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Abstract 

Modeling complex random phenomena frequently observed in reliability engineering and medical science once thought 

to be an enigma. Scientists and practitioners agree that an appropriate but simple model is the best choice for this 

investigation. We contribute a new family referred to as an odd Fréchet Lehmann type-II (OFrLII) G family of 

distributions to address these issues. This new family has involved a shape parameter that modulated the tails of new 

models. Furthermore, we develop a list of eight new sub-models for a new family and a power function distribution 

(OFrLII–PF) nominated for detailed discussion. We derive several complementary mathematical properties and explicit 

expressions for the moments, quantile function, and order statistics. We plot possible shapes of the density and the 

hazard rate functions over the particular choices of the model parameters. We follow a technique known as maximum 

likelihood estimation to estimate unknown model parameters and a simulation study established to assess the 

asymptotic behavior of these MLEs. The applicability of the OFrLII–G family, is evaluated via OFrLII –PF distribution. 

For this, we fit two engineering and one COVID–19 pandemic dataset. Supportive results of OFrLII–PF distribution 

declare it as a better fit model against the well-established competitor’s ones. A modified odd Fréchet Lehmann Type 

II–G Family of Distributions: A Power Function Distribution with Theory and Applications 

Keywords: Lehmann type distribution, Fréchet distribution, power function distribution, COVID–19, failure rate 

function; moments, Entropy, maximum likelihood estimation 

Mathematics Subject Classification: 60E05, 62P12, 62P30 

1. Introduction 

Over a long time, modeling complex random phenomena predominantly in reliability engineering and medical sciences 

consider an enigma for researchers. For this exploration, an appropriate but simple model is the first choice of scientists 

and practitioners. Several bounded and unbounded but simple to complex lifetime models have been developed to 

overcome these challenges, but a revolutionary change in the research world is attributed to [1]. The study by [1] 

developed one of the most spartan families known as a Lehmann type–I (L–I) with (cumulative distribution function CDF 
[𝑃𝑎(𝑧)]. L – I was the simple exponentiated version of any arbitrary baseline model. Lehmann's work was further 

discussed by [2] for the exponential distribution. In the meantime, [3] proposed a new technique to generate models with 

CDF [𝑃(𝑧) (𝑃(𝑧) + 𝑎�̅�(𝑧))⁄ ].  Study by [4] proposed a beta generated–P family with CDF 𝐹(𝑥) = ∫ 𝑏(𝑡)
𝑍(𝑥)

0
𝑑𝑡, 

where 𝑏(𝑡) is the PDF of beta distribution with 𝐺(𝑥; 𝜁) 𝜖 (0,1) is a CDF of any arbitrary baseline model. [5] proposed 

an odd log-logistic–P family with CDF [𝑃(𝑧) �̅�(𝑧)⁄ ]. [6] proposed a quadratic rank transmutation map with CDF 

[(1 + 𝑐)𝑃(𝑧) − 𝑐𝑃2(𝑧)].  [7] proposed a Kumaraswamy generalized–P family with CDF [1 − [1 − 𝑃𝑎(𝑧)]𝑏].  [8] 

proposed a gamma–P family with CDF [−𝑙𝑜g𝑃(𝑧)]. [9] developed a dual transformation and established a Lehmann 

type–II (L–II) P family with CDF 𝑍(𝑥) = 1 − (1 − 𝑃(𝑧))
𝑎
. [10] proposed a T–X family with CDF [1 − 𝑅(𝑊[𝐺(𝑧)])]. 

[11] proposed a Weibull–P family with CDF [1 − 𝑒(−𝑎[𝑃(𝑧) �̅�(𝑧)⁄ ]𝑏)]. [12] proposed a beta Marshall–Olkin–P family with 

CDF [𝐼𝑃−𝑀𝑂(𝑧)(𝑎, 𝑏)].  [13] proposed a DUS transformation to generate new models with CDF 

[(𝑒𝑃(𝑧) − 1) (𝑒 − 1)⁄ ].[14] proposed a Logistic–X family with CDF [[1 + [−𝑙𝑜g[�̅�(𝑧)]]
−𝑎
]
−1
].[15] proposed an alpha 

transformation with CDF [(𝛼𝑃(𝑧) − 1) (𝛼 − 1)⁄ ]. [16] developed an odd Fréchet (OFré)-G family with CDF is given by 
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𝑍(𝑥) = e
−[
1−𝐺(𝑧)

𝐺(𝑧)
]
𝑎

. [17] proposed a new alpha power transformation with CDF [𝑃(𝑧)𝛼𝑃(𝑧) 𝛼⁄ ]. Study by [18] proposed 

another technique with CDF [(𝑎𝑃(𝑧) − 𝑒𝑃(𝑧)) (𝑎 − 𝑒)⁄ ] to generate new models. [19] proposed a Gull alpha power 

Weibull–P family with CDF [𝛼𝑃(𝑧) 𝛼𝑃(𝑧)⁄ ].  [20] proposed a new Kumaraswamy–P family with CDF [1 − [1 −

(1 − �̅�(𝑧)𝑃(𝑧))
𝑎
]
𝑏
]. [21] proposed a new logarithmic–P family with CDF [1 − 𝐿𝑜g[(2 − 𝜆𝑃(𝑧)) 𝑙𝑜g(2)⁄ ]] and many 

others. Attracted features of L–I,–II compelled the researchers to explore new areas for modeling and discuss the hidden 

characteristics of classical and modified models. For recent examples, see the latest work of the references. [22] 

generalized a new model via L–II–P family. [23] discussed exponentiated PF distribution with L–I. [24] developed a 

generalized version of L–II. [25] developed the P family of a generalized version of L–II with CDF 

[1 − ((1 − 𝑃(𝑧)) (1 − 𝑎𝑃(𝑧))⁄ )
𝑏
], and [26] discussed a beta version of L–II with CDF [𝐼

1−(1−𝑃(𝑧))
𝑎(𝑎, 𝑏)].  

1.1 Definition  

We have proposed a new family, known as odd Fréchet Lehmann type-II (OFrLII) G family of distributions with CDF  

𝐹O𝐹𝑟LII−𝐺(𝑥; 𝜙) = 1 − (1 − 𝑒
−(
1−𝐺(𝑥;𝜙)
𝐺(𝑥;𝜙)

)
)

𝑎

 ; 𝑥 ∈ ℝ, 𝑎, 𝜙 > 0, (1) 

where 𝐺(𝑥;𝜙) 𝜖 (0,1) is a CDF of any arbitrary baseline model based on the parametric vector 𝜙 depends on (r x 1) 

with 𝑎 > 0 as a shape parameter. OFrLII – G family is obtained by replacing the CDF of L–II with the CDF of the 

OFré – G family withholding a power parameter of the OFré – G family, which equals one.  

In Table 1 we present eight new sub-models survival functions 𝑆(𝑥; 𝜙) corresponding to classical baseline models 

𝐺(𝑥; 𝜙). 

Table 1. List of New Sub-models 𝑆(𝑥; 𝜙) corresponding to 𝐺(𝑥; 𝜙) functions 

Model Support Baseline model Survival models 𝝓 

Rayleigh (0,∞) 1 − 𝑒− 𝑏𝑥
2 

 (1 − 𝑒1−(1−𝑒
− 𝑏𝑥2 )

−1

)

𝑎

 𝑎, 𝑏 

Gompertz (0,∞) 1 − 𝑒−𝑏(𝑒
𝑐𝑥 −1) (1 − 𝑒1−(1−𝑒

−𝑏(𝑒𝑐𝑥 −1))
−1

)

𝑎

 𝑎, 𝑏, 𝑐 

Pareto (𝑚,∞) 1 − (
𝑚

𝑥
)
𝑏

 (1 − 𝑒
1−(1−(

𝑚
𝑥 )
𝑏
)

−1

)

𝑎

 𝑎, 𝑏 

Fréchet (0,∞) 𝑒−𝑏𝑥
−𝑐

 (1 − 𝑒1−(𝑒
−𝑏𝑥−𝑐)

−1

)
𝑎

 𝑎, 𝑏, 𝑐 

Burr-X (0,∞) (1 − 𝑒− (𝑏𝑥)
2
)
𝑐
 (1 − 𝑒1−(1−𝑒

− (𝑏𝑥)2)
−𝑐

)

𝑎

 𝑎, 𝑏, 𝑐 

Weibull (0,∞) 1 − 𝑒−𝑏𝑥
𝑐
 (1 − 𝑒1−(1−𝑒

−𝑏𝑥𝑐)
−1

)
𝑎

 𝑎, 𝑏, 𝑐 

Lomax (0,∞) 1 − (1 + 𝑥𝑏−1)−𝑐 (1 − 𝑒1−(1−(1+𝑥𝑏
−1)

−𝑐
)
−1

)
𝑎

 𝑎, 𝑏, 𝑐 

Power Function  (0, g0) (
𝑥

g0
)
𝑏

 (1 − 𝑒1−(
g0
𝑥 )

𝑏

)

𝑎

 𝑎, 𝑏 

Let g(𝑥; 𝜙) = 𝑑𝐺(𝑥; 𝜙) 𝑑𝑥⁄  is the probability density function (PDF) of any baseline model. The associated 

PDF (𝑓O𝐹𝑟LII−𝐺(𝑥; 𝜙)) , hazard rate function HRF (ℎO𝐹𝑟LII−𝐺(𝑥; 𝜙)) , and quantile function 

(𝑄O𝐹𝑟LII−𝐺(𝑞; 𝜙))corresponding to OFrLII–G family are, given by, respectively  

𝑓O𝐹𝑟LII−𝐺(𝑥; 𝜙) =
𝑎g(𝑥; 𝜙)

𝐺2(𝑥; 𝜙)
𝑒
−(
1−𝐺(𝑥;𝜙)
𝐺(𝑥;𝜙)

)
(1 − 𝑒

−(
1−𝐺(𝑥;𝜙)
𝐺(𝑥;𝜙)

)
)

𝑎−1

 , (2) 
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ℎO𝐹𝑟LII−𝐺(𝑥; 𝜙) =
𝑎g(𝑥; 𝜙)𝑒

−(
1−𝐺(𝑥;𝜙)
𝐺(𝑥;𝜙)

)

𝐺2(𝑥; 𝜙) (1 − 𝑒
−(
1−𝐺(𝑥;𝜙)
𝐺(𝑥;𝜙)

)
)

, (3) 

and 

𝑄O𝐹𝑟LII−𝐺(𝑞; 𝜙) = 𝐺
−1 (1 − 𝑙𝑜g (1 − (1 − 𝑞)

1
𝑎))

−1

 , 𝑞 ∈ (0,1). (4) 

Now and onward, an odd Fréchet Lehmann type-II (OFrLII) G family random variable X corresponding to 

𝑓O𝐹𝑟LII−𝐺(𝑥; 𝜙) will be denoted by X~ OFrLII –G(𝑥; 𝜙) and to the best of our knowledge, no study has been done in 

the past that relates to our new family. This study has the following motivations: 

(i) To propose a new family that generates flexibility and improves the features of baseline models.  

