observational studies with researchers routinely testing many hypotheses during a study and then 

only reporting results that are interesting (i.e., statistically significant) (Gotzsche, 2006; Frieden, 2017). 

One aspect of reproducibility – the performance of another study statistically confirming the same hypothesis or claim – 

is a cornerstone of science and reproducibility of research findings is needed before causal inference can be made 

(Moonesinghe et al., 2007). However, irreproducible published studies reportedly occur in a wide range of scientific 

disciplines – including general medicine, clinical sciences, oncology, nutrition, biology, psychological sciences (Young 

et al., 2022). Incomplete reporting occurs in biomedical research (Dickersin & Chalmers, 2011; Frieden, 2017). These 

types of situations can lead to an inability to reproduce research claims (Sarewitz, 2012). Part of the problem may arise 

from researchers examining large numbers of hypotheses and using multiple statistical models without statistical 
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correction – referred to as multiple testing and multiple modelling or multiple testing bias (Westfall & Young, 1993; 

Young & Kindzierski, 2019; Young et al., 2022). 

Meta-analysis is a systematic procedure for statistically combining data (test statistics) from multiple studies that 

address a common research question (Egger et al., 2001), such as whether a particular food has an association with a 

disease. Meta-analysis has been placed at the top of the medical evidence-based pyramid – above case–control and 

cohort studies, and randomized trials (Murad et al., 2016). However, questions remain about whether the test statistics 

themselves being combined in meta-analysis may be derived using imperfect or limited statistical methodologies.  

As a case in point, Peace et al. (2018) recently examined aspects of multiple testing associated with test statistics 

combined from ten base papers in a Malik et al. (2010) meta-analysis of sugar-sweetened beverage intake and risk of 

metabolic syndrome and type 2 diabetes. Peace et al. (2018) observed that none of the base papers in the Malik et al. 

meta-analysis corrected for multiple testing bias. Given the importance of statistics in developing useful and 

interpretable risk factor−disease associations, we were interested in understanding whether multiple testing bias might 

be occurring elsewhere in diet−disease association meta-analysis studies. Specifically, we randomly selected and 

independently evaluated base studies in a meta-analysis of the association between red and processed meat and selected 

human chronic effects. 

2. Method 

2.1 Data Sets 

Vernooij et al. (2019) – herein referred to as Vernooij – published a meta-analysis of cohort studies relating to health 

claims from red and processed meat in the journal Annals of Internal Medicine. We selected six of 30 health effects that 

they examined for further independent evaluation – those that combined the largest number of base papers. These health 

effects included: all-cause mortality, cardiovascular mortality, all cancer mortality, breast cancer incidence, colorectal 

cancer incidence, type 2 diabetes incidence. Upon request, one of the Vernooij researchers provided data we used for 

our evaluation. We then used search space analysis (counting of the numbers of hypotheses examined in base studies) 

(Peace et al., 2018) and p-value plots (Schweder & Spjøtvoll, 1982) to evaluate the six diet−disease association claims. 

Vernooij systematically reviewed 1,501 papers and selected 105 primary papers for further analysis. Their data set 

included 70 different population cohorts. They used GRADE (Grading of Recommendations Assessment, Development 

and Evaluation) criteria (Guyatt et al., 2008) – which do not assess multiple testing bias – to select base papers for their 

meta-analysis. Their study complied with recommendations of PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses) (Moher et al., 2009). 

Vernooij stated that the base papers used for meta-analysis, which were observational studies, provided low- or 

very-low-certainty evidence according to GRADE criteria. They concluded “…dietary patterns with less red and 

processed meat intake may result in very small reductions in adverse cardiometabolic and cancer outcomes.” Numerous 

nutritional epidemiologists reacted to their research with some asking the editor of Annals of Internal Medicine to 

withdraw the paper before publication (Monaco, 2019; Arends, 2020). 

