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Abstract

When comparing two independent groups, a possible appeal of the quantile shift measure of effect size is that its magnitude
takes into account situations where one or both distributions are skewed. Extant results indicate that a percentile bootstrap
method performs reasonably well given the goal of making inferences about this measure of effect size. The goal here
is to suggest a method for making inferences about this measure of effect size when there is a covariate. The method is
illustrated with data dealing with the wellbeing of older adults.
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1. Introduction

Consider two independent groups having unknown distributions. Here, the first group is viewed as a control group and
the other group is an experimental group. Let δ denote some parameter that characterizes how the distributions differ.
There is now a wide range of choices for δ with each providing a different perspective on how the groups compare (e.g.,
Huberty, 2002; Grissom & Kim, 2012; Wilcox, 2022b).

Note that the median of the experimental group corresponds to the Qth quantile of the control group. That is, Q reflects the
extent the median of the experimental group is unusual relative to the control group and is generally known as a quantile
shift measure of effect size. A possible appeal of this measure of effect size is that its relative magnitude takes into account
whether one or both distributions are skewed. Extant results indicate that a reasonably accurate confidence interval for Q
can be computed via a percentile bootstrap method (e.g., Wilcox, 2022b). However, when there is a covariate, there are
no results on how to proceed. The goal here is to suggest a method for making inferences about Q, given a value for some
covariate, followed by a simulation study that deals with how well the proposed method performs.

To review the motivation for Q as well as some of its properties, first consider the situation where there is no covariate.
To begin, let θ j and τ j denote some measure of location and scale, respectively, associated with the jth group ( j = 1,
2). Certainly the most common approach to comparing two distributions is to take the measure of location θ j to be the
population mean or median and to view the measure of scale, τ j, as a nuisance parameter. More formally use δ = θ1 − θ2
to characterize how the groups differ and test

H0 : θ1 = θ2 (1)

or compute a confidence interval for θ1 − θ2.

Another general approach is to use a measure of effect size that takes into account both measures of location and some
measure of variation. Broadly, this approach uses

δ =
θ1 − θ2

f (τ1, τ2)
, (2)

where f (τ1, τ2) is some function of τ1 and τ2 to be determined. Seemingly, the best-known version of (2) is where θ j = µ j,
the population mean, τ j = σ j, the population standard deviation, and by assumption σ1 = σ2 = σ (homoscedasticity), in
which case (2) becomes

∆ =
µ1 − µ2

σ
. (3)

A common practice (e.g., Cohen, 1988) is to view ∆ = 0.2, 0.5 and 0.8 as being small, medium and large, respectively.
Presumably, what constitutes a large effect size can depend on the situation. However, for illustrative purposes, Cohen’s
suggestion is assumed henceforth.

There are two basic concerns with ∆. First, it assumes homoscedasticity. Kulinskaya et al. (2008) derived a heteroscedas-
tic measure of effect size given by

δkms =
µ1 − µ2

ς
, (4)
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Figure 1. The solid line is a standard normal distribution, σ2 = 1. The dashed line is a mixed normal distribution,
σ2 = 10.9

where

ς2 =
(1 − q)σ2

1 + qσ2
2

q(1 − q)
.

q = n1/N, N = n1 + n2 and n j are the sample sizes. Wilcox (2022a) reports results using this measure of effect size when
dealing with an interaction in a two-way design.

The second concern is that ∆ is not robust (e.g., Algina et al., 2005), roughly meaning that even a small departure from
normality can alter its value substantially. To be a bit more precise, the standard deviation is not robust (e.g., Hampel et
al, 1986; Huber & Ronchetti, 1990; Staudte & Shearer, 1986). It is highly sensitive to the tails of a distribution, the result
being that even a slight departure from a normal distribution has the potential of lowering ∆ substantially. In particular, a
large effect among the bulk of the participants can appear to be small when using ∆.