(ii) Closed-form features of CDF, PDF and HRF of new models are simple to interpret.  

(iii) New models offer greater distributional flexibility in terms of high kurtosis.  

(iv) It offers a better fit over the asymmetric, and bathtub-shaped random phenomena particularly associated with 

the engineering, and medical sciences events. 

This paper is assembled on the following steps. The construction of a new family is discussed in Section 1. General 

characteristics of a new family are developed in Section 2. A detailed discussion of OFrLII–PF distribution (sub-model) 

is done in Section 3. A technique to estimate the model parameters named maximum likelihood estimation and a 

simulation study are discussed in Section 4. Real-life data sets are analyzed in Section 6 and finally, the conclusion is 

reported in Section 7. 

2. General Characteristics  

2.1 Useful Representation  

Linear representation of CDF and PDF has a significant role in providing more ease for complex mathematical 

measures. For OFrLII–G family we utilize binomial and exponential series expansions and it is given by 

(1 − 𝑧)𝛽 =∑(−1)𝑖 (
𝛽
𝑖
) 𝑧𝑖

∞

𝑖=0

, |𝑧| < 1;  𝑒𝑧 =∑
𝑧𝑗

𝑗!

∞

𝑗=0

. 

Infinite linear combinations of CDF  

𝐹O𝐹𝑟LII−𝐺(𝑥; 𝜙) = 1 − ∑ (
𝑎
𝑖
) (
𝑗
𝑘
)
(−1)𝑖+𝑗+𝑘𝑖𝑗

𝑗!
𝐺𝑘−𝑗(𝑥; 𝜙)

∞

𝑖,𝑗,𝑘=0

, 

𝐹O𝐹𝑟LII−𝐺(𝑥; 𝜙) = 1 − ∑ ∆𝑖,𝑗,𝑘𝐺
𝑐(𝑥; 𝜙)

∞

𝑖,𝑗,𝑘=0

, (5) 

and PDF for OFrLII–G family are given by 

𝑓O𝐹𝑟LII−𝐺(𝑥; 𝜙) = 𝑎 ∑ (
𝑖
𝑗
) (
𝑎 − 1
𝑘
) (
𝑙
𝑚
)
(−1)𝑖+𝑗+𝑘+𝑙+𝑚

𝑖! 𝑙!
g(𝑥; 𝜙)

∞

𝑖,𝑗,𝑘,𝑙,𝑚=0

𝐺𝑗−𝑖−𝑙+𝑚−2(𝑥; 𝜙), 

𝑓O𝐹𝑟LII−𝐺(𝑥; 𝜙) = 𝑎 ∑ ∇𝑖,𝑗,𝑘,𝑙,𝑚

∞

𝑖,𝑗,𝑘=0

g(𝑥; 𝜙)𝐺𝑑(𝑥; 𝜙), (6) 

respectively, where ∆𝑖,𝑗,𝑘= (
𝑎
𝑖
) (
𝑗
𝑘
)
(−1)𝑖+𝑗+𝑘𝑖𝑗

𝑗!
, 𝑐 = 𝑘 − 𝑗, ∇𝑖,𝑗,𝑘,𝑙,𝑚= (

𝑖
𝑗
) (
𝑎 − 1
𝑘
) (
𝑙
𝑚
)
(−1)𝑖+𝑗+𝑘+𝑙+𝑚

𝑖!𝑙!
, 𝑑 = 𝑗 − 𝑖 − 𝑙 +
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𝑚 − 2. The expansions in (5) and (6) provide us the exponentiated-G (Exp-G) family which is quite useful for the 

generalization of models. 

2.2 Moments  

The r-th ordinary moment (sayμ 𝑟
/

) of X is given by  

𝜇 𝑟
/
= ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

+∞

−∞

.  

By following (6), we obtain  

𝜇 𝑟−O𝐹𝑟LII−𝐺
/

= 𝑎 ∑ ∇𝑖,𝑗,𝑘,𝑙,𝑚

∞

𝑖,𝑗,𝑘,𝑙,𝑚=0

𝐼𝑟𝑑(𝑥; 𝜙), (7) 

where coefficient  ∇𝑖,𝑗,𝑘,𝑙,𝑚= (
𝑖
𝑗
) (
𝑎 − 1
𝑘
) (
𝑙
𝑚
)
(−1)𝑖+𝑗+𝑘+𝑙+𝑚

𝑖!𝑙!
, 𝑑 = 𝑗 − 𝑖 − 𝑙 + 𝑚 − 2  and 

𝐼𝑟𝑑(𝑥; 𝜙) = ∫ 𝑥𝑟g(𝑥; 𝜙)𝐺𝑑(𝑥; 𝜙)𝑑𝑥
+∞

−∞
. 

2.3 Incomplete Moments 

The first incomplete moment has a significant role in the discussion of Bonferroni and Lorenz curves. The r – th 

incomplete moments 𝜑𝑟(𝑡) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥
𝑡

−∞
 directly followed by (7) are given by 

𝜑𝑟−O𝐹𝑟LII−G(𝑡; 𝜙) = 𝑎 ∑ ∇𝑖,𝑗,𝑘,𝑙,𝑚

∞

𝑖,𝑗,𝑘,𝑙,𝑚=0

𝐼𝑟,𝑡𝑑(𝑥; 𝜙), 

where 𝐼𝑟,𝑡𝑑(𝑥; 𝜙) = ∫ 𝑥𝑟g(𝑥; 𝜙)𝐺𝑑(𝑥; 𝜙)𝑑𝑥
𝑡

−∞
.For parent distributions, integrals 𝐼𝑟𝑑(𝑥; 𝜙) and 𝐼𝑟,𝑡𝑑(𝑥; 𝜙) can be 

solved numerically.  

2.4 Residual and Reversed Residual Life Functions 

The residual life function is defined by 𝑅𝑡(𝑥) =
𝑆(𝑥+𝑡)

𝑆(𝑡)
. The residual life function of X is given by 

𝑅𝑡−O𝐹𝑟LII−G(𝑥) =

(1 − 𝑒
−(
1−𝐺(𝑥+𝑡;𝜙)
𝐺(𝑥+𝑡;𝜙)

)
)

(1 − 𝑒
−(
1−𝐺(𝑡;𝜙)
𝐺(𝑡;𝜙)

)
)

𝑎

𝑎

. 

Furthermore, reversed residual life function is defined by �̅�𝑡(𝑥) =
𝑆(𝑥−𝑡)

𝑆(𝑡)
. The reversed residual life function of X is 

given by 

�̅�𝑡−O𝐹𝑟LII−G(𝑥) =

(1 − 𝑒
−(
1−𝐺(𝑥−𝑡;𝜙)
𝐺(𝑥−𝑡;𝜙)

)
)

(1 − 𝑒
−(
1−𝐺(𝑡;𝜙)
𝐺(𝑡;𝜙)

)
)

𝑎

𝑎

. 

2.5 Moment Generating Function 

Moment generating function 𝑀𝑋(𝑡) is defined as 𝑀𝑋(𝑡) = ∑
𝑡𝑟

𝑟!
∞
𝑟=0 𝜇𝑟

′  and it is given by 
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𝑀𝑋−O𝐹𝑟LII−𝐺(𝑥; 𝜙) = 𝑎∑
𝑡𝑟

𝑟!

∞

𝑟=0

∑ ∇𝑖,𝑗,𝑘,𝑙,𝑚

∞

𝑖,𝑗,𝑘=0

𝐼𝑟𝑑(𝑥; 𝜙), (8) 

where coefficient          ∇𝑖,𝑗,𝑘,𝑙,𝑚= (
𝑖
𝑗
) (
𝑎 − 1
𝑘
) (
𝑙
𝑚
)
(−1)𝑖+𝑗+𝑘+𝑙+𝑚

𝑖!𝑙!
, 𝑑 = 𝑗 − 𝑖 − 𝑙 + 𝑚 − 2 

and            𝐼𝑟𝑑(𝑥; 𝜙) = ∫ 𝑥𝑟g(𝑥; 𝜙)𝐺𝑑(𝑥; 𝜙)𝑑𝑥
+∞

−∞
. 