2.2 Numbers of Hypotheses Tested in Single Studies (Counting) 

One needs to estimate the number of hypotheses examined in a single study to assess the potential for multiple testing 

bias. We selected a subset of studies from Vernooij and counted the possible hypotheses examined in these studies. A 5 

to 20% sample from a population whose characteristics are known is considered acceptable for most research purposes 

as it provides an ability to generalize for the population (Creswell, 2003). We believed the Vernooij judgment that their 

systematic review (screening) process selected 105 base papers with sufficiently consistent (known) characteristics for 

meta-analysis. We then randomly selected 15 of the 105 base papers (14%) for counting purposes. 

The number of hypotheses considered in an individual base paper used by Vernooij was estimated as follows. Cohort 

studies generally use a direct statistical analysis strategy on data collected – e.g., what causes or risk factors are related 

to what outcomes (health effects). If a data set contains “C” causes and “O” outcomes, C × O possible hypotheses can 

be investigated. An adjustment factor “A” (also called a covariate) can be included as a yes/no adjustment – such as 

income or education – to see how it can modify each of the C × O hypotheses. Here an adjustment factor is included or 

excluded; and a multiplier of 2 is assumed for each adjustment factor considered. We counted causes (C), outcomes (O), 

and yes/no adjustment factors (A); where the number of hypotheses can be approximated as = C × O × 2A. 

We then specifically examined the 15 random base papers for evidence of whether a paper: i) mentioned multiple 

testing bias in different forms (i.e., multiple hypotheses or hypothesis, multiple testing, multiple comparisons, 

multiplicity) and/or, ii) made any mention of correcting for this bias. 
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2.3 P-value Plots 

Epidemiologists traditionally use risk statistics (e.g., risk ratios or odds ratios) and confidence intervals instead of 

p-values from a hypothesis test to establish statistical significance. Given that researchers can estimate risk statistics, 

confidence intervals and p-values from the same data (Altman & Bland, 2011a,b), one can be estimated from the other. 

We estimated p-values from risk statistics and confidence intervals for all data used by Vernooij using JMP statistical 

software (SAS Institute, Cary, NC). We then developed p-value plots (Schweder & Spjøtvoll, 1982) to inspect the 

distribution of the set of p-values – i.e., the test statistics used by Vernooij. 

The p-value is a random variable derived from a distribution of the test statistic used to analyze data and to test a null 

hypothesis. In a well-designed and conducted study, the p-value is distributed uniformly over the interval 0 to 1 

regardless of sample size under the null hypothesis and a distribution of true null hypothesis points plotted against their 

ranks in a p-value plot should form a 45-degree line when there are no effects (Schweder & Spjøtvoll, 1982; Hung et al., 

1997; Bordewijk et al., 2020). Researchers can use the plot to assess the heterogeneity of the test statistics combined in 

meta-analyses.  

The p-value plots were constructed and interpreted as follows:  

• Computed p-values were ordered from smallest to largest and plotted against the integers, 1, 2, 3,… 

• If p-value points on the plot followed an approximate 45-degree line, we concluded that test statistics resulted from a 

random (chance) process and the data supported the null hypothesis of no significant association. 

• If p-value points on the plot followed approximately a line with a flat/shallow slope, where most (the majority) of 

p-values were small (< 0.05), then test statistic data set provided evidence for a real, statistically significant, association. 

• If numbers of possible hypotheses tested were high in the base studies and p-value points on the plot exhibited a 

bilinear shape (divided into two lines), the data set of test statistics used for meta-analysis is consistent with a 

two-component mixture and a general (over-all) claim is not supported. In addition, a small p-value reported for the 

overall claim in the meta-analysis may not be valid (Schweder & Spjøtvoll, 1982). 

Questionable research practices (QRP) involve approaches used by researchers during data collection, analysis, and 

reporting that may increase false-positive findings in published literature (Ware & Munafò, 2015; Kunert, 2016). 

