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Abstract

In this paper, a new four-parameter extended inverse Weibull distribution called Alpha power Extended Inverse Weibull
Poisson distribution is introduced using the alpha power Poisson generator. This method adds two shape parameters to a
baseline distribution thereby increasing its flexibility and applicability in modeling lifetime data. We study the structural
properties of the new distribution such as the mean, variance, quantile function, median, ordinary and incomplete
moments, reliability analysis, Lorenz and Bonferroni curves, Renyi entropy, mean waiting time, mean residual life, and
order statistics. We use the method of maximum likelihood technique for estimating the model parameters of Alpha
power extended inverse Weibull distribution and the corresponding confidence intervals are obtained. The simulation
method is carried out to evaluate the performance of the maximum likelihood estimate in terms of their Absolute Bias
and Mean Square Error using simulated data. Two lifetime data sets are presented to demonstrate the applicability of the
new model and it is found that the new model has superior modeling power when compare to Inverse Weibull
distribution, Alpha Power Poisson inverse exponential distribution, Alpha Power Extended Inverse Weibull distribution,
and Alpha Power Extended Inverse Exponential distribution.

Keywords: reliability analysis, Lorenz and Bonferroni and curves, order statistics, moments, maximum likelihood
estimation

1. Introduction

Adding an extra shape parameter to a classical (conventional) distribution is very common in statistical distribution
theory. Often introducing an extra parameter(s) brings more flexibility to a class of distribution functions essentially for
data analysis purposes to improve the modeling potential of the classical distribution. For example, Azzalini (1985)
introduced the skew-normal distribution by introducing an extra parameter to the normal distribution to induce more
flexibility into the normal distribution. Mudholkar and Srivastava (1993) proposed a method that introduced an extra
parameter to a two-parameter Weibull distribution and called it exponentiated Weibull model which has two shape
parameters and one scale parameter. Marshall and Olkin (1997) introduced another method that adds a parameter to any
distribution function; two special cases were considered namely when X follows exponential or Weibull distribution and
derived many properties of this proposed model. The well-known generators are the following: the beta-G family of
distribution which was developed and studied by Eugene et al. (2002), Cordeiro and de Castro (2011) developed the
Kumaraswamy-G family of distribution, exponentiated generalized-G family of distribution was proposed and studied by
Cordeiro et al. (2013), Nofal et al. (2017) developed the generalized transmuted-G family of distribution, transmuted
exponentiated generalized-G family of distribution was proposed and studied by Yousof et al. (2015), transmuted
geometric-G family of distribution was developed and studied by Afify et al. (2016) , Kumaraswamy transmuted-G
family of distribution was studied by Afify et al. (2016b). Alizadeh et al. (2017) developed the generalized odd
generalized exponential family of distribution, exponentiated Weibull-H family of distribution was proposed and
developed by Cordeiro et al. (2017), exponentiated generalized-G Poisson family of distribution was developed and
studied by Aryal and Yousof (2017), Alizadeh et al. (2018) proposed and studied transmuted Weibull-G family of
distribution, Marshall-Olkin generalized-G Poisson family of distribution was developed and studied by Korkmaz et al.
(2018). Oluyede, et al. (2018) introduced the gamma Weibull-G family of distributions by combining the gamma
generator with the Weibull-G family of distributions which was defined by Bourguignon et al. (2014) and odd Lomax-G
family of distribution was studied by Cordeiro et al. (2019) Recently, the alpha power transformation was proposed and
studied by Mahdavi and Kundu (2017).

Let H be the CDF of any continuous random variable X, then the CDF of Alpha Power Transformed (APT) family is
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given by
aH-1
G(x)={a_—l’ Lfa>0,a¢1 (1)
H(x), a=0

And the associated pdf is given by

lo

%fi_l(x)aﬁ(x), ifa>0,a+1

g = { i : )
H(x), if a=0

The transformation has been used by several researchers to obtain alpha transformed distributions. Namely, Dey et al.
(2017a, 2017b, 2018, 2019) studied the properties of the new extensions of generalized exponential distribution with an
application to ozone data, a new extension of Weibull distribution with application to real-life data, extended Weibull
distribution with application to real-life data, alpha transformed inverse Lindley distribution which exhibits
upside-down bathtub shape failure rate, and alpha power transformed Lindley distribution with applications to
earthquake data. Hassan et al. (2018) investigate the properties of alpha power transformed extended exponential
distribution, alpha power Weibull distribution was studied by Nasser et al. (2017). Ogunde et al. (2020a, 2020b) studied
the properties of alpha power extended Bur II distribution and alpha power extended inverted Weibull distribution
respectively.