2.6 Entropy  

When a system is quantified by randomness in general, it is known as entropy. [27] entropy of X is given by 

𝐻𝛿(𝑋) =
1

1 − 𝛿
𝑙𝑜g∫ 𝑓𝛿(𝑥)𝑑𝑥

∞

−∞ 

 , 𝛿 > 0 𝑎𝑛𝑑 𝛿 ≠ 1.  (9) 

By following (2), we simplify 𝑓(𝑥; 𝜙) in terms of 𝑓𝛿(𝑥; 𝜙), we get   

𝑓𝛿
O𝐹𝑟LII−𝐺

(𝑥; 𝜙) =
𝑎𝛿g𝛿(𝑥; 𝜙)

𝐺2𝛿(𝑥; 𝜙)
𝑒
−𝛿(

1−𝐺(𝑥;𝜙)
𝐺(𝑥;𝜙)

)
(1 − 𝑒

−(
1−𝐺(𝑥;𝜙)
𝐺(𝑥;𝜙)

)
)

𝛿(𝑎−1)

.  

The expansion of 𝑒
−𝛿(

1−𝐺(𝑥;𝜙)

𝐺(𝑥;𝜙)
)
 and (1 − 𝑒

−(
1−𝐺(𝑥;𝜙)

𝐺(𝑥;𝜙)
)
)
𝛿(𝑎−1)

 provide us Exp-G and the last expression can be written 

as follows 

𝑓𝛿
O𝐹𝑟LII−𝐺

(𝑥; 𝜙) =

(

 
 
 

𝑎𝛿g𝛿(𝑥; 𝜙)

𝐺2𝛿(𝑥; 𝜙)
∑
(−1)𝑖𝛿𝑖

𝑖!

∞

𝑖=0

×
1

𝐺𝑖(𝑥; 𝜙)
∑(

𝑖
𝑗
)

∞

𝑗=0

(−1)𝑗𝐺𝑗(𝑥; 𝜙) ×

∑(
𝛿(𝑎 − 1)

𝑘
) (−1)𝑘∑

(−1)𝑙𝑘𝑙

𝑙!

∞

𝑙=0

×
1

𝐺𝑙(𝑥; 𝜙)
∑ (

𝑙
𝑚
)

∞

𝑚=0

(−1)𝑚𝐺𝑚(𝑥; 𝜙)

∞

𝑘=0 )

 
 
 
. 

Now place the last information in (9) which provides us a reduced form of Rényi entropy for X and it is given as follows 

𝐻𝛿−O𝐹𝑟LII−𝐺(𝑋) =
1

1 − 𝛿
𝑙𝑜g𝑎𝛿 ∑ ∇𝑖,𝑗,𝑘,𝑙,𝑚

∗

∞

𝑖,𝑗,𝑘,𝑙,𝑚=0

𝐼𝛿𝑑(𝑥; 𝜙), 

where 

∇𝑖,𝑗,𝑘,𝑙,𝑚
∗ = (

𝑖
𝑗
) (
𝛿(𝑎 − 1)

𝑘
) (
𝑙
𝑚
)
(−1)𝑖+𝑗+𝑘+𝑙+𝑚𝛿𝑖𝑘𝑙

𝑖!𝑙!
, 𝑑 = 𝑗 − 𝑖 − 𝑙 + 𝑚 − 2𝛿, 𝐼𝛿𝑑(𝑥; 𝜙) = ∫ g𝛿(𝑥; 𝜙)𝐺𝑑(𝑥; 𝜙)𝑑𝑥

+∞

−∞
. 

2.7 Distribution of Order Statistics  

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛be a random sample of size n follows to the O𝐹𝑟LII–G family and 𝑋(1:𝑛) < 𝑋(2:𝑛) < . . . < 𝑋(𝑛:𝑛)be 

the corresponding order statistics. The PDF of 𝑋(𝑖)is given by 

𝑓(𝑖:𝑛)(𝑥; 𝜙) =
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)!
(𝐹(𝑥; 𝜙))

𝑖−1
(1 − 𝐹(𝑥; 𝜙))

𝑛−𝑖
𝑓(𝑥; 𝜙), 𝑖 = 1,2,3, …𝑛.  

Using the fact that 

(1 − 𝐹(𝑥; 𝜙))
𝑛−𝑖

= ∑(−1)𝑚
𝑛−𝑖

𝑚=0

(
𝑛 − 𝑖
𝑚
)𝐹(𝑥; 𝜙)𝑚, 

and place the last information in 𝑓(𝑖:𝑛)(𝑥; 𝜙), we obtain the most refined form of OS PDF and expression may be 

written as follows 

𝑓(𝑖:𝑛)(𝑥; 𝜙) =
𝑓(𝑥; 𝜙)

𝐵(𝑖, 𝑛 − 𝑖 + 1)!
∑(−1)𝑚
𝑛−𝑖

𝑚=0

(
𝑛 − 𝑖
𝑚
)𝐹(𝑥; 𝜙)𝑖+𝑚−1. (10) 
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𝐹(𝑥; 𝜙), and 𝑓(𝑥; 𝜙) are the associated CDF with the corresponding PDF of the O–L–II–G family and   

𝐹(𝑥; 𝜙)𝑖+𝑚−1 = ∑ (
𝑛 − 𝑖
𝑚
) (
𝑖 + 𝑚 − 1

𝑗
) (
𝑗
𝑘
) (
𝑙
𝑜
)
(−1)𝑗+𝑘+𝑙+𝑚+𝑜

𝑙!

∞

𝑖,𝑗,𝑘,𝑙,𝑜=0

𝑘𝑙𝐺𝑜−𝑙(𝑥; 𝜙). 

Hence one may obtain the straightforward expression of OS PDF by inserting the last information in (10). 

2.8 Bivariate Extension 

In this sub-section, we present a simple bivariate extension of the OFrLII–G family. A joint CDF of the OFrLII family 

is given by 

𝐹𝑂−𝐿−𝐼𝐼−𝐺(𝑥, 𝑦; 𝜙) = 1 − (1 − 𝑒
−(
1−𝐺(𝑥,𝑦;𝜙)
𝐺(𝑥,𝑦;𝜙)

)
)

𝑎

 , 𝑥, 𝑦 ∈ ℝ, 𝑎, 𝜙 > 0, 

where 𝐺(𝑥, 𝑦; 𝜙) is a bivariate continuous distribution function along with marginal CDF’s 𝐺1(𝑥; 𝜙) and 𝐺2(𝑦; 𝜙). 
We refer to it as a bivariate OFrLII–G family of distributions. The marginal CDF’s of X and Y is given by respectively 

are given by 

𝐹𝑋−O𝐹𝑟LII−𝐺(𝑥; 𝜙) = 1 − (1 − 𝑒
−(
1−𝐺1(𝑥;𝜙)
𝐺1(𝑥;𝜙)

)
)

𝑎

 , 

𝐹𝑌−O𝐹𝑟LII−𝐺(𝑦; 𝜙) = 1 − (1 − 𝑒
−(
1−𝐺2(𝑦;𝜙)
𝐺2(𝑦;𝜙)

)
)

𝑎

 . 

The joint PDF of (𝑋, 𝑌) can be determined easily by following 𝑓𝑋,𝑌(𝑥, 𝑦; 𝜙) =
𝜕2𝐹𝑋,𝑌(𝑥,𝑦)

𝜕𝑥𝜕𝑦
. Furthermore, the marginal 

PDFs of X and Y are given by, respectively 

𝑓𝑂−𝐿−𝐼𝐼−𝐺−𝑋(𝑥; 𝜙) =
𝑎g1(𝑥; 𝜙)

𝐺21(𝑥; 𝜙)
𝑒
−(
1−𝐺1(𝑥;𝜙)
𝐺1(𝑥;𝜙)

)
(1 − 𝑒

−(
1−𝐺1(𝑥;𝜙)
𝐺1(𝑥;𝜙)

)
)

𝑎−1

, 

𝑓𝑂−𝐿−𝐼𝐼−𝐺−𝑌(𝑦; 𝜙) =
𝑎g2(𝑦; 𝜙)

𝐺22(𝑦; 𝜙)
𝑒
−(
1−𝐺2(𝑦;𝜙)
𝐺2(𝑦;𝜙)

)
(1 − 𝑒

−(
1−𝐺2(𝑦;𝜙)
𝐺2(;𝜙)

)
)

𝑎−1

. 

The conditional CDFs of X and Y are given by, respectively 

𝐹(𝑋 𝑌⁄ )−O𝐹𝑟LII−G(𝑥/𝑦; 𝜙) =

1 − (1 − 𝑒
−(
1−𝐺(𝑥,𝑦;𝜙)
𝐺(𝑥,𝑦;𝜙)

)
)

𝑎

1 − (1 − 𝑒
−(
1−𝐺2(𝑦;𝜙)
𝐺2(𝑦;𝜙)

)
)

𝑎  , 

𝐹(𝑌 𝑋⁄ )−O𝐹𝑟LII−G(𝑦/𝑥; 𝜙) =

1 − (1 − 𝑒
−(
1−𝐺(𝑥,𝑦;𝜙)
𝐺(𝑥,𝑦;𝜙)

)
)

𝑎

1 − (1 − 𝑒
−(
1−𝐺1(𝑥;𝜙)
𝐺1(𝑥;𝜙)

)
)

𝑎  . 

2.9 Inference  

In this sub-section, we estimate unknown parameters of the OFrLII–G family with the assistance of maximum 

likelihood estimation and the ordinary least square method. 