Following Algina et al. (2005), this issue is illustrated with the mixed normal distribution discussed by Tukey (1960). Its
cumulative distribution function (cdf) is given by

H(x) = 0.9Φ(x) + 0.1Φ(x/10), (5)

where Φ(x) is the cdf of a standard normal distribution. Figure 1 shows a plot of the standard normal and this mixed
normal distribution. As is evident, the two distributions appear to be very similar. However, while the standard normal
has variance one, the variance of the mixed normal is 10.9.

Now look at Figure 2. In the left panel, are two normal distributions with variance one. The means are 0 and 0.8, so
∆ = 0.8, which Cohen characterizes as large. In the right panel are two mixed normals again with means 0 and 0.8.
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Now ∆ = 0.8/
√

10.9 = 0.24, which is relatively small. Algina et al. (2005) deal with this issue by replacing the mean
and variance in (3) with a 20% trimmed mean and Winsorized variance, which is rescaled to estimate the variance when
dealing with a normal distribution. A similar modification of δkms is straightforward. These methods help deal with heavy-
tailed distributions such as the mixed normal, but there is an inherent assumption that the distributions are symmetric.
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Figure 2. A slight departure from a normal distribution can substantially lower ∆, masking a large effect among the bulk
of the participants. The left panel shows two normal distributions where ∆ = 0.8. The right panel shows to mixed

normals where ∆ = 0.24

To underscore some concerns when dealing with skewed distributions, it helps to first note that under normality, ∆ = 0.2
indicates that the mean of the experimental group corresponds to the 0.42 quantile of the control group. That is, the
experimental group shifts the mean of the control from the q1 = 0.5 quantile to the q2 = 0.42 quantile. Let δq = q1 − q2,
which captures the spirit of a standardized difference, ∆, without imposing any parametric family of distributions. Given
that ∆ = 0.2 is viewed as a small effect size when dealing with normal distributions, it follows that δq = 0.08 is considered
small as well. In a similar manner, if ∆ = 0.5 and 0.8 are considered medium and large effect size under normality,
respectively, this means that δq = 0.19 and δq = 0.29 are considered medium and large effect size as well.

Wilcox (2022b, section 5.3.4) describes possible concerns about skewed distributions when using ∆ or some robust,
heteroscedastic version of ∆. Note, for example, that in terms of magnitude, there is no distinction between ∆ = 0.5
and ∆ = −0.5. Both would be viewed as a median effect size. But consider the situation where the control group has a
lognormal distribution, which has mean equal to 1.65, which is the q1 = 0.69 quantile. Suppose the experimental group
has a lognormal distribution that has been shifted to have mean θ2 which is the q2 quantile associated with the control
group. Of course, when the means are equal, ∆ = δq = 0. But consider the case where ∆ = 0.5. This corresponds
to shifting the mean from about the 0.69 quantile to the 0.29 quantile. So δq = 0.4, suggesting a very large effect size
rather than a medium effect size as suggested by ∆. It is readily verified that the reverse can happen where δq suggests a
small effect size in contrast to ∆. This same concern occurs for any measure of effect size that implicitly assumes that the
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distributions are symmetric.

One way of dealing with this concern in a robust, non-parametric manner is to first take θ1 and θ2 to be the population
medians of the control group and the experimental group, respectively. Let Y j denote some random variable of interest
associated with the jth group and let

Q = P(Y1 ≤ θ2). (6)

That is, θ2, the median of the experimental group, is the Qth quantile of the control group. Following Wilcox (2022b), Q is
taken to be a measure of effect size. The further Q is from 0.5 the larger the effect. Under normality and homoscedasticity,
∆ = 0.2, 0.5 and 0.8 correspond to Q = 0.58, 0.69 and 0.79, respectively.

Now consider the situation where there is a covariate X and let Q(x) denote the value of Q given that X = x. Section 2 of
this paper suggests a method for estimating Q(x). Included is a proposed method for testing

H0 : Q(x) = 0.5, (7)

no effect, as well as a method for computing a 1 − α confidence interval for Q(x). Section 3 reports the results of a
simulation study. Finally, the method is illustrated with data dealing with the physical and emotional wellbeing of older
adults.