P-value plotting is a useful tool to detect the possibility that QRP may have affected test statistics drawn into 

meta-analysis and rendered the meta-analysis unreliable. 

2.4 Numbers of Hypotheses Tested on Cohort Population Data Sets 

An interesting problem of multiple testing bias may exist with cohort population data sets. While it is time-consuming 

and expensive to set up and follow a new cohort, it can be relatively inexpensive to add new measurements and research 

questions (hypotheses) to an existing cohort. For these reasons, it is possible to have many hypotheses examined on a 

given cohort as data for the cohort can be used repeatedly. A single published study of a particular cohort data set may 

only address the tip of the iceberg in terms of numbers of hypotheses examined and multiple testing bias. Collectively 

there may be numerous other hypotheses at issue when one considers that the same cohort data set can be used many 

times over for research. Many published papers in literature based on a single cohort data set imply large number of 

hypotheses examined overall with the possibility of large numbers of false positive (chance) results reported in 

literature. 

First, we wanted to show how common FFQ data is used by researchers investigating health effects. A potential problem 

is that researchers using FFQs – which are typically utilized in cohort studies – can examine many hypothesis and 

produce large numbers of false positive (chance) results. We did a Google Scholar (GS) database search to record the 

approximate number of articles in Web literature with the exact phrase “food frequency questionnaire” and a “[health 

effect]” mentioned anywhere in an article. We looked at 18 health effects: obesity, inflammation, depression, mental 

health, all-cause mortality, high blood pressure, lung and other cancers, metabolic disorders, low birth weight, 

pneumonia, autism, suicide, COPD (chronic obstructive pulmonary disease), ADHD (attention-deficit/hyperactivity 

disorder), miscarriage, atopic dermatitis, reproductive outcomes, erectile dysfunction. 

Second, we did another GS database search to record the approximate number of articles in Web literature using food 

frequency questionnaire (FFQ) data for each cohort indicated in the 15 selected base papers from Section 2.2. We used 

the exact phrase “[cohort name]” and the term “FFQ” mentioned anywhere in an article for the search. 

3. Results 

3.1 Research Questions Asked in Single Studies (Counting) 

Table 1 shows the count characteristics of 15 random papers selected from Vernooij. While early food frequency 
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questionnaire (FFQ) studies used only 61 foods (Willett et al., 1985), these 15 base papers include FFQ−cohort 

populations examining as many as 280 foods and 32 different health outcomes (Table 1). Summary statistics of the 15 

base papers are presented in Table 2. The median number of causes (predictors) was 15 and the median number of 

adjustment factors (covariates) was 9 in Table 2. These numbers suggest a great scope of the numbers of hypotheses 

examined (search space). 

Table 1. Characteristics of 15 randomly selected papers from Vernooij 

Citation# 
Base Paper 1st 

Author 
Year Foods Outcomes 

Causes 

(Predictors) 

Adjustment 

Factors 

(Covariates) 

Tests Models 
Search 

Space 

8 Dixon 2004 51 3 51 17 153 131,072 20,054,016 

31 McNaughton 2009 127 1 22 3 22 8 176 

34 Panagiotakos 2009 156 3 15 11 45 2,048 92,160 

38 Héroux 2010 18 32 18 9 576 512 294,912 

47 Akbaraly 2013 127 5 4 5 20 32 640 

48 Chan 2013 280 1 34 10 34 1,024 34,816 

49 Chen 2013 39 4 12 5 48 32 1,536 

53 Maruyama 2013 40 6 30 11 180 2,048 368,640 

56 George 2014 122 3 20 13 60 8,192 491,520 

57 Kumagai 2014 40 3 12 8 36 256 9,216 

59 Pastorino 2016 45 1 10 6 10 64 640 

65 Lacoppidan 2015 192 1 6 16 6 65,536 393,216 

80 Lv 2017 12 3 27 8 81 256 20,736 

92 Chang-Claude 2005 14 5 3 7 15 128 1,920 

99 Tonstad 2013 130 1 4 10 4 1,024 4,096 

Note: Citation# is Vernooij reference number; Author name is first author listed for reference; Year = publication year; 

Foods = # of foods used in Food Frequency Questionnaire; Tests = Outcomes × Causes; Models = 2A where A = number 

of Adjustment Factors; Search Space = Tests × Models = approximation of number of hypotheses examined. 