Motivated by the advantages offered by a generalized distribution which makes it more relevant in modeling lifetime
data that are non-monotonic, exhibiting different shapes of the hazard function ranges from increasing, decreasing, and
bathtub shapes, as well as the versatility of compounding alpha power Inverse Weibull and Poisson distribution in
modeling real-life data. We study a new generalization called the Alpha power extended Inverse Weibull Poisson
(APEIWP) distribution which possesses these properties.

We are also motivated to study the APEIWP distribution because of its simplicity and extensive usage of IW distribution
in modeling lifetime events. Also, the current generalization provides a wider application even to complex situations
that involve different shapes of the hazard function.

2. The Model, Sub-Models, and Properties of Alpha Power Extended Inverse Weibull Poisson (APEIWP)
Distribution

The probability density function (PDF) and the associated distribution function (CDF) of the two-parameter inverse
Weibull (IW) distribution is given by

—w—1

h(x;n, @) = nwx~® e 7, x>0 3)

and

Hognw)=e ™", x>0 o

where 7 is a positive scale parameter (n > 0) and w is a positive shape parameter (w > 0), respectively. Keller et al.
(1982) used the IW distribution to describe the wear and tear phenomena of some mechanical components such as
crankshaft and pistons of diesel engines. In addition, the IW model has many important applications in Insurance,
reliability engineering, useful life, wear-out periods, service records, and life testing, see Khan and King (2012).

Several generalizations of the Inverse Weibull distribution have been proposed and studied, see, for example, beta
Inverse Weibull by Khan (2010), generalized Inverse Weibull was studied by de Gusmao et al. (2011), modified Inverse
Weibull by Khan and King (2012), Pararai et al. (2014) studied the properties of gamma Inverse Weibull,
Kumaraswamy generalized Inverse Weibull by Oluyede and Yang (2014), Aryal and Elbatal (2015 ) investigated the
properties of Kumaraswamy modified Inverse Weibull distribution, the properties of Marshall-Olkin Inverse Weibull
was investigated by Okasha et al. (2017), alpha power Inverse Weibull was studied by Basheer (2019), and the extended
Inverse Weibull distribution was developed and studied by Said Alkarni et al. (2020).

Given that H(x) is the CDF of a distribution given in (4), then inserting (4) in (1) given another distribution called
Alpha power extended Inverse Weibull distribution (APEIW) which CDF is given by

a™ " —1
G(x) = a-1 "~

—nx—®
at , a=0

ifa>0,a#1 (5)

And the corresponding PDF is given by
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loga —

ﬁnwx“‘)'le‘”x_ a , ifa,>0,a#+1

gx) = (6)

nwx~©"1e=mx™, if a=0
Suppose that X has at the Alpha power extended Inverse Weibull distribution where its PDF and CDF are given in (5)
and (6) respectively. Given N, let X, ..., Xy be independent and identically distributed random variables from APEIW
distribution. Let N be distributed according to the zero truncated Poisson distribution with pdf
Ane*
Y (1—-e?)’
Let X = max(Zy, ..., Zy), then the CDF of X/N = n is given by

ac™ " —1
Fy/n=n(x) = (T) )

Which is the exponentiated alpha power extended Inverse Weibull distribution. The Alpha power Extended Inverse
Weibull Poisson distribution is the marginal CDF of X, given by

a1
1-exp [—/1 (T)]

e -1 ’
Where w, and A are positive shape parameters and 7 is a positive scale parameter respectively. The corresponding
APEIW P density function is given by

P(N =n) n=123..,1>0

F(x;n,w,4) =

x>0 7)

) e Y _
nwlx~*"ogae ™ “a®™™ exp [—A (a_l)]

a—1
[ = (@—D(e - 1)

Where w, and A are positive shape parameters and 7 is a positive scale parameter respectively. The graph of the CDF
and PDF are respectively drawn below in figure (1) and (2) for various values of the parameters of APEIWP
distribution.