2.9.1 Maximum Likelihood Estimation (MLE) 

Let 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛 be a random sample of size n from the OFrLII–G family, then the log-likelihood function Log L 

= 𝐿𝑜g 𝐿(𝜙) is given by 
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𝐿𝑜g 𝐿O𝐹𝑟LII−G = 𝑛𝑙𝑜g𝑎 +∑𝑙og(g(𝑥𝑖; 𝜙))

𝑛

𝑖=1

− 2∑𝑙𝑜g

𝑛

𝑖=1

𝐺(𝑥𝑖; 𝜙) +∑(
1 − 𝐺(𝑥𝑖; 𝜙)

𝐺(𝑥𝑖; 𝜙)
)

𝑛

𝑖=1

+ (𝑎 − 1)∑𝑙𝑜g

𝑛

𝑖=1

(1 − 𝑒
−(
1−𝐺(𝑥𝑖;𝜙)
𝐺(𝑥𝑖;𝜙)

)
). 

The partial derivatives of 𝐿𝑜g 𝐿O𝐹𝑟LII−G = 𝑙 for a and 𝜙 are 

𝜕𝑙

𝜕𝑎
=
𝑛

𝑎
+∑𝑙𝑜g

𝑛

𝑖=1

(1 − 𝑒
−(
1−𝐺(𝑥𝑖;𝜙)
𝐺(𝑥𝑖;𝜙)

)
), 

𝜕𝑙

𝜕𝜙
=∑

g/
𝜙
(𝑥𝑖; 𝜙)

g(𝑥𝑖; 𝜙)

𝑛

𝑖=1

− 2∑
𝐺/𝜙(𝑥𝑖; 𝜙)

𝐺(𝑥𝑖; 𝜙)

𝑛

𝑖=1

+∑
𝐺/𝜙(𝑥𝑖; 𝜙)

𝐺2(𝑥𝑖; 𝜙)

𝑛

𝑖=1

+ (𝑎 − 1)∑
𝐺/𝜙(𝑥𝑖; 𝜙)𝑒

−(
1−𝐺(𝑥;𝜙)
𝐺(𝑥;𝜙)

)

𝐺2(𝑥𝑖; 𝜙) (1 − 𝑒
−(
1−𝐺(𝑥;𝜙)
𝐺(𝑥;𝜙)

)
)

𝑛

𝑖=1

, 

respectively, where g/
𝜙
(𝑥𝑖; 𝜙) = 𝜕g(𝑥𝑖; 𝜙) 𝜕𝜙⁄  and 𝐺/𝜙(𝑥𝑖; 𝜙) = 𝜕𝐺(𝑥𝑖; 𝜙) 𝜕𝜙⁄ . By substituting 𝜕𝑙 𝜕𝑎⁄  and 

𝜕𝑙 𝜕𝜙⁄  equal to zero and to obtain ML estimators 𝜁 = (�̂�, �̂�)
𝑇
of 𝜁 = (𝑎, 𝜙), we solve these equations simultaneously. 

As per the prior expressions are not in closed form. Hence, R software will be a better choice to find out its numerical 

study by using any iterative methods. 

2.9.2 Ordinary Least Square (OLS) 

Let  𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛 be a random sample of size n from the OFrLII–G family, then the expectation of the empirical 

CDF is known as OLS estimates and it is given by 𝐸(𝐹O𝐹𝑟LII−𝐺(𝑥; 𝜙)) =
𝑗

𝑛+1
; 𝑗 = 1,2,3, … , 𝑛. OLS estimates of 

unknown parameters (𝑎, 𝜙) can be obtained by maximizing the 𝐴(𝑥; 𝜙) = (𝐸(𝐹O𝐹𝑟LII−𝐺(𝑥; 𝜙)) −
𝑗

𝑛+1
)
2

by taking the 

partial derivatives 𝜕𝐴(𝑥; 𝛼) 𝜕𝛼⁄  and 𝜕𝐴(𝑥; 𝜙) 𝜕𝜙⁄ . 

3. A New Odd Lehmann type-II Power Function (OFrLII–PF) Distribution 

In this section, we derive several explicit expressions for a sub-model of the OFrLII–G family, known as an odd 

Lehmann type-II power function (OFrLII–PF) distribution. For this, we have the CDF and PDF of power function as  

𝐺𝑃𝐹(𝑥; 𝑏) = (
𝑥

g0
)
𝑏

, 

and  

g𝑃𝐹(𝑥; 𝑏) =
𝑏

(g0)
𝑏
𝑥𝑏−1;  𝑏 > 0,0 < 𝑥 < g0,  

respectively. Henceforth, the analytical expressions for CDF, PDF, and HRF of OFrLII–PF distribution are given by 

respectively 

𝐹O𝐹𝑟LII−𝑃𝐹(𝑥; 𝑎, 𝑏) = 1 − (1 − 𝑒
1−(

g0
𝑥 )

𝑏

)

𝑎

, (11) 

𝑓O𝐹𝑟LII−𝑃𝐹(𝑥; 𝑎, 𝑏) =
𝑎𝑏(g0)

𝑏

𝑥1+𝑏
𝑒1−(

g0
𝑥 )

𝑏

(1 − 𝑒1−(
g0
𝑥 )

𝑏

)

𝑎−1

, (12) 
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ℎO𝐹𝑟LII−𝑃𝐹 (𝑥; 𝑎, 𝑏) =
𝑎𝑏(g0)

𝑏𝑒1−(
g0
𝑥 )

𝑏

(𝑥1+𝑏) (1 − 𝑒1−(
g0
𝑥 )

𝑏

)

, (13) 

where 0 < 𝑥 < g0, and 𝑎, 𝑏 > 0 are two shape parameters.  

3.1 Shapes of Density and Hazard Rate Functions 

In this sub-section, several curves of PDF and HRF for X at different choices of model parameters are sketched out in 

Figure 1. Note that PDFs (a and b) curves have increasing, decreasing, symmetric, upside down, and bathtub shapes. 

However, HRF’s (c and d) possess upside-down increasing, U-shaped, bathtub-shaped, and increasing curves. 

 

(a) 

 

(b) 

 

      (c) 

 

     (d) 

Figure 1. Different curves of density and hazard rate functions 

3.2 Useful Expansions 

Infinite linear combinations of CDF  
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𝐹O𝐹𝑟LII−𝑃𝐹 (𝑥; 𝑎, 𝑏) = 1 − ∑ (
𝑎
𝑖
)
(−1)𝑖+𝑗𝑒𝑗𝑖𝑗(g0)

𝑏𝑗

𝑗!
𝑥−𝑏𝑗

∞

𝑖,𝑗=0

. (14) 

𝐹𝑂−𝐿–𝐼𝐼−𝑃𝐹 (𝑥; 𝑎, 𝑏) = 1 − ∑ 𝐴𝑖,𝑗𝑥
−𝑏𝑗

∞

𝑖,𝑗=0

,  

and PDF for X is given by 

𝑓O𝐹𝑟LII−𝑃𝐹 (𝑥; 𝑎, 𝑏) = 𝑎𝑏 ∑ (
𝑎 − 1
𝑗
)
(−1)𝑖+𝑗+𝑘𝑒1+𝑗(g0)

𝑏(𝑖+𝑘+1)

𝑖! 𝑘!

∞

𝑖,𝑗,𝑘=0

𝑥−𝑏(𝑖+𝑘+1)−1, (15) 

𝑓O𝐹𝑟LII−𝑃𝐹 (𝑥; 𝑎, 𝑏) = 𝑎𝑏 ∑ 𝐵𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

𝑥−𝑏(𝑖+𝑘+1)−1,  

where 𝐴𝑖,𝑗 = (
𝑎
𝑖
)
(−1)𝑖+𝑗𝑒𝑗𝑖𝑗(g0)

𝑏𝑗

𝑗!
, 𝐵𝑖,𝑗,𝑘 = (

𝑎 − 1
𝑗
)
(−1)𝑖+𝑗+𝑘𝑒1+𝑗(g0)

𝑏(𝑖+𝑘+1)

𝑖!𝑘!
. 

3.3 Moments  

The r-th ordinary moments for X is defined as  

𝜇 𝑟−O𝐹𝑟LII−𝑃𝐹 
/

= 𝑎𝑏∫ 𝑥𝑟
(g0)

𝑏

𝑥1+𝑏
𝑒1−(

g0
𝑥 )

𝑏

(1 − 𝑒1−(
g0
𝑥 )

𝑏

)

𝑎−1g0

0

𝑑𝑥, 

and after few simplifications we obtain  

𝜇 𝑟−O𝐹𝑟LII−𝑃𝐹 
/

= 𝑎𝑏 ∑ 𝐵𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

∫ 𝑥𝑟−𝑏(𝑖+𝑘+1)−1
g0

0

𝑑𝑥. 

Hence, the r-th ordinary moments are obtained by solving the last integral and it is given by 

𝜇 𝑟−O𝐹𝑟LII−𝑃𝐹 
/

= 𝑎𝑏 ∑ 𝐵𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

((g0)
𝑟−𝜒𝑏,𝑖,𝑘)

𝑟 − 𝜒𝑏,𝑖,𝑘 
, (16) 

where 𝐵𝑖,𝑗,𝑘 = (
𝑎 − 1
𝑗
)
(−1)𝑖+𝑗+𝑘𝑒1+𝑗(g0)

𝑏(𝑖+𝑘+1)

𝑖!𝑘!
, 𝜒𝑏,𝑖,𝑘 = 𝑏(𝑖 + 𝑘 + 1) . 

The derived expression in (16) is quite useful in the development of several statistical measures. For instance: to deduce 

the mean and negative moments of X, substitute r = 1 and r = – w with (16), respectively, and it is given by 

𝜇 1−O𝐹𝑟LII−𝑃𝐹  
/

= 𝑎𝑏 ∑ 𝐵𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

((g0)
1−𝜒𝑏,𝑖,𝑘)

1 − 𝜒𝑏,𝑖,𝑘 
, (17) 

and 

𝜇−𝑤−O𝐹𝑟LII−𝑃𝐹 
/

= 𝑎𝑏 ∑ 𝐵𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

((g0)
−(𝑤+𝜒𝑏,𝑖,𝑘))

1 − 𝜒𝑏,𝑖,𝑘 
.  