It is noted that testing (7) is open to the criticism that surely Q(x) differs from 0.5 at some decimal place (Tukey, 1991).
Assuming this view is reasonable, the goal is not to test (7), but rather determine the extent it is reasonable to make a
decision about whether Q(x) is less than or greater than 0.5 (Jones & Tukey, 2000). From this point of view, a p-value
quantifies the strength of the empirical evidence that a decision can be made. But of course a p-value does not indicate
the probability of a correct decision.

2. The Proposed Method

Let η jqx denote the qth quantile of Y j given that X j = x. Here it is assumed that

η jqx = β0 jq + β1 jqx. (8)

The unknown slope, β1 jq and intercept, β0 jq, can be estimated via the well-known Koenker and Bassett (1978) quantile
regression estimator yielding say b1 jq and b0 jg, respectively. Assuming (8) is true provides a straightforward method for
estimating Q(x). Let θ̂2 = b1,2,0.5x + b0,2,0.5 denote the estimate of the conditional median of the experimental group given
that X = x. As is evident, θ̂2 corresponds to some quantile of the conditional distribution associated with the control
group, given that X = x, which is Q(x). An estimate of Q(x), Q̂(x), is the value of q such that

b1,1,qx + b0,1,q = θ̂2. (9)

Here, (9) is solved with the Nelder and Mead (1965) algorithm.

Now consider the goal of testing (7) as well as computing a confidence interval for Q(x). Here, a percentile bootstrap
method is used. For theoretical results that motivate the use of this method, see Liu and Singh (1997). Consideration
of this approach stems from past studies indicating that it frequently performs well when dealing with robust estimators
(Wilcox, 2022b). Briefly, let (Xi j,Yi j), (i = 1, . . . n j; j = 1,2) denote a random sample of size n j from the jth group.
Generate a bootstrap sample from each group by sampling with replacement n j pairs of values from group j. Based on
these bootstrap values, compute the estimate of Q(x) yielding Q̂∗(x). Repeat this process B times and label the results
Q̂∗b(x) (b = 1, . . . , B).

Let

P∗ =
∑

I(Q̂∗b(x) < 0.5), (10)

where the indicator function I(Q̂∗b(x) < 0.5) = 1 if Q̂∗b(x) < 0.5, otherwise I(Q̂∗b(x) < 0.5) = 0. Then a (generalized)
p-value for testing (7) is 2 min(P∗, 1 − P∗). To compute a 1 − α confidence interval, first put the bootstrap estimates in
ascending order and label the results Q̂∗(1)(x) ≤ · · · ≤ Q̂∗(B)(x). Let ` = αB/2 and u = B = `. Then a 1 − α confidence
interval for Q(x) is

(Q̂∗(`+1)(x), Q̂∗(u)(x)). (11)

This is called method Q henceforth. The choice for B is discussed in the next section of this paper.
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3. Simulation Results

Simulations were used to get some sense of how well the percentile bootstrap performs when making inferences about
Q(x). First, some comments about choosing B are required. Racine and MacKinnon (2007) discuss this issue at length and
proposed a method for choosing the number of bootstrap samples. Davidson and MacKinnon (2000) proposed a pretest
procedure for choosing B. Typically B ≥ 500 is used. However, a practical problem was that execution time using the
Nelder-Mead method to solve (9) was much higher than expected. Even with B = 100 and n1 = n2 = 20, execution time
was over 18 seconds on a MacBook Pro using a 2.9 GHz processor. The problem is that running a simulation with 1000
replications and B = 500 would require over 52 hours. Switching to alternative minimization functions in the R package
optim did not improves matters. Here, the execution time was reduced by taking advantage of a quad core processor via
the R package parallel. Now with B = 200, execution time for a single replication was a little over 26 seconds. That is,
for 1000 replications, the execution time is a little over seven hours. Consequently, B = 200 was used in the simulations
with 1000 replications.