Researchers may believe they gain advantage by studying large numbers of outcomes, causes, and adjustment factors 

(i.e., testing many hypotheses), on the presumption that this maximizes their chances of discovering risk factor−health 

outcome associations (Willett et al., 1985). However, what they may have maximized is their likelihood of registering a 

false positive. Given that the conventional threshold for statistical significance in most disciplines is a p-value of less 

than 0.05, a false positive result should occur 5% of the time by chance alone in a multiple testing setting (Young et al., 

2021). The median count of the 15 base papers was 20,736 (refer to Table 2). Five percent of 20,736 possible 

hypotheses examined in a single FFQ−cohort data set equals 1,037 chance findings that may be mistaken for real 

results. 

Table 2. Characteristics of 15 randomly selected papers from Vernooij 

Statistic Foods Outcomes 
Causes 

(Predictors) 

Adjustment Factors 

(Covariates) 
Tests Models Search Space 

minimum 12 1 3 3 4 8 176 

lower quartile 40 1 8 7 18 96 1,728 

median 51 3 15 9 36 512 20,736 

upper quartile 129 5 25 11 71 2,048 331,776 

maximum 280 32 51 17 576 131,072 20,054,016 

mean 93 5 18 9 86 14,149 1,451,216 

Note: Foods = # of foods used in Food Frequency Questionnaire; Tests = Outcomes × Causes; Models = 2A where A = 

number of Adjustment Factors; Search Space = Tests × Models = approximation of number of hypotheses examined. 

In our review of the 15 base papers for evidence of correction for multiple testing bias, thirteen of the papers made no 

mention of this bias. One paper (Panagiotakos et al., 2009) stated… ‘multiple comparisons are made and consequently 

the probability of false positives findings (i.e., p-value) increases’. Another paper (George et al., 2014) stated… ‘All 

statistical tests were based on a priori hypotheses; therefore, no adjustment was performed for multiple testing’. 
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However, the estimated search space (number of hypotheses examined) is > 490,000 for this paper (refer to Table 1). 

The only apparent a priori hypotheses stated in their paper were ‘how scores on 4 commonly used diet quality indices – 

the Healthy Eating Index 2010, the Alternative Healthy Eating Index 2010, the Alternate Mediterranean Diet, and the 

Dietary Approaches to Stop Hypertension – are related to the risks of death from all causes, cardiovascular disease 

(CVD), and cancer among postmenopausal women’. 

3.2 P-value Plots 

The p-value plots for six health outcomes are presented in Figure 1. Each of the six images in Figure 1 indexes rank 

order (the x axis) and p-value (the y axis). The p values – symbols (circles or triangles) in the body of the six images – 

are ordered from smallest to largest. The number of p-values in each plot corresponds to the number of studies (base 

papers) for each of the six outcomes. As noted in the Methods, if there is no effect the p-values will form roughly a 45⁰ 

line. If the line is flat/shallow with most of the p-values small, then it supports a real effect. Finally, if the shape of the 

points is bilinear and the counts are high, then the result, i.e., claim, is ambiguous (uncertain) at best. 

 

Figure 1. P-value plots (p-value versus rank) for meta-analysis of six health outcomes from Vernooij. Symbols (circles or 

triangles) are p-values ordered from smallest to largest; triangle pointing downwards (upwards) represents decreasing 

(increasing) effect 

The p-value plots for all-cause mortality, cardiovascular mortality, and all cancer mortality appear bilinear, hence 

ambiguous. The p-value plots for breast cancer incidence and colorectal cancer incidence appear as 45⁰ lines, suggesting 

a likelihood of no effect.  