Furthermore, for fractional positive and fractional negative moments for X, substitute r = (𝑚 𝑛⁄ ) and r = – (𝑚 𝑛⁄ ) 
with (16), respectively, and the expressions are, respectively, given by 

𝜇 (𝑚 𝑛⁄ )−O𝐹𝑟LII−𝑃𝐹
/

= 𝑎𝑏 ∑ 𝐵𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

((g0)
(𝑚 𝑛⁄ )−𝜒𝑏,𝑖,𝑘)

1 − 𝜒𝑏,𝑖,𝑘 
,  
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and 

𝜇−(𝑚 𝑛⁄ )−O𝐹𝑟LII−𝑃𝐹
/

= 𝑎𝑏 ∑ 𝐵𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

((g0)
−(𝑚 𝑛⁄ )−𝜒𝑏,𝑖,𝑘)

1 − 𝜒𝑏,𝑖,𝑘 
.  

The moment generating function 𝑀𝑋(𝑡) is defined as 𝑀𝑋(𝑡) = ∑
𝑡𝑟

𝑟!
∞
𝑟=0 𝜇𝑟

/
. It is obtained for X as 

𝑀𝑋−O𝐹𝑟LII−𝑃𝐹(𝑡) = 𝑎𝑏∑
𝑡𝑟

𝑟!

∞

𝑟=0

∑ 𝐵𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

((g0)
𝑟−𝜒𝑏,𝑖,𝑘)

𝑟 − 𝜒𝑏,𝑖,𝑘 
. 

The characteristic function of X is defined as  ∅𝑋(𝑡) = ∑
(𝑖𝑡)𝑟

𝑟!
∞
𝑟=0 𝜇𝑟

′ . It is obtained for X as 

∅𝑋−O𝐹𝑟LII−𝑃𝐹 (𝑡) = 𝑎𝑏∑
(𝑖𝑡)𝑟

𝑟!

∞

𝑟=0

∑ 𝐵𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

((g0)
𝑟−𝜒𝑏,𝑖,𝑘)

𝑟 − 𝜒𝑏,𝑖,𝑘 
.  

The factorial generating function is defined as 𝐹𝑥(𝑡) = 𝐸(1 + 𝑡)
𝑥 = 𝐸(𝑒𝑥𝑙𝑛(1+𝑡)) = ∑

(𝑙𝑛(1+𝑡))
𝑟

𝑟!
∞
𝑟=0 𝜇𝑟

′ . It is obtained 

for X as 

𝐹𝑥−O𝐹𝑟LII−𝑃𝐹(𝑡) = 𝑎𝑏∑
(𝑙𝑛(1 + 𝑡))

𝑟

𝑟!

∞

𝑟=0

∑ 𝐵𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

((g0)
𝑟−𝜒𝑏,𝑖,𝑘)

𝑟 − 𝜒𝑏,𝑖,𝑘 
.  

The Mellin transformation is defined as𝑀𝑥(𝑚) = ∫ 𝑥𝑚−1𝑓(𝑥)𝑑𝑥
∞

0
. It is obtained for X as 

𝑀𝑥−O𝐹𝑟LII−𝑃𝐹(𝑚) = 𝑎𝑏 ∑ 𝐵𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

((g0)
(𝑚−1)−𝜒𝑏,𝑖,𝑘)

(𝑚 − 1) − 𝜒𝑏,𝑖,𝑘 
.  

The central moments 𝜇𝑠 = ∑ (
𝑠
𝑘
) (−1)𝑘(𝜇1

/
)
𝑠
𝜇𝑠−𝑘
/𝑠

𝑘=0  and first four cumulants𝐾1 = 𝜇1
/
, 𝐾2 = 𝜇2

/
− 𝜇1

/2
, 𝐾3 = 𝜇3

/
−

3𝜇2
/
𝜇1
/
+ 2𝜇1

/3
, 𝐾4 = 𝜇4

/
− 4𝜇3

/
𝜇1
/
− 3𝜇2

/2
+ 12𝜇2

/
𝜇1
/2
− 6𝜇1

/4
for X may easily be defined by ordinary moments. To study 

the tail and peak behavior for X, a measure of skewness (𝛽1 = 𝜇3
2 𝜇2

3⁄ ) and measure of kurtosis (𝛽2 = 𝜇4 𝜇2
2⁄ ), play a 

significant role, respectively. Some numerical results of the first four ordinary moments (𝜇/
1
, 𝜇/

2
, 𝜇/

3
, 𝜇/

4
), 𝜎2 = 

variance, 𝛽1 = skewness, and 𝛽2 = kurtosis for some choices of model parameters for g0 = 1.3 is presented in Table 

2. 
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Table 2. Some numerical results of moments, variance, skewness, and kurtosis 

Statistics 𝐚 = 𝟏. 𝟓 

𝝁/𝒓 𝑏 = 0.4 𝑏 = 0.5 𝑏 = 0.6 𝑏 = 0.7 𝑏 = 0.8 

𝝁/𝟏 0.3230 0.4024 0.4724 0.5336 0.5873 

𝝁/𝟐 0.1832 0.2443 0.3050 0.3637 0.4199 

𝝁/𝟑 0.1363 0.1861 0.2381 0.2911 0.3441 

𝝁/𝟒 0.1172 0.1617 0.2091 0.2587 0.3096 

𝝈𝟐 0.0910 0.0992 0.0997 0.0932 0.0799 

𝜷𝟏 0.4279 0.1765 0.0791 0.0411 0.0274 

𝜷𝟐 1.3768 0.8019 0.4972 0.3126 0.1823 

Statistics 𝑏 = 0.9 𝑏 = 0.1 𝑏 = 0.3 𝑏 = 0.1 𝑏 = 0.5 

𝝁/𝒓 𝑎 = 2.01 𝑎 = 2.1 𝑎 = 1.9 𝑎 = 1.9 𝑎 = 0.9 

𝝁/𝟏 0.5657 0.0216 0.1791 0.0287 0.5590 

𝝁/𝟐 0.3761 0.0068 0.0771 0.0103 0.4416 

𝝁/𝟑 0.2833 0.0037 0.0486 0.0062 0.4108 

𝝁/𝟒 0.2344 0.0027 0.0372 0.0047 0.4168 

𝝈𝟐 0.0154 0.0061 0.0427 0.0092 0.1636 

𝜷𝟏 0.1807 39.2183 1.9478 29.3150 0.0049 

𝜷𝟐 -0.1411 55.0211 3.7508 40.8929 0.2454 

We observe that the results of moments are decreasing whereas variance, skewness, and kurtosis have flexible 

performances at different values of a and b.   

3.4 Incomplete Moments and Residual Life Function 

The r – th lower incomplete moments is defined as 𝛷𝑟(𝑥) = ∫ 𝑥
𝑟𝑓(𝑥)𝑑𝑥.

𝑡

0
  It is obtained for X as 

𝛷𝑟−O𝐹𝑟LII−𝑃𝐹 (𝑥) = 𝑎𝑏 ∑ 𝐵𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

(𝑡𝑟−𝜒𝑏,𝑖,𝑘)

𝑟 − 𝜒𝑏,𝑖,𝑘 
. (18) 

The first incomplete moment is obtained by simply substituting r = 1 in (18) and it is given by  

𝛷1−O𝐹𝑟LII−𝑃𝐹(𝑥) = 𝑎𝑏 ∑ 𝐵𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

(𝑡1−𝜒𝑏,𝑖,𝑘)

1 − 𝜒𝑏,𝑖,𝑘 
. (19) 

The residual life function is defined by 𝑅𝑡(𝑥) =
𝑆(𝑥+𝑡)

𝑆(𝑡)
. The residual life function and associated CDF of X are given by 

𝑅𝑡(𝑥)−O𝐹𝑟LII−𝑃𝐹(
𝑡
𝑥⁄ ) =

(1 − 𝑒1−(
g0
𝑥+𝑡)

𝑏

)

𝑎

(1 − 𝑒1−(
g0
𝑡 )
𝑏

)

𝑎 , 𝑥 > 0. 

𝐹𝑅(𝑡)−O𝐹𝑟LII−𝑃𝐹(
𝑡
𝑥⁄ ) = 1 −

(1 − 𝑒1−(
g0
𝑥+𝑡)

𝑏

)

𝑎

(1 − 𝑒1−(
g0
𝑡 )
𝑏

)

𝑎 ;  𝑥 > 0. 

 

Furthermore, the reversed residual life function is defined by �̅�𝑡(𝑥) =
𝑆(𝑥−𝑡)

𝑆(𝑡)
 . The reversed residual life function and 
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associated CDF of X are given by 

�̅�𝑡(𝑥)−O𝐹𝑟LII−𝑃𝐹 (
𝑡
𝑥⁄ ) =

(1 − 𝑒1−(
g0
𝑥−𝑡)

𝑏

)

𝑎

(1 − 𝑒1−(
g0
𝑡 )
𝑏

)

𝑎 , 𝑥 > 0.  

The mean residual life function 𝐸(𝑅𝑡(𝑥)) =
1

𝑆(𝑡)
(𝜇1,𝑡

/
− ∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑡

0
) − 𝑡;  𝑡 ≥ 0,  reversed residual life function 

𝐸(�̅�𝑡(𝑥)) = 𝑡 −
1

𝐹(𝑡)
∫ 𝑥𝑓(𝑥)𝑑𝑥;
𝑡

0
𝑡 ≥ 0, and strong mean inactivity time (SMIT) 𝑀(𝑡) = 𝑡2 −

1

𝐹(𝑡)
∫ 𝑥2𝑓(𝑥)𝑑𝑥
𝑡

0
, may 

easily be derived by following equations (17) and (19) and for SMIT substitute r = 2 with (17), respectively. 