Data were generated from four distributions: normal, symmetric and heavy tailed, skewed and relatively light-tailed, and
skewed with heavy tails. Roughly, heavy-tailed distributions are characterized by outliers. More precisely, data were
generated from four g-and-h distributions. Let Z denote a random variable having a standard normal distribution. Then

V =

 exp(gZ)−1
g exp(hZ2/2), if g > 0

Zexp(hZ2/2), if g = 0
(12)

has a g-and-h distribution (Hoaglin, 1985), where g and h are parameters that determine the first four moments. The four
distributions considered here are the standard normal distribution (g = h = 0), a symmetric heavy-tailed distribution (g =

0, h= 0.2), an asymmetric distribution with relatively light tails (g = 1, h = 0), and an asymmetric distribution with heavy
tails (g = h = 0.2). The g-and-h distribution with g = 1 and h = 0 corresponds to a lognormal distribution that has been
shifted to have a median of zero. Figure 3 shows plots of the four distributions used here. A review of five papers aimed at
characterizing the extent distributions are non-normal (Wilcox, 2022b, section 4.2) suggests that the g-and-h distributions
used here span what typically encountered in practice.

Inferences about Q(x) were made based on two choices for x. Let U j = x̂ j,0.8 denote an estimate of the 0.8 quantile
associated with the jth group. And let L j = x̂ j,0.2. Let L = max(L1, L2) and U = min(U1,U2). The first choice for x was
(L + U)/2 and the second choice was U.

Estimates of the actual Type I error probability are reported in Table 1. Bradley (1978) suggests that as a general guide,
when testing at the 0.05 level, the actual level should be between 0.025 and 0.075. As can be seen, the highest estimate is
0.053. Bradley’s criterion is satisfied for the point (L + U)/2 with one exception, which occurred when (n1, n2) = (20, 20),
g = 1 and h = 0.2. The estimate is 0.020. For U there are situations where the estimate drops below 0.025 when one or
both sample sizes are less than or equal to 50. The lowest estimate is 0.017. For (n1, n2) = (100, 100), the estimated Type
I error probability satisfies Bradley’s criterion in all of the situations considered.

There is the issue of how the power of the proposed method compares to situations where the covariate is ignored or
not available. Power can be higher or lower depending on the nature of the association. Consider, for example, n = 50,
g = h = 0 and suppose the groups are compared for the covariate value corresponding U. If there is no association,
β01 = 0.5 and β02 = 0, the power of the proposed method is 0.31. But if H0 : Q = 0.5 is tested ignoring the covariate,
power is 0.66. However, if β01 = β02 = 0, β11 = 1 and β12 = 0, the proposed method has power 0.568. In contrast,
ignoring the covariate, the power is only 0.050 because in effect the hypothesis H0 : Q = 0.5 is true.

4. Illustration

The proposed method is illustrated with data from the Well Elderly 2 study (Clark et al., 2011). Generally, this study dealt
with an intervention program aimed at improving the physical and emotional well being of older adults. The focus here
is on a measure of meaningful activities (MAPA). For each participant, cortisol was measured upon awakening and again
30-45 minutes later. The change in cortisol, generally known as the cortisol awakening response (CAR) has been found
to be associated with measures of stress (e.g., Clow et al., 2004; Chida & Steptoe, 2009). Consequently, the goal is to
compare MAPA measures with CAR taken as the covariate. The sample sizes are 232 for the control group and 141 for
the intervention group.

Figure 4 shows a plot of the data and the 0.5 quantile regression lines. For the control group, the data points are indicated
by a + and the solid line is the regression line. Table 2 summarizes the results for CAR=-0.2, -0.1 and 0.1. As can be
seen, the first two p-values are less than or equal to 0.02. At CAR=-0.2, the estimate of Q is 0.711, which is moderately
large.