, x>0 (8)

Graph of distribution function of APEIWP distribution, A=w=2.5
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Figure 1. The graph of the CDF of APEIWP distribution

v Figure 1 indicates that the APEIWP distribution has a proper density function.
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Graph of density function of APEIWP distribution, A=w=0.5
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Figure 2. The graph of the PDF of APEIWP distribution

v' Figure 2 indicates that the graph of APEIWP distribution is unimodal

The survival function (S(x)) is obtained by using the relation,

S(x) =1-F(x)
aae™ " 1
1—exp [—A (—a —) )]
=1-
et —1
And the hazard function is given as
—_I®
h(x) = o
—w—1 -nx~® e—X_w Aae_nx_m -1 ]
nwix logae™ "« exp|—1 —a=1
- Aat™™ Y —1
) 1—exp [—A(—a_ 1 )]
(a—DEe*-1|1- P

©)

(10)

Figures 3 and 4 are the graph of the hazard function of APEIWP distribution for various values of the parameters. The
graph shows that the hazard function of APEIWP model exhibits the non-monotone failure rate or upside-down

bathtub failure rate for the values of the parameters considered.
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Graph of hazard function of APEIWP distribution, A=w=2.5
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Figure 3. The graph of the hazard function of APEIWP distribution

Graph of hazard function of APEIWP distribution, A=w=2.5
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Figure 4. The graph of the hazard function of APEIWP distribution
2.1 Quantile Function

Quantile function can be defined as an inverse of the distribution function. Consider the relation

FX)=U=X=F1U)
Where U follows standard Uniform distribution. The p** quantile of APEIWP distribution is given by

Xy, = [—%{( ) log (@~ 1) (1-3log[(a = {1 —u(e™* - 1)}])]}]_1/“’ (11)

loga

The lower quartile, mean, and the upper quartile APEIWP distribution can be obtained from (11) by setting the value
of u tobe 0.25, 0.5, and 0.75 respectively. An expression for the lower quartile, median, and upper quartile is given as

Xoas = [_%{(lo;a) log [(“ -1 (1 —zlog[(a — 1){1 - 0.25(e™ - 1)}])]}]_% (12)

Xos = [_%{(lolga) log |(a = 1) (1 -3 log[(a — {1 - 0.5(e~* - 1)}])]}]_% (13)
and

Xo7s = [_%{(lo;a) log [(“ -1 (1 —2log[(a— {1 - 0.75(e* - 1)}])]}]_% (14)

Random numbers generation

Random numbers can be generated for the APEIWP (a, A, 7, w) distribution, for this let, simulating values of random
variable X with the CDF given in (7) and g denote a uniform random variable in (0, 1), then the simulated values of X
are obtained by as,
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X= [—%{(ﬁ) log [(a’ -1 (1 — %log[(a — 1){1 —q(e™* - 1)}])]}]_%)
Skewness and Kurtosis

The quantile function can be used to determine Bowley’s skewness (Bg), Kenny and keeping (1992) and Moor’s
kurtosis (M,,), Moor’s (1988). These measures are obtained as

_e(@+e(@-20()

STE e

e(g)-e(m)+e(3)-2@)
o(g)-e(s)

Table 1 drawn below gives the values of Bowley’s skewness (B,) and kurtosis (M,,) for various values of the parameters
of APEIW distributions taken n = 1.3 and w = 1.2.

Mk=

a=2,1=0.25 a=18,1=5.2 a=181=4.2 a=2,1=3.2
1 2.9862 3.0184 3.0817 8.4553
Q (z)
2 1.5227 2.4677 2.4073 5.0001
Q (z)
3 0.9554 2.2449 2.1499 3.7314
Q (z)
1 5.5389 3.0184 3.0817 14.6247
Q (5)
3 2.0364 2.6128 2.5794 6.1975
Q (5)
5 1.1922 2.3471 2.2669 4.2501
Q (5)
7 0.7716 2.1569 2.0404 3.3493
Q (5)
B, —0.4413 —0.4239 —0.4475 —0.4628
M, 1.9318 0.7703 0.7821 1.9746

2.2 Mixture Representation for the Density Function

The mixture representation of the density function is a very useful tool used in deriving the statistical properties of
generalized distribution. In this section, the mixture representation of the APEIWP density function is obtained. Using
the following series representation:

e = i’;—: (15)
t=0
N y
(1-2)% = ;(—m WE (16)
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a’ = Z (oga)” vt a7

t!
t=0

Using the series expansion given in (15) in (8), we have

o o i
AafT™* T _vo® (=)t a ™
e |25 |-z a

Also, using (16) in (18), we have
i

K%—wl_l)} = (-1)! (ﬁ) (1-a)
)i()( 1)/ (=™ “’)"

j=0

Consequently,

i

o P L) S () G e

applying (17) to (19), finally we have,

)= 1) Z () e A)l(ail)iﬂ (1 +))*(logayx—omle=a+0m™" (20)

i!