The p-value plot for colorectal cancer incidence (bottom left-hand side) is unusual, with the seven largest p-values on a 

roughly 45⁰ line, two below the 0.05 threshold, and one extremely small p-value (6.2 x 10−5). Researchers usually take a 

p-value less than 0.001 as very strong evidence of a real effect (Boos & Stefanski, 2011). Others suggest that small 

p-values indicate failures of research integrity (Al-Marzouki et al., 2005; Roberts et al., 2007). If the small p-values 

indicates a real effect, then p-values larger than 0.05 should be rare. 

The p-value plot for Type 2 diabetes incidence (bottom right-hand side) has an appearance of a real effect – most of the 

p-values are small. However, the two smallest p-values – 4.1 x 10−9 and 1.7 x 10−7, shown as triangles – have 

conflicting results. The first is for a decrease of effect and the second is for an increase of effect. Our plot might suggest 

some support for a real association between red or processed meat and Type 2 diabetes—but with a sensible warning of 

conflicting results of the two smallest p-values. Here we would note a caution about possible failures of research 

integrity related to the base papers with small p-values as suggested by others (Roberts et al., 2007; Redman, 2013). 

Each health outcome presented in Figure 1 displays a wide range of p-value results – refer to Table 3. In the 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 11, No. 3; 2022 

45 

meta-analysis of breast cancer incidence (middle right-hand side), for example, p-values ranged from < 0.005 to 1 

across 19 base papers (> 2 orders of magnitude). In the meta-analysis of Type 2 diabetes incidence (bottom right-hand 

side), the p-values ranged from < 5 x 10−9 to 0.43 (> 7 orders of magnitude) – which suggests possible research integrity 

issues associated with small p-value results. 

Table 3. Minimum and maximum p-values for six health outcomes shown in Figure 1 from Vernooij. 

Health outcome Number of p-values Minimum p-value Maximum p-value 

All-cause mortality 25 1.6E-08 1 

Cardiovascular mortality 27 6.4E-06 0.82 

Overall cancer mortality 19 0.00032 0.89 

Breast cancer incidence 19 0.0024 1 

Colorectal cancer incidence 19 6.2x 10-5 0.78 

Type 2 diabetes incidence 16 4.1 x 10-9 0.43 

The smallest p-value from Table 6 is 4.1 x 10−9 – a value small enough to imply certainty (Boos & Stefanski, 2011). A p 

value this small may register a true finding – and small p-values are more likely in studies with large sample sizes 

(Young, 2008). But the wide range of p-values in studies asking the exact same research question – including several 

studies which register results far weaker than p < 0.05 – suggests that alternative explanations cannot be ruled out. 

These explanations may include some form of QRP – ranging from bias (e.g., alteration of research findings due to 

factors related to study design, data acquisition, and/or analysis or reporting of results) (Ioannidis, 2008) all the way to 

data fraud and fabrication (Mojon-Azzi & Mojon, 2004; Eisenach, 2009; George & Buyse, 2015). 

3.3 Research Questions Asked of Cohort Populations 

Table 4 shows how common FFQ data is used by researchers investigating health outcomes in the Google Scholar 

literature for 18 health effects we selected (search performed 22 March 2021). Obesity associated with foods is a 

particular topic of interest with researchers. However, outcomes less commonly expected to be related to foods, e.g., 

reproductive outcomes and erectile dysfunction, have been investigated.  

Table 5 presents the 15 cohorts and an estimate of the number of articles in Google Scholar literature for each cohort 

using FFQs (search performed 27 May 2021). From Table 5 we suggest that researchers overall may examine many 

hypotheses on a single cohort−FFQ data set and possibly without proper attention to multiple testing bias. We use the 

example of the Adventist Health Study-2 cohort data set from Table 5 to demonstrate the potential problem. If 653 

studies were published on this cohort population data set using FFQs and each study examined approximately 20,000 

hypotheses (i.e., similar to the median number of hypotheses in Table 2), 5% of 653 × 20,000 hypotheses equals 

653,000 chance findings that may be mistaken for real results across these studies. 