To provide perspective, the groups were compared again based on the conditional median of the MAPA scores given a

56



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 11, No. 2; 2022

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

f(
x)

−5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

f(
x)

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

f(
x)

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

f(
x)

Figure 3. Distributions used in the simulations. Upper left, a standard normal distribution; upper right g = 0, h = 0.2;
lower left, g = 1, h = 0; lower right, g = 1, h = 0.2

Table 1. Estimated Type I error probabilities, α = 0.05

(n1, n2) g h (L + U)/2 U
(20, 20) 0.0 0.0 0.030 0.019

0.0 0.2 0.035 0.026
1.0 0.0 0.030 0.021
1.0 0.2 0.020 0.021

(20, 50) 0.0 0.0 0.028 0.031
0.0 0.2 0.026 0.023
1.0 0.0 0.029 0.026
1.0 0.2 0.029 0.021

(50, 50) 0.0 0.0 0.031 0.034
0.0 0.2. 0.035 0.017
1.0 0. 0 0.038 0.021
1.0 0.2 0.040 0.020

(100, 100) 0.0 0.0 0.049 0.034
0.0 0.2 0.035 0.037
1.0 0.0 0.039 0.030
1.0 0.2 0.058 0.036
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Figure 4. Solid line is the regression line for the control group

Table 2. Results for the Well Elderly data using method Q

CAR p.value Conf.Inter Q̂
-0.2 0.00 (0.588, 0.814) 0.711
-0.1 0.02 (0.509, 0.726) 0.586
0.1 0.36 (0.211, 0.632) 0.374
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Table 3. Results when comparing the conditional medians

CAR Est.1 Est.2 DIF Conf.Inter p.value
−0.2 30.8 33.5 −2.7 (−5.76, −0.28) 0.030
−0.1 31.3 32.6 −1.3 (−3.90, 1.21) 0.208

0.1 32.3 30.9 1.4 (−1.63, 4.51) 0.261

value for CAR. This was done via the method in Wilcox (2022b, section 12.1, method S1). The R function ancJN in the
R package WRS was used. The results are reported in Table 3. As can be seen, the p-values differ substantially from
those reported in Table 2, especially for CAR=−0.1 and 0.1, illustrating that the choice of method can make a practical
difference. Of course, this is not surprising because the two methods used here are sensitive to different features of the
data.

5. Concluding Remarks

An alternative to Q that reflects the approach given by (2) can be outlined as follows. Let θ j(x) denote the conditional
median of Y j given that X = x. Let τ j(x) denote the interquartile range of Y j given that X = x, rescaled to estimate
the standard deviation when the conditional distribution of the Y j is normal. Using τ j(x) as a robust measure of scale
is convenient because it is readily estimated by the Koenker–Bassett regression estimator. Then an analog of (4) is
readily derived, which is labeled ξ. However, when dealing with skewed distributions, this approach might be deemed
unsatisfactory for reasons previously described.

A possible appeal of ξ is that it provides a measure of effect size without having to specify one of the groups as a control
group. But perhaps this is not a serious concern when using Q. Imagine, for example, males and females are compared.
One could use females as the control group, estimate Q, and then use males as the control group, which in general would
yield a different estimate of Q.

It is not being suggested that Q should be used to the exclusion of other measures of effect size. The suggestion is that
multiple perspective can be useful and that Q supplements other measures that might be deemed reasonable. A possible
appeal of Q is that it provides a flexible way of characterizing the extent an experimental group improves upon a control
group regardless of the shape of the distribution of the control group.

Finally, the R function anclin.QS.CIpb performs method Q. It is contained in the file Rallfun-v39, which can be down-
loaded from https://osf.io/dashboard. Simply source the file to gain access to anclin.QS.CIpb. By default, the covariate
values are taken to be L, (L+U)/2 and U. The covariate values can be specified via the argument pts. Setting the argument
MC=TRUE, the function will take advantage of a multicore processor if one is available provided the R package parallel
has been installed. It is noted that the Nelder-Mead method was applied via the R function nelderv2, which is in the R
package WRS as well as the Rallfun-v39 file. When using the R function optim instead, situations were found where for
x sufficiently large, nonsensical estimates of Q were obtained in some instances. The reason for this is unknown.
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