The above expression is a density of inverse Weibull distribution with scale parameter (1 + k)n and shape parameter
a

3. Ordinary and Incomplete Moment

The ordinary moments of distribution play a very important role in statistical applications. The rt"* moment of a
random variable X can be obtained using

B = = [ fGodx 21)
Putting (20) in (21), we have
’ 7’]0)/1 Z( ) l+]( A)L( 1 )i+1 Nk k fn,w
i =g 2 () D —) 1+ ) (loga)f
i,j,k
where
fne = fxr—(u—le—(1+k)nx_“’ dx (22)

1 1
By letting z = (1 + k)nx~¢,x = z »((1 + k)n)® and putting it in (22), we have

1 r
fre ==+ kn)*r-"/e)

Finally r*" moment of APEIWP distribution is given by
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b= e 1)ZMljk((1+k)n)5r(1—r/w) (23)
i,j,k
where

= (1) 0 S (29) T A kg

i!

r<w.Fo r=1,2,... I'(.) is the gamma function. By taking r = 1, we obtain the mean of X that is, uj = u. The
variance of X obtained by o2 = E[(X — u)?] = u, — u?. Also, we can determine the rt" central moment and rt"
cumulant of X respectively defined by

T r—1

pr =B~ = Y (D) ion COmn, k== (1) koo

m=0 m=1
Taking k = u, several measures of skewness and kurtosis based on the central moments (or cumulants) can be obtained.

Table 1 drawn below gives the first six moments and variance (02) and coefficient of variation (CV) of APEIWP

distributions. The values for CV = % =" Z—é— 1
Table 2. First six moments and ¢? and CV for APEIWP distribution
Moment a=0.2,1=05 a=051=1.0 a=151=25 a =551=55

U1 1.0664 1.0867 1.0696 1.0364
U 1.1769 1.2268 1.1809 1.0917
us 1.3645 1.4623 1.3637 1.1733
U 1.7140 1.9029 1.6940 1.2978
Us 2.5349 2.9491 2.4452 1.5175
Ug 6.5953 8.1991 6.0485 2.2605
a? 0.0397 0.0459 0.0369 0.0176
cv 0.1868 0.1972 0.1796 0.1280

An expression for an Incomplete moment is given by

9, (t) = [ X" f(x)dx (24)
Putting (20) in (24), we have

* i+1

o) = 2y () o o B E L) (4 progarts

where

f* — fotxr—w—le—(1+k)nx_‘*’ dx (25)

1 1
Also, by letting z = (1 + k)nx~®,x = z »((1 + k)n)* and putting it in (25), we have

£ = (@ 4+ m)PT (L =T/, (1 + Bmt)

Finally the rt* incomplete moment of APEIWP distribution is given by
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(pr(t) = )Zl} kMi},Lj,k ((1 + k)ﬂ)gf(l - r/a)' (1 + k)ﬂf_w) (26)

Where Ml "k 1is defined in (23), T (m, n) = fn v™1e~? dv is the complementary incomplete gamma function.. the
first incomplete moment of APEIWP distribution is given as

ACE (eﬂ,l)zl,k l]k((l+—k)n)wr(1——1/w,(1—+k)nt-“) 27)

The mean deviation, y,(x) and median deviation, y,(x), can be obtained by using the relation, y;(x) = 2uF (1) —
2y (u) and y,(x) = u — 2y;(M). Where u = E(X) and M is the median of the APEIWP random variable. Both the
y1(u) and y; (M) are calculated from the first incomplete moment as given in (27)

4. Inequality Measures

Inequality measures can be applied in biomedical sciences, product quality control economics, insurance and
demography, and many more. Here we consider the following inequality measures:

4.1 Mean Residual Life (MRL)

Residual life is defined as the expected additional life length for a unit that is alive at age t, and it is represented
mathematically by m,(t) = E(X —t/X > t), t > 0.

The MRL of X can be obtained by using the formula:

[1-¢1(D)]
N0

Where S(t) is the survival function of X and ¢, (t) as given in (27). Then we have

my (t) = -t (28)

mx(t) = Tt)((e A_ 1)21116 L]k ((1 + k)ﬂ)wr(l - 1/(,0' (1 + k)nt_w) ) -t (29)

The mean inactivity time (MIT) (mean waiting time) is defined by M,(t) = E(tX/X <t), t > 0, and it can be
obtained by the formula:

M.(t) =t— [%] (30

Also putting (27) in (30), we obtain an expression for MIT for APEIWP distribution as

1
ﬁzﬁkMi}"j,k((1+k)n)51“(1—1/a,,(1+k)nt_‘“)