Furthermore, the Lorenz 𝐿(𝑥) and Bonferroni 𝐵(𝑥) curves have a significant role not only in the study of economics, 

the distribution of income, poverty, or wealth, but it has a vital role in fields of insurance, demography, medicine, 

reliability engineering, and others. The first incomplete moment is very useful in the discussion of Lorenz and 

Bonferroni curves and it is obtained for X respectively, by  

 

𝐿(𝑥) =
∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑡

0

𝜇1
/

, 

𝐿(𝑥) =

∑ 𝐵𝑖,𝑗,𝑘
∞
𝑖,𝑗,𝑘=0

(𝑡1−𝜒𝑏,𝑖,𝑘)
1 − 𝜒𝑏,𝑖,𝑘 

∑ 𝐵𝑖,𝑗,𝑘
∞
𝑖,𝑗,𝑘=0

((g0)
1−𝜒𝑏,𝑖,𝑘)

1 − 𝜒𝑏,𝑖,𝑘 

, 

 

 

 

, and 

 

𝐵(𝑥) =
𝐿(𝑥)

𝐹(𝑥)
, 

 

𝐵(𝑥) =

∑ 𝐵𝑖,𝑗,𝑘
∞
𝑖,𝑗,𝑘=0

(𝑡1−𝜒𝑏,𝑖,𝑘)
1 − 𝜒𝑏,𝑖,𝑘 

∑ 𝐵𝑖,𝑗,𝑘
∞
𝑖,𝑗,𝑘=0

((g0)
1−𝜒𝑏,𝑖,𝑘)

1 − 𝜒𝑏,𝑖,𝑘 
(1 − (1 − 𝑒1−(

g0
𝑥 )

𝑏

)

𝑎

)

. 

3.5 Distribution of Order Statistics 

In reliability analysis and life testing of a component in quality control, order statistics (OS) has a noteworthy 

contribution. Let X1 , X2 , X3 , ..., Xn be a random sample of size n follows to the O–L–II–PF distribution and {X(1) < X(2) 

<X(3) < ...<X(n) }be the corresponding order statistics. The PDF of i-th OS is given by 

𝑓(𝑖:𝑛)(𝑥) =
1

𝐵(𝑖,𝑛−𝑖+1)!
(𝐹(𝑥))

𝑖−1
(1 − 𝐹(𝑥))

𝑛−𝑖
𝑓(𝑥),  i=1, 2, 3,…, n. 

By incorporating (11) and (12), i-th OS PDF for X is given by 

𝑓(𝑖:𝑛)−O𝐹𝑟LII−𝑃𝐹 (𝑥; 𝑎, 𝑏) =

(

 
 

1

𝐵(𝑖,𝑛−𝑖+1)!
(1 − (1 − 𝑒1−(

g0
𝑥
)
𝑏

)

𝑎

)

𝑖−1

((1 − 𝑒1−(
g0
𝑥
)
𝑏

)

𝑎

)

𝑛−𝑖

×

𝑎𝑏(g0)
𝑏

𝑥1+𝑏
𝑒1−(

g0
𝑥
)
𝑏

(1 − 𝑒1−(
g0
𝑥
)
𝑏

)

𝑎−1

)

 
 

.  

Minimum OS PDF 

𝑓(1:𝑛)−O𝐹𝑟LII−𝑃𝐹 (𝑥; 𝑎, 𝑏) =

(

 
 

1

𝐵(𝑖, 𝑛 − 𝑖 + 1)!
((1 − 𝑒1−(

g0
𝑥 )

𝑏

)

𝑎

)

𝑛−1

×

𝑎𝑏(g0)
𝑏

𝑥1+𝑏
𝑒1−(

g0
𝑥 )

𝑏

(1 − 𝑒1−(
g0
𝑥 )

𝑏

)

𝑎−1

)

 
 
,  

and maximum OS PDF for X is given by  
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𝑓(𝑛:𝑛)−O𝐹𝑟LII−𝑃𝐹 (𝑥; 𝑎, 𝑏) =
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)!

(

 
 

(1 − (1 − 𝑒1−(
g0
𝑥 )

𝑏

)

𝑎

)

𝑛−1

×

𝑎𝑏(g0)
𝑏

𝑥1+𝑏
𝑒1−(

g0
𝑥 )

𝑏

(1 − 𝑒1−(
g0
𝑥 )

𝑏

)

𝑎−1

)

 
 
.  

The i-th OS CDF is defined by 

𝐹(𝑖:𝑛)(𝑥) =∑(
𝑛
𝑟
)

𝑛

𝑟=𝑖

(𝐹(𝑥))
𝑟
(1 − 𝐹(𝑥))

𝑛−𝑟
. 

By incorporating (11), we obtain the i-th OS CDF for X and it is given by 

𝐹(𝑖:𝑛)−O𝐹𝑟LII−𝑃𝐹 (𝑥; 𝑎, 𝑏) =∑(
𝑛
𝑟
)

𝑛

𝑟=1

(1 − (1 − 𝑒1−(
g0
𝑥 )

𝑏

)

𝑎

)

𝑟

((1 − 𝑒1−(
g0
𝑥 )

𝑏

)

𝑎

)

𝑛−𝑟

. 

3.6 Quantile Function  

The qth quantile function of the OFrLII–PF distribution is obtained by inverting the CDF. It is defined as 𝑞 = 𝐹(𝑥𝑞) =

𝑃(𝑋 ≤ 𝑥𝑞), 𝑞 ∈ (0,1). Then; the quantile function for X is given by          

𝑥𝑞−O𝐹𝑟LII–𝑃𝐹 =
g0

(1 − 𝑙𝑜g(1 − (1 − 𝑞)1/𝑎) )1/𝑏
. (20) 

To derive the 1st quartile, median and 3rd quartile of X, one may place q = 0.25, 0.5, and 0.75 respectively in (20). 

Henceforth, to generate random numbers, one may assume that the CDF for X follows to uniform distribution u= U (0, 

1). 

3.7 Bivariate and Multivariate Extensions 

In this sub-section, we develop the bivariate and multivariate extensions for the OFrLII–PF distribution by following 

the Morgenstern family and the Clayton family.  

The CDF of the Bi– OFrLII–PF distribution followed by the Morgenstern family for the random vector (𝑉1, 𝑉2) is  

𝐹𝜙−O𝐹𝑟LII–𝑃𝐹 (𝑉1, 𝑉2) = (1 + 𝜙(1 − 𝐹1(𝑣1))(1 − 𝐹2(𝑣2))) 𝐹1(𝑣1)𝐹2(𝑣2), 

where |𝜙| ≤ 1, 𝐹1(𝑣1) = 1 − (1 − 𝑒
1−(

g01
𝑣1
)
𝑏1

)

𝑎1

, and 𝐹2(𝑣2) = 1 − (1 − 𝑒
1−(

g02
𝑣2
)
𝑏2

)

𝑎2

. 

The CDF of the Bi– OFrLII–PF distribution followed by the Clayton family for the random vector (𝑋, 𝑌) is  

𝐶(𝑥, 𝑦) = (𝑥−(𝜁1+𝜁2) + 𝑦−(𝜁1+𝜁2) − 1)
− 

1
(𝜁1+𝜁2) ;  𝜁1 + 𝜁2 ≥ 0. 

Let 𝑣1~ O– OFrLII–PF (𝛼1, 𝛽1), and 𝑣2~ O– OFrLII–PF (𝛼2, 𝛽2). Then setting  

𝑥 = 𝐹1(𝑣1) = 1 − (1 − 𝑒
1−(

g01
𝑣1
)
𝑏1

)

𝑎1

and 𝑦 = 𝐹2(𝑣2) = 1 − (1 − 𝑒
1−(

g02
𝑣2
)
𝑏2

)

𝑎2

. 

The CDF of the Bi– OFrLII–PF distribution followed by the Clayton family for the random vector (𝑉1, 𝑉2) is  

𝐺𝐵𝑖−O𝐹𝑟LII–𝑃𝐹 (𝑣1, 𝑣2) =

(

 
 
 (1 − (1 − 𝑒

1−(
g01
𝑣1
)
𝑏1

)

𝑎1

)

(𝜁1+𝜁2) 

+

(1 − (1 − 𝑒
1−(

g02
𝑣2
)
𝑏2

)

𝑎2

)

(𝜁1+𝜁2)

− 1
)

 
 
 

− 
1

(𝜁1+𝜁2)

. 

A simple n-dimensional extension of the last version will be 
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𝐻(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) = (∑((1 − (1 − 𝑒
1−(

g0𝑖
𝑥𝑖
)
𝑏𝑖

)

𝑎𝑖

)

(𝜁1+𝜁2) 

)

𝑛

𝑖=1

+ 1 − 𝑛)

− 
1

(𝜁1+𝜁2)

. 

4. Inference 

In this section, we discuss an estimation technique for OFrLII–PF distribution known as the method of maximum 

likelihood estimation.  

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample of size n from X, then the likelihood function 𝐿(𝜙) = ∏ 𝑓O𝐹𝑟LII−𝑃𝐹(𝑥𝑖; 𝑎, 𝑏)
𝑛
𝑖=1  

of X is given by 

𝐿O𝐹𝑟LII−𝑃𝐹(𝜙) =
(𝑎𝑏(g0)

𝑏)𝑛

∏ 𝑥𝑖
1+𝑏𝑛

𝑖=1

∏𝑒
1−(

g
𝑥𝑖
)
𝑏𝑛

𝑖=1

∏(1− 𝑒
1−(

g0
𝑥𝑖
)
𝑏

)

𝑛

𝑖=1

𝑎−1

. 

