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Abstract 
In this paper, a new four-parameter extended inverse Weibull distribution called Alpha power Extended Inverse Weibull 
Poisson distribution is introduced using the alpha power Poisson generator. This method adds two shape parameters to a 
baseline distribution thereby increasing its flexibility and applicability in modeling lifetime data. We study the structural 
properties of the new distribution such as the mean, variance, quantile function, median, ordinary and incomplete 
moments, reliability analysis, Lorenz and Bonferroni curves, Renyi entropy, mean waiting time, mean residual life, and 
order statistics. We use the method of maximum likelihood technique for estimating the model parameters of Alpha 
power extended inverse Weibull distribution and the corresponding confidence intervals are obtained. The simulation 
method is carried out to evaluate the performance of the maximum likelihood estimate in terms of their Absolute Bias 
and Mean Square Error using simulated data. Two lifetime data sets are presented to demonstrate the applicability of the 
new model and it is found that the new model has superior modeling power when compare to Inverse Weibull 
distribution, Alpha Power Poisson inverse exponential distribution, Alpha Power Extended Inverse Weibull distribution, 
and Alpha Power Extended Inverse Exponential distribution. 
Keywords: reliability analysis, Lorenz and Bonferroni and curves, order statistics, moments, maximum likelihood 
estimation 
1. Introduction 
Adding an extra shape parameter to a classical (conventional) distribution is very common in statistical distribution 
theory. Often introducing an extra parameter(s) brings more flexibility to a class of distribution functions essentially for 
data analysis purposes to improve the modeling potential of the classical distribution. For example, Azzalini (1985) 
introduced the skew-normal distribution by introducing an extra parameter to the normal distribution to induce more 
flexibility into the normal distribution. Mudholkar and Srivastava (1993) proposed a method that introduced an extra 
parameter to a two-parameter Weibull distribution and called it exponentiated Weibull model which has two shape 
parameters and one scale parameter. Marshall and Olkin (1997) introduced another method that adds a parameter to any 
distribution function; two special cases were considered namely when X follows exponential or Weibull distribution and 
derived many properties of this proposed model. The well-known generators are the following: the beta-G family of 
distribution which was developed and studied by Eugene et al. (2002), Cordeiro and de Castro (2011) developed the 
Kumaraswamy-G family of distribution, exponentiated generalized-G family of distribution was proposed and studied by 
Cordeiro et al. (2013), Nofal et al. (2017) developed the generalized transmuted-G family of distribution, transmuted 
exponentiated generalized-G family of distribution was proposed and studied by Yousof et al. (2015), transmuted 
geometric-G family of distribution was developed and studied by Afify et al. (2016) , Kumaraswamy transmuted-G 
family of distribution was studied by Afify et al. (2016b). Alizadeh et al. (2017) developed the generalized odd 
generalized exponential family of distribution, exponentiated Weibull-H family of distribution was proposed and 
developed by Cordeiro et al. (2017), exponentiated generalized-G Poisson family of distribution was developed and 
studied by Aryal and