M,(t) =t— o (31)
4.2 Bonferroni And Lorenz Curves
The Bonferroni and Lorenz curve of APEIWP distribution are respectively given by
T
P = g do X f G (32)
Since,
‘ 1
j x"f(x)dx = 5 Z MP, (W +om)er(1—1/,, @+ knt=)
0
therefore
1 na w -
Br() = D - S 1)Zuk i (L +FOm)e F(l —Yw, A +lnt) (33)
And the Lorenz curve
Lp(t) = i Jy x"f (x)dx (34)
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1 < :
LT M (BT = Yo, (14 k)
i,j.k

4.3 Stress-Strenght Parameter

Suppose X; and X, be two continuous and independent random variables where X;~APEIWP (a,A4,n, w) and

X,~APEIWP (ay, 5,1, w), then the stress-strength parameter, say, , is defined as

5= [ @R
Using the CDF and the PDF of APEIWP in (35), the stress-strength parameters can be obtained as

Fy(x) 1 = iyl . . i91p
T o1 o-(ptitD) Z (=Dt (]> <m) (az — 1)"**(logaz)’** (logay)? Tiplal

8 gl
iLiLmpa P

1
x ((q + 1)71)
5. Entropy
The Renyi entropy of APEIWP distribution can be obtained using a formula suggested by Renyi (1961) as

R, =

1 (o]
- 1_[ Y (0dx

[ee]

Inserting (8) in (36), we have

—w  ,—x® ae—nx_“’ -1
o lpwlx~? tHogae™ “a® "~ exp|-2 ——T
d

v—1 (a—1D(e*-1)

A )

Using Taylor series expansion in (15), (16), and (17), we have

[ NP0 I <o A DDy
ffv(x)dxz (e i—1) (@ — D7+l k! <;) fx verDemiem Vdx
—o0 i,j,k

—00

By letting the value of z = (k + v)nx~®, x = z~ /o ((k + v)n)~ /o,

e e D W DD iy
_ff (")d"‘(e—a—n”; @)%

J

Where,

Gy = ((k+vym) o r {1 MG Gkl 130(17 — 1)}

Finally, the Renyi entropy of APEIWP distribution is given by

1 e’ 0% O @) (v + F (=D (l) o
] w

v =v—1(e"1—1)”_ _ (a — 1)v+ijl k!
i,j,k

5.1 Order Statistics

(35)

(36)

(37

(38)

(39)

Suppose a random sample is drawn from the APEIWP (a,n,w,A) denoted by X of size m have the following order

statistics denoted by X;., < X,.,, <...< X,.n. Then, the PDF of the rt"order statistics is given by
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frn() = e FP (01 = FOOI £ () (40)
Using the series expansion (16) in (39), we have
frn(®) = =TI (<) (") L@ f () (41)
Considering, F/*7=1(x)f(x) and further applying the Taylor series given in (15) and (16), we have
(1) ( 1)l+m+p m (m
j+r—1 1+q
FIG0f () = oy z Krice et =Ty (A D) (p)(loga)
x (717 (p + 1)%e (@D (42)

Finally the rt"order statistics of APEIWP distribution is given by

nlnwi (=1)/*-t+m+p mMm—r
frm(x) = G —1Dln— T),Z Z miq! (a — 1)m+1(e=4 — 1)J+r (_l(l + 1)) ( j )

=0 l,m,p,q=0

8 (ZL) (j+€_1)(loga)1+q (p + 1)~ (@+Dmx™® (43)

6. Simulation Study

In this section, we carry out tbhe simulation study to ascertain the performance of MLEs of APEIWP distribution. The
random number generation is obtained with its quantile function (qf) given in (11). We generated N=1000 sample sizes
50, 100, 200, 300, 400, and 500 from APEIWP distribution using its qf taking @« = 2.0,4 = 0.5,7 = 1.3 and w = 1.2.
Then we calculated the empirical means, standard deviation (SD), variance (o) absolute bias (AB). We observed that
as the sample size increases, for each of the parameter estimates the mean square error approaches zero as expected.