The log-likelihood function,𝑙O𝐹𝑟LII−𝑃𝐹 (𝜙) of X is given by 

𝑙𝑂–𝐿–𝐼𝐼−𝑃𝐹 (𝜙) = 𝑛(𝑙𝑜g𝑎 + 𝑙𝑜g𝑏 + 𝑏𝑙𝑜g(g0)) − (1 + 𝑏)∑𝑙𝑜g𝑥𝑖

𝑛

𝑖=1

+∑(1 − (
g0
𝑥𝑖
)
𝑏

)

𝑛

𝑖=1

+ 

(𝑎 − 1)∑𝑙𝑜g

𝑛

𝑖=1

(1 − 𝑒
1−(

g0
𝑥𝑖
)
𝑏

). 

(21) 

The partial derivatives w.r.t 𝑎 and 𝑏 of (21) yield 

𝜕𝑙O𝐹𝑟LII−𝑃𝐹 (𝜙)

𝜕𝑎
=
𝑛

𝑎
+∑𝑙𝑜g(1 − 𝑒

1−(
g0
𝑥𝑖
)
𝑏

)

𝑛

𝑖=1

, 

and 

𝜕𝑙O𝐹𝑟LII−𝑃𝐹(𝜙)

𝜕𝑏
=
𝑛

𝑏
−∑𝑙𝑜g𝑥𝑖

𝑛

𝑖=1

−∑(
g0
𝑥𝑖
)
𝑏

𝑙𝑜g (
g0
𝑥𝑖
)

𝑛

𝑖=1

− (𝑎 − 1)∑

(

  
 (
g0
𝑥𝑖
)
𝑏

𝑒
1−(

g0
𝑥𝑖
)
𝑏

𝑙𝑜g (
g0
𝑥𝑖
)

(1 − 𝑒
1−(

g0
𝑥𝑖
)
𝑏

)
)

  
 

𝑛

𝑖=1

, 

respectively. The maximum likelihood estimates (�̂� = 𝑎,̂ �̂�) for the OFrLII–PF distribution can be obtained by 

maximizing (21) or by solving the prior non-linear equations simultaneously. These non-linear equations although do 

not provide an analytical solution for the MLEs and the optimum value of 𝑎,  and 𝑏 . Consequently, the 

Newton-Raphson type algorithm is an appropriate choice in the support of MLEs. 

4.1 Simulation Experiment 

In this sub-section, we perform a simulation experiment to observe the asymptotic performance of MLE’s�̂� = (�̂�, �̂�). 
For this, we discuss the following algorithm. 

Step -1. A random sample x1 , x2 , x3 , ..., xn of sizes n = 25, 50, 100, 200, 300, 400, 500, and 1000 from (20). 

Step -2. The required results are obtained based on the different combinations of the model parameters place in S-I (𝑎 

=2.2, 𝑏 = 1.9), S-II (𝑎 =3.9, 𝑏 = 3.1), S-III (𝑎 =0.9, 𝑏 = 0.5), and S-IV (𝑎 =0.5, 𝑏 = 2.1).  

Step -3. Results of mean, variance (short Var), Bias, and root mean square error (short RMSE) are calculated with the 

assist of statistical software R with its exclusive function nlmib. These results are presented in Tables 3 to 10. 

Step -4. Each sample is replicated N = 1000 times.  

Step -5. Gradual decrease with the increase in sample sizes is observed in mean, biases, RMSEs, and Var. 

Furthermore, the following measures are defined in the development of average estimate (AE), variance, bias, and RMSE, 

and these measures are:  
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𝐴𝐸 =
1

𝑁
∑�̂�𝑖

𝑁

𝑖=1

, 𝑉𝑎𝑟 =
1

𝑁
∑(𝜙 − �̅�𝑖)

2

𝑁

𝑖=1

, 𝐵𝑖𝑎𝑠 =
1

𝑁
∑(�̂�𝑖 − 𝜙)

𝑁

𝑖=1

, 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(�̂�𝑖 − 𝜙)

2
𝑁

𝑖=1

. 

 

Table 3. Mean, Variance, Bias, and Root Mean Square Error for S-I 

Sample Mean a Var a Bias a RMSE a 

25 2.1081 0.3401 -0.0918 0.5904 

50 1.9898 0.1323 -0.2102 0.4201 

100 1.9358 0.0592 -0.2641 0.3591 

200 1.9067 0.0273 -0.2932 0.3366 

300 1.8995 0.0172 -0.3004 0.3278 

400 1.8943 0.0131 -0.3056 0.3263 

500 1.8914 0.0103 -0.3085 0.3248 

1000 1.8860 0.0051 -0.3139 0.3220 

 

Table 4. Mean, Variance, Bias, and Root Mean Square Error for S-I 

Sample Mean b Var b Bias b RMSE b 

25 1.7632 0.0371 -0.1367 0.2362 

50 1.7299 0.0176 -0.1700 0.2157 

100 1.7162 0.0080 -0.1837 0.2045 

200 1.7072 0.0043 -0.1927 0.2037 

300 1.7061 0.0028 -0.1938 0.2010 

400 1.7046 0.0021 -0.1953 0.2007 

500 1.7034 0.0016 -0.1965 0.2007 

1000 1.7021 0.0007 -0.1978 0.1999 

 

Table 5. Mean, Variance, Bias, and Root Mean Square Error for S-II 

Sample Mean a Var a Bias a RMSE a 

25 3.3402 0.9733 -0.5597 1.1343 

50 3.1289 0.3695 -0.7710 0.9818 

100 3.0361 0.1628 -0.8638 0.9534 

200 2.9858 0.0760 -0.9142 0.9548 

300 2.9736 0.0476 -0.9263 0.9516 

400 2.9647 0.0362 -0.9352 0.9544 

500 2.9593 0.0283 -0.9406 0.9555 

1000 2.9504 0.0140 -0.9495 0.9569 
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Table 6. Mean, Variance, Bias, and Root Mean Square Error for S-II 

Sample Mean b Var b Bias b RMSE b 

25 2.7772 0.0696 -0.3227 0.4169 

50 2.7327 0.0333 -0.3672 0.4101 

100 2.7150 0.0153 -0.3849 0.4043 

200 2.7030 0.0083 -0.3969 0.4073 

300 2.7017 0.0054 -0.3982 0.4050 

400 2.6995 0.0041 -0.4004 0.4055 

500 2.6979 0.0031 -0.4020 0.4060 

1000 2.6962 0.0015 -0.4037 0.4056 

 

Table 7. Mean, Variance, Bias, and Root Mean Square Error for S-III 

Sample Mean a Var a Bias a RMSE a 

25 0.9572 0.0586 0.0572 0.2487 

50 0.9120 0.0235 0.0120 0.1540 

100 0.8899 0.0107 -0.0101 0.1042 

200 0.8782 0.0048 -0.0217 0.0731 

300 0.8751 0.0031 -0.0248 0.0610 

400 0.8730 0.0024 -0.0269 0.0556 

500 0.8719 0.0018 -0.0280 0.0516 

1000 0.8696 0.0009 -0.0303 0.0432 

 

Table 8. Mean, Variance, Bias, and RMSE for S-III 

Sample Mean b Var b Bias b RMSE b 

25 0.5037 0.0057 0.0037 0.0760 

50 0.4893 0.0026 -0.0106 0.0526 

100 0.4827 0.0011 -0.0172 0.0382 

200 0.4789 0.0006 -0.0210 0.0325 

300 0.4783 0.0004 -0.0216 0.0295 

400 0.4777 0.0003 -0.0222 0.0282 

500 0.4772 0.0002 -0.0227 0.0274 

1000 0.4765 0.0001 -0.0234 0.0257 

 

Table 9. Mean, Variance, Bias, and Root Mean Square Error for S-IV 

Sample Mean a Var a Bias a RMSE a 

25 0.4514 0.0109 -0.0485 0.1155 

50 0.4365 0.0045 -0.0634 0.0928 

100 0.4288 0.0021 -0.0711 0.0847 

200 0.4244 0.0009 -0.0755 0.0815 

300 0.4232 0.0006 -0.0767 0.0805 

400 0.4225 0.0004 -0.0775 0.0803 

500 0.4221 0.0003 -0.0778 0.0801 

1000 0.4214 0.0001 -0.0785 0.0796 
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Table 10. Mean, Variance, Bias, and Root Mean Square Error for S-IV 

Sample Mean b Var b Bias b RMSE b 

25 1.4678 0.0478 -0.6321 0.6688 

50 1.4323 0.0222 -0.6676 0.6841 

100 1.4147 0.0105 -0.6852 0.6928 

200 1.4031 0.0054 -0.6968 0.7007 

300 1.4014 0.0035 -0.6985 0.7010 

400 1.3996 0.0026 -0.7003 0.7022 

500 1.3985 0.0021 -0.7015 0.7029 

1000 1.3966 0.0010 -0.7033 0.7040 

 

5. Analysis of Engineering and COVID-19 Events 

In this section, we analyze three real-life data sets. These data sets are related to the engineering sector and the 

COVID-19 pandemic particularly outbreaks in the United Kingdom. The first data set illustrates the failure times of 50 

devices put on life test at time zero discussed by [28] and explicitly, data set is: 0.1, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 

6.0, 7.0, 11.0, 12.0, 18.0, 18.0, 18.0, 18.0, 18.0, 21.0, 32.0, 36.0, 40.0, 45.0, 45.0, 47.0, 50.0, 55.0, 60.0, 63.0, 63.0, 67.0, 