4. Discussion 

Regarding red meat−disease association studies, others report that red and processed meat consumption is associated 

with adverse health effects (e.g., Battaglia et al., 2015; Ekmekcioglu et al., 2015). The International Agency for 

Research on Cancer (IARC), the cancer agency of the World Health Organization, has classified red meat as probably 

carcinogenic to humans and processed meat as certainly carcinogenic to humans (WHO, 2015). We have stated 

previously that performance of another study statistically confirming the same hypothesis or claim is a cornerstone of 

science. The Vernooij meta-analysis offered scientific explanations against red and processed meat–health effect claims. 

Our independent findings suggest that the base papers used in Vernooij, properly examined statistically for false 

positives and possible evidence of QRP (i.e., counting of hypotheses and p-value plots), do not support the reliability of 

red and processed meat–health effect claims. 

Examining large numbers of hypotheses without offering all findings (now possible with supplemental material and 

web posting) makes it challenging to discover how many true or false-positive versus null findings might exist in a 

single study (or indeed multiple studies using the same cohort data set). A proposal for reporting meta-analysis of 

observational studies in epidemiology was provided for researchers in the Journal of the American Medical Association 

(Stroup et al., 2000). This proposal is frequently acknowledged in published literature (15,612 Google Scholar citations 

as of 1 May 2021). However, this proposal makes no mention of multiple testing bias in observational studies, and it 

offers no recommendations to control for this bias. Procedures to control multiple testing bias are well-established in 

literature (some examples include Westfall & Young, 1993; Benjamini & Hochberg, 1995; Schaffer, 1995). 
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Table 4. Google Scholar search of health effects associated with foods in Web literature 

RowID Outcome (effect) of interest # of citations 

1 obesity 42,600  

2 inflammation 23,100  

3 depression 18,000  

4 mental health 10,900  

5 all-cause mortality 10,700  

6 high blood pressure 9,470  

7 lung and other cancers 7,180  

8 metabolic disorders 5,480  

9 low birth weight 4,630  

10 pneumonia 2,140  

11 autism 2,080  

12 suicide 1,840  

13 COPD 1,800  

14 ADHD 1,370  

15 miscarriage 1,240  

16 atopic dermatitis 938  

17 reproductive outcomes 537  

18 erectile dysfunction 359  

Note: Performed on 22 March 2021; Google Scholar search is only an approximation as Web literature changes rapidly, 

small changes in search specifications can change results. 

Meta-analyses may provide greater evidentiary value if they combine test statistics from base papers that use reliable 

data and analysis procedures and, crucially, all studies are responding to the same process (Fisher, 1950; DerSimonian 

& Laird, 1986). Base papers that examine many hypotheses and do not correct for multiple testing bias cannot be 

considered reliable data for meta-analyses. Furthermore, meta-analyses that combine test statistics from base papers that 

do and do not correct for this bias are not combining comparable statistics. 

Bilinear p-value plots in Figure 1 suggest evidence that nutritional epidemiological meta-analyses have combined test 

statistics from base studies that do not use comparable methods. Alternately, the bilinear plots may register the existence 

of one or more powerful covariates correlated with a cause (predictor variable) in some of the studies – that, for 

example, cardiorespiratory fitness is confounded with dietary risk of mortality (Héroux et al., 2010). However, the 

existence of an unrecognized covariate would also render meta-analysis’ results unreliable. 

Large numbers of hypotheses examined in the 15 random base papers of Vernooij – refer to Tables 1 and 2 – make it 

plausible to infer that some test statistics with small p-values among the base papers may be derived from some form of 

QRP. The large number of articles resulting from these cohort data sets (Tables 5) supports this. 