Table 2. The empirical means, AB, SD, ¢? and MSE for APEIWP distribution parameters

parameter mean AB SD 52 MSE
a 0.3226 1.6774 0.4206 0.1769 2.9906
n=>50 A 0.9420 0.4420 1.7967 3.2281 3.4235
n 3.5929 2.2929 0.8280 0.6856 5.9430
W 1.4026 0.2026 0.3593 0.1291 0.1702
a 0.2933 1.7067 0.2964 0.0879 3.0007
A 0.7827 0.2827 1.0925 1.1936 1.2735
n =100 n 3.1679 1.8679 0.5142 0.2647 3.7538
W 1.3456 0.01456 0.2220 0.0493 0.0705
a 0.4834 1.5166 0.4982 0.2482 2.5483
A 1.0536 0.5536 0.9687 0.9384 1.2449
n =200 n 3.1661 1.8661 0.4276 0.1828 3.6651
W 1.2840 0.0840 0.1964 0.0386 0.0457
a 0.4490 1.5510 0.1409 0.0196 2.4252
A 0.7217 0.5783 0.3242 0.1051 0.4395
n =300 n 2.8109 1.5109 0.1583 0.0251 2.3079
W 1.2667 0.0667 0.0743 0.0055 0.0099
a 0.4707 1.5293 0.2466 0.0608 2.3996
A 0.8501 0.3501 0.5583 0.3117 0.4342
n =400 n 2.9522 1.6522 0.2672 0.0714 2.8012
W 1.2558 0.0558 0.1235 0.0153 0.0184
a 0.4917 1.5083 0.2611 0.0682 2.3432
A 0.8693 0.3693 0.4945 0.2445 0.3809
n =500 n 2.9023 1.6023 0.2397 0.0575 2.6248
W 1.2402 0.0402 0.1092 0.0119 0.0135
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6.1 Maximum Likelihood Estimation
Let X;,X,,..., X, be arandom sample drawn from APEIWP (a,n, 1, w) then the likelihood function is given by

_ =@ e—nx“*’_
noix=@iogae M “ae e"”["(“ai_ll)]

L(x a2 0) = [T (a-1)(e~*-1) ’ (44)
Then, taking z* = ¢~7* “the loglikelihood function (logL = I) is given by
/‘l n n
w
I =nlog ((a — 17)7(6_1 — 1)> + nlog[log(a)] — 1 Z x;~ + log(a) Z z%i
i=1 i=1
-5 (e - 1) (45)
We differentiate (45) with respect a,4,n and w, to obtain the element of the score vector (Va = :—;,VA g—;,l/;, =
o Vv, = ﬂ)T The elements of the score vector are given b,
an’ ® w) g y

n n
_n n(a — 1 — alog(a) 12 o A Z S Z i,
V“_a—1+ ala — 1log(a) +E,lz (a —1)2 @ a(a—l)
1= i=
n ne=4 1 - "
_r_ _ 7% _
V)‘_/l et -1 (a—l)Z(a 1)
i=

n n
A
Gy=p- 1og(a)z 7= s log(@) ) xiva
n B 1) i=1

i=1

n n n
Tl - X
Vo=——1 Z x; “log(a) —nlog(a) Z xi Ye™™ " —nog(a) Z x; @ log(x) z¥ia”™"
i=1 i=1 i=1

By setting the non-linear system of equations V, =V} =1, =V, = 0 and obtaining a feasible solution by solving the
simultaneously, the MLE of the parameters of the APEIWP model are obtained. However, these equations cannot be
solved analytically, statistical software can be employed to solve them numerically by using iterative methods such as
Newton-Raphson algorithms. To carry out interval estimation of the model parameters, we require the observed
information matrix

Vaa VaA Van Vaw

Vii Vi Vaw
Vna Var Vim Vi
Vwa V(u/l Van] Va)w

H(§) = -

Under certain standard regularity conditions as n — oo, the distribution of & can be approximated by a multivariate
normal N, (0 H (f) ) distribution to construct approximate confidence intervals for the parameters. Here, H (6)
represent the total observed information matrix calculated at £.

Asymptotic (1 —p)100% confidence intervals for parameters can be obtained as

@+ Zp/21/21 , A+ Zp/z,/zll, A+ Zp/z,/zu, o+ Zp/z,/xll

6.2 Least Square Method (LSE)
Let xq,...,x, be a random sample from APEIWP distribution with parameters a,A,7n, and w. By considering the

corresponding order statistics Xj.n, ..., Xp.n, taking E[F(X;.,)] = —7- The least square estimates can be obtained by
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minimizing the following expression

2

B = i[F(xi) —EIFGI]” = Z [Feo-—]
i=1

Minimizing L°(¢) with respectto a,A,n and w, we have the following system of non-linear equations:

A(E) i1
s 221 [P0 - —=| e =0,
aLS(f)_ - Pl

—ZZ;F@J—n+LP%mh—0
AI©) O P
= _2;_F(xi)—n+1_F(xi),,_o
P8 22 [P o] P = 0

i=1

Where F'(x)q = 22 F(x), F'(x); = 2 F(x) F'(x)), = %F(xi) and F'(x;),, = 2> F(x;). These equations can

be solved numerically by any software to obtain the estimates &gz, A5z, s, and dpgg

6.3 Weighted Least Square (WLS)

Let xq,...,x, be arandom sample from APEIWP distribution with parameters «, 4,1, and w. The likelihood function
for a weighted least square estimate is given by

wm—z

Minimizing W (§) with respectto @, 4,1 and w, we have the following system of non-linear equations:

n+1D?(n+2)

im—i+1) [F( D~

il

WE) o+ D2n+2)| L Y
TR A T TS E
W) _ Z(n+1) (n+2)r Elpriey. —
) 2 im—i+1) F(xi) S+ 1 Filaa =0
WE) o+ D2n+2)| L 7
oLt [0 T PO =0
WE) o+ D2+ PN
W_ W,F(xi)_n+1.1:(xi)w_o

This system of non-linear equations can be solved numerically by any software to obtain the estimates @5z, A,z
fiLse> and @psp
6.4 Cramer Von Mises (CVM)

Crammer von Mises is a type of minimum distance estimators. Let xy,...,x, be a random sample from APEIWP
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distribution with parameters a, 4,7, and w. The likelihood function for Crammer von Mises estimate is given by

C(f)——+Z[F(x)—2L_1]

Minimizing C(§) with respectto a,4,n and w, we have the following system of non-linear equations:

@ _ N

= ;[F( )~ Pl =0,
WE) 2i-19
O RRNUOES s (IO
6W(§) N 2i-1

= 2; F(Xi) _T_ F (xl-),, =0

ALS(E) N 2i-1y

G0~ = 20 [P0 = | PG, = 0

...
1l
fuy

These equations can be solved numerically by any software to obtain the estimates &g, A;5g> Aisg> and @pgp
6.5 Practical Applications

In this subsection, we evaluate the performance of the APEIWP distributions with the other four competing models to
two reliability data sats. The data sets are described as follows:

The data set (data set 1). The data set was presented by Murthy et al. (2004) on the failure times (in weeks) of 50
components. The data set are: 0.013, 0.065,0.111, 0.111,0.163, 0.309, 0.426, 0.535, 0.684, 0.747, 0.997, 1.284, 1.304,
1.647, 1.829, 2.336, 2.838, 3.269, 3.977, 3.981, 4.520,4.789, 4.849, 5.202, 5.291, 5.349, 5.911, 6.018, 6.427, 6.456,
6.572,7.023, 7.087, 7.291, 7.787, 8.596, 9.388, 10.261, 10.713, 11.658, 13.006, 13.388, 13.842, 17.152, 17.283, 19.418,
23.471,24.777, 32.795, 48.105.

The data set (data set 2). The data set is made up of failure time in hours of Kevlar 49/epoxy strands with pressure at 90%
and was already studied by Andrews and Herzberg (2012). The data consists of 101 observations and the numbers are:
0.01, 0.01, 0.02, 0.02,0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09,0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13,
0.18, 0.19, 0.20,0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42,0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65,
0.67, 0.68,0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85,0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05,
1.10,1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40,1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55,
1.58,1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17,2.33, 3.03, 3.03, 3.34, 4.20,4.69, 7.89.

The descriptive statistics of the two data sets are given in Table 3 and the graph of Total Time on Test plot is given in
figure 5 and Boxplot in figure 6. From this table, it can be observed that the two data sets are over-dispersed, leptokurtic,
and positively skewed. Also, from figure 5, it can be observed that data 1 exhibits decreasing failure rate and data 2
exhibit a non-monotone failure rate

Table 3. Exploratory data Analysis of Failure data

Discriptive statistics Data 1 Data 2
Sample size 50 101
Mean 7.82 1.03
Lower quartile 1.39 0.24
Upper quartile 10.04 1.45
Median 5.32 0.80
Variance 84.75 1.25
Kurtosis 7.23 14.41
Skewness 2.38 3.05
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Diagram I Diagram 2

Figure 5. TTT Plot for the two failure data
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Figure 6. Box plot for the two failure data