67.0, 67.0, 67.0, 72.0, 75.0, 79.0, 82.0, 82.0, 83.0, 84.0, 84.0, 84.0, 85.0, 85.0, 85.0, 85.0, 85.0, 86.0, 86.0.  The second 

data set illustrates the lifetimes (in days) of 30 electronic devices discussed by [29] and the data set is: 0.020, 0.029, 

0.034, 0.044, 0.057, 0.096, 0.106, 0.139, 0.156, 0.164, 0.167, 0.177, 0.250, 0.326, 0.406, 0.607, 0.650, 0.672, 0.676, 

0.736, 0.817, 0.838, 0.910, 0.931, 0.946, 0.953, 0.961, 0.981, 0.982 , 0.990. The third data set represents mortality rate 

under COVID-19 pandemic outbreaks in United Kingdom (UK) from 1 December 2020 to 29 January 2021 [30]. The 

data set is: 0.1292, 0.3805,0.4049, 0.2564, 0.3091, 0.2413, 0.1390, 0.1127, 0.3547, 0.3126, 0.2991, 0.2428, 

0.2942,0.0807, 0.1285, 0.2775, 0.3311, 0.2825, 0.2559, 0.2756, 0.1652, 0.1072, 0.3383, 0.3575, 0.2708, 0.2649, 0.0961, 

0.1565, 0.1580, 0.1981, 0.4154, 0.3990, 0.2483, 0.1762, 0.1760, 0.1543, 0.3238, 0.3771, 0.4132, 0.4602, 0.3523, 

0.1882, 0.1742, 0.4033, 0.4999, 0.3930, 0.3963, 0.3960, 0.2029, 0.1791, 0.4768, 0.5331, 0.3739, 0.4015, 0.3828, 

0.1718, 0.1657, 0.4542, 0.4772, 0.3402. 

The OFrLII–PF distribution is compared with its competitors (CDFs are presented in Table 11) based on some criteria 

called, -Log-likelihood (-LL), Akaike information criterion (AIC), along with the goodness of fit statistics Cramer-Von 

Mises (CM), Anderson-Darling (AD), and Kolmogorov Smirnov (KS) with its p-value. Some choices of descriptive 

statistics are presented in Table 12. Tables 13 to 15 illustrate the estimates of the parameters, standard errors (in 

parenthesis), and goodness of fit statistics as well. Conventionally the minimum value of goodness of fit statistics is the 

criteria for a better fit model that OFrLII–PF distribution eventually satisfies. Hence; we support that OFrLII–PF 

distribution is a better fit model among all of its well-established competitors over the engineering and COVID-19 events.  

Furthermore, the empirically fitted density (a) and distribution function plots (b) Probability-Probability (c) and 

Kaplan-Meier survival plots (d), along with the total time on test transform (e) and box plots (f), are presented in Figures 

2 to 4, respectively. These plots provide sufficient information about the closest fit to subject data. All the numerical 

results are calculated with the assistance of statistical software R with its exclusive package AdequacyModel 

(https://www.r-project.org/).  

  

https://www.r-project.org/
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Table 11. List of competitive models CDFs 

Model 
Model 

Parameter / 

variable Range 
Reference 

PF 𝑃(𝑥) = (
𝑥

g0
)
𝑎

 𝑎 > 0, 0 < x < g0 [31] 

Gen-PF 𝑃(𝑥) = 1 − (g0 − 𝑥)
𝑎(g0 −𝑚)

−𝑎 
𝑎 > 0, 

𝑚 < 𝑥 < g0 
[32] 

W-PF 
𝑃(𝑥) = 1 − 𝑒

−𝑎(
𝑥𝑏

g0𝑏−𝑥𝑏
)

𝑐

 

𝑎, 𝑏, 𝑐 > 0 

0 < 𝑥 < g0 
[33] 

MO-PF 

𝑃(𝑥)

= 1 −

𝑎 (1 − (
𝑥
g0
)
𝑏

)

(
𝑥
g0
)
𝑏

+ 𝛼 (1 − (
𝑥
g0
)
𝑏

)

 

𝑎, 𝑏 > 0 

0 < 𝑥 < g0 
[34] 

Kum-PF 𝑃(𝑥) = 1 − (1 − (
𝑥

g0
)
𝑎𝑏

)

𝑐

 
𝑎, 𝑏, 𝑐 > 0 

0 < 𝑥 < g0 
[35] 

Tr-PF 𝑃(𝑥) = (1 + 𝑎) (
𝑥

g0
)
𝑏

− 𝑎 (
𝑥

g0
)
2𝑏

 
|𝑎| ≤ 1, 𝑏 > 0 

0 < 𝑥 <  g0 
[36]  

PF-Poi 
𝑃(𝑥) =

𝑒
𝑏(
𝑥
g0
)
𝑎

− 1

𝑒𝑏 − 1
 

𝑎, 𝑏 > 0 

0 < 𝑥 <  g0 
[37] 

 

Table 12. Descriptive statistics 

Data set Min Q1 Median Mean Q3 Max Sk Kur 

50 devices 0.100 13.50 48.50 45.67 81.25 86.00 -0.14 1.410 

30 devices 0.020 0.143 0.506 0.494 0.892 0.990 0.060 1.310 

COVID-19 0.0807 0.176 0.288 0.288 0.385 0.533 0.047 1.961 

 

Table 13. Parameter estimates, standard errors (in parenthesis), and goodness of fit statistics for failure times of 50 

devices data 

Model �̂� �̂� �̂� -LL AIC CM AD 
K-S 

(p-value) 

OFrLII–PF 
0.3585 

(0.0536) 

0.2183 

(0.0327) 
- 200.4441 404.8882 0.0480 0.3715 

0.07779 

(0.9227) 

MO–PF 
7.6657 

(5.7076) 

0.2558 

(0.1544) 
- 212.5529 429.1057 0.1179 0.8264 

0.1739 

(0.0969) 

PF–Poi 
2.1129 

(0.9889) 

0.4589 

(0.1468) 
- 216.0639 436.1277 0.0661 0.5192 

0.2091 

(0.0259) 

Tr–PF 
-0.4479 

(0.2411) 

0.6009 

(0.1233) 
- 218.0597 440.1195 0.0522 0.4295 

0.2194 

(0.0162) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 2. Fitted Plots for failure times of 50 devices data 

 

 

Table 14. Parameter estimates, standard errors (parenthesis), and goodness of fit statistics for lifetimes (in days) of 30 

electronic devices data 

Model �̂� �̂� �̂� -LL AIC CM AD 
K-S 

(p-value) 

OFrLII–PF 
0.4968 

(0.0978) 

0.3334 

(0.0568) 
- -6.1325 -8.2650 0.0713 0.4338 

0.1368 

(0.5802) 

Kum–PF 
7.9804 

(126.37) 

0.0713 

(1.1292) 

0.5807 

(0.1262) 
-4.3578 -2.7157 0.1002 0.6206 

0.1616 

(0.3731) 

Gen–PF 
0.7525 

(0.1373) 
- - -1.9424 -1.8849 0.0783 0.4680 

0.2728 

(0.0183) 

MO–PF 
2.5015 

(1.8981) 

0.5305 

(0.2620) 
- -1.6694 0.6611 0.1212 0.7603 

0.1894 

(0.2038) 

PF–Poi 
0.9523 

(1.1370) 

0.6597 

(0.2397) 
- -1.2320 1.5359 0.1118 0.6983 

0.1803 

(0.2515) 

Tr–PF 
-0.2277 

(0.3731) 

0.7396 

(0.2037) 
- -1.0026 1.9947 0.1068 0.6643 

0.1891 

(0.2055) 

PF–I 
0.8198 

(0.1496) 
- - -0.7829 0.4340 0.1021 0.6332 

0.1960 

(0.1741) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3. Fitted plots for lifetimes (in days) of 30 electronic devices data 

 

Table 15. Parameter estimates, standard errors (parenthesis), and goodness of fit statistics for mortality rate data under 

COVID-19 in UK 

Model �̂� �̂� �̂� -LL AIC CM AD 
K-S 

(p-value) 

OFrLII–PF 
1.2260 

(0.1850) 

0.9217 

(0.0766) 
- -48.1722 -92.3444 0.0743 0.4286 

0.0760 

(0.8524) 

MO–PF 
0.1860 

(0.0797) 

2.8671 

(0.4567) 
- -47.0925 -90.1851 0.0871 0.5176 

0.0901 

(0.6813) 

W–PF 
10.9575 

(14.695) 

1.5807 

(1.2693) 

1.4814 

(0.8148) 
-46.2305 -86.4610 0.0830 0.5201 

0.1027 

(0.5175) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 4. Fitted plots for the United Kingdom COVID-19 dat 

6. Conclusion 

This paper proposed a new family that generates flexible models in terms of PDF and HRF. It is referred to as odd 

Fréchet Lehmann type-II (OFrLII) G family of distributions. Several general characteristics of the proposed family and 

its sub-model (OFrLII–PF) are discussed in detail. Furthermore. OFrLII–PF distribution explored flexible shapes of 

PDF, including left-skewed, right-skewed, symmetric, or bathtub shaped, and HRF possessed U-shaped, increasing, or 

bathtub shaped. Applicability of OFrLII–PF distribution was explored over the engineering and COVID-19 pandemic 

events. Finally, closed-form PDF, CDF, and HRF of OFrLII–PF distribution attract researchers to opt for the model for 

forecasting and prediction resolution. Furthermore, it has outperformed estimates, and closest fit to datasets of interest 

expect to consider it as a better alternative than the PF distribution . 
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