Epidemiology studies that examine many hypotheses tend to provide results of limited quality for each association due 

to limited exposure assessment and inadequate information on potential confounders (Savitz & Olshan, 1995). These 

studies are prone to seek out small but (nominally) significant risk factor–health outcome associations (i.e., those that 

are less than 0.05) in multiple testing environments. These practices may render research susceptible to reporting 

false-positives as real results, and to risk mistaking an improperly controlled covariate for a positive association. A set 

of base studies in a meta-analysis where possible numbers of hypotheses examined are large and whose p-values 

demonstrate bilinearity in a p-value plot should be regarded as questionable.  

We note the following limitations of our methods: counting of the possible number of hypotheses examined is not easy 

as the statistical details of a base study may be presented anywhere in the article or not at all; the counting formula is 

only an approximation; we did not include possible interactions among the variables; the use of a p-value plot for 

evaluation of a meta-analytic result is relatively new; and the Google Scholar searches are only approximations of 

numbers of articles in Web literature as the Web literature changes rapidly and small changes in search specifications 

can change results. 
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Table 5. Cohort study names and estimate of papers in Web literature using FFQs for the 15 randomly sampled base 

papers of Vernooij 

Citation# Author Year Cohort Study Name Papers, Cohort+FFQ 

48 Chan 2013 Mr. Os and Ms Os (Hong Kong) 8 

56 George 2014 WHI Women’s Health Initiative Observational Study 1,520 

49 Chen 2013 HEALS and ‘Bangladesh’ 1,080 

53 Maruyama 2013 JACC Japan Collaborative Cohort 758 

57 Kumagai 2014 NHI Ohsaki National Health Insurance Cohort 122 

47 Akbaraly 2013 Whitehall II study 1,800 

99 Tonstad 2013 Adventist Health Study-2 653 

80 Lv 2017 China Kadoorie Biobank 143 

59 Pastorino 2016 MRC National Survey of Health and Development 148 

31 McNaughton 2009 Whitehall II study 1,800 

34 Panagiotakos 2009 ATTICA Study 1,650 

8 Dixon 2004 DIETSCAN (Dietary Patterns and Cancer Project) 1,080 

38 Héroux 2010 ACLS (Aerobics Center Longitudinal Study) 167 

65 Lacoppidan 2015 Diet, Cancer, and Health (DCH) cohort 116 

92 Chang-Claude 2005 German vegetarian study 13 

Note: Google Scholar search performed 17 May 2021; Citation# = Vernooij reference number; Author name = first 

author listed for reference; Year = publication year; Cohort Name = name of study cohort; Papers, Cohort + FFQ = # of 

papers in literature mentioning study cohort using a Food Frequency Questionnaire (FFQ); Google Scholar search is 

only an approximation as Web literature changes rapidly, small changes in search specifications can change results. 

5. Findings 

We independently evaluated the Vernooij meta-analysis. Specifically, we examined properties of the test statistics that 

were combined to derive meta-analytic statistical associations between red and processed meat and all-cause mortality, 

cardiovascular mortality, all cancer mortality, breast cancer incidence, colorectal cancer incidence, type 2 diabetes 

incidence. The possible number of hypotheses examined in 15 random base papers we evaluated was large, median = 

20,736 (interquartile range = 1,728–331,776). Each p-value plot of the test statistics for selected health effects we 

evaluated showed either a random pattern (p-values > 0.05), or a two-component mixture with small p-values < 0.001 

while other p-values appeared random. Given potentially large numbers of hypotheses examined in the base papers, 

questionable research practices cannot be ruled out as explanations for test statistics with small p-values. Given this 

evidence, we conclude that: i) our statistical examination does not support the reliability of red meat−negative health 

claims, and ii) the Vernooij finding – …dietary patterns with less red and processed meat intake may result in very 

small reductions in adverse cardiometabolic and cancer outcomes – is reliable. 
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