The ML estimates along with their standard error (SE) and the confidence interval in a curly bracket of the model
parameters are provided in Tables 4 and 5. In the same tables, the analytical measures including; minus
2*log-likelihood(-2log L), Akaike Information Criterion (AIC), Bayesian information criterion (BIC), and Kolmogorov
Smirnov (KS) test statistic are obtained for the model considered. The fit of the proposed APEIWP distribution is
compared with three other competitive models namely the conventional Inverse Weibull distribution, Alpha Power
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Poisson inverse exponential distribution, Alpha Power Extended Inverse Weibull distribution, and Alpha Power
Extended Inverse Exponential distribution, with the following PDFs:

_ =1 emx —
nix~2logae ™ a® " exp l—l (a_l)

a—1
flx) = @-De -1 , x> 0;,a,n,1>0
—w—1 —nx~® e M¥ @
fx)= X lo(‘i{ai ) ¢ , x>0, a,nw>0
-2 —nx~1 emnx !
foy - g L £> 0 >0
Table 4. Analytical results of the APEIWP model and other competing models for Kevlar 45/epoxy data
Model a A Ui ) —21 AlIC BIC K
APEIWP 0.07 8.36 2.94 0.23 232.06 | 240.07 | 250.53 | 0.11
(0.08) (2.93) (0.39) (0.03)
{—0.09,0.22} {2.62,14.10} {2.18,3.70} | {0.17,0.29}
APPIE 691 —-3.39 0.048 — 24740 | 253.41 | 261.25 | 0.18
(3.618) (0.763) (0.011) (-)
{-0.19,14.01} | {—4.87,—1.91} | {0.03,0.07} {-}
APEIW 0.02 — 1.64 0.32 247.32 | 253.31 | 261.16 | 0.19
(0.01) -) (0.30) (0.04)
{0.00,0.04} {-} {1.05,2.23} | {0.24,0.40}
APEIE 8.21 — 0.10 — 279.40 | 283.40 | 288.63 | 0.32
(2.34) (=) (0.01) (-)
{3.62.12.77} {-} {0.08,0.12} {-}
w — - 0.42 0.62 264.88 | 268.88 | 274.11 | 0.19
=) (-) (0.06) (0.04)
{-} {-} {0.30,0.54} | {0.54,0.70}

Table 5. Analytical results of the APEIWP model and other competing models for failure time of components

Model a A Ui W —21 AlIC BIC K
APEIP 7.81 —-3.82 0.20 0.69 323.00 | 331.01 | 338.65 | 0.17
(3.86) (1.43) (0.08) (0.07)
{0.24,15.38} | {-6.62,—1.02} | {0.04,0.36} | {0.55,0.83}
APPIE 10.76 —4.99 0.13 — 343.42 | 349.41 | 355.15 | 0.30
(5.73) (1.09) (0.03) =)
{-0.47,21.99} | {-7.13,—-2.85} | {0.07,0.19} {-}
APEIW 8.40 — 0.59 0.61 330.54 | 336.55 | 342.28 | 0.21
(5.35) =) (0.13) (0.05)
{—2.09,18.89} {-} {0.34,0.85} | {0.51,0.71}
APEIE 19.27 - 0.27 - 380.64 | 384.70 | 388.52 | 0.46
(6.98) =) (0.04) =)
{5.59,32.95} {-} {0.19,0.35} {-}
1w - - 1.117 0.48 337.28 | 341.28 | 345.11 | 0.20
(=) =) (0.17) (0.05)
{-} {-} {0.79,1.45} | {0.38,0.58}

Based on Tables 4 and 35, it is evident that APEIWP model provides the best fit among other competing models, and
can therefore be taken as the best model based on the data considered. Also, Figures 7 and 8 provide more information
on the applicability of the APEIWP distribution in modeling lifetime data.
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Estimated Cdfs for 46/kevlar expoxl strand data Estimated Pdfs for 46/kevilar expoxl strand data
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Figure 7. Estimated CDF and PDF function and other competing models for 46/Kevlar epoxy strand data
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Figure 8. Estimated CDF and PDF function and other competing models for components failure data
7. Conclusion

In this work, we study the Alpha power extended inverse Weibull Poisson distribution. Some structural properties of the
APEIWP distribution are derived such as ordinary and incomplete moments, Renyi entropy, order statistics, mean
residual life, mean inactivity time, Bonferroni and Lorenz curves, and stress strength reliability. Estimation of the
population parameters is carried out by using the maximum likelihood estimation method. Simulation study and two life
data sets are used to illustrate the applicability of APEIWP distribution in modeling lifetime data. We recommend that
further studies should be carried out by using different estimations techniques such as the Weighted Least Square
method, Minimum spacing method, and Bayesian method, etc., and compare the performance of the estimation
techniques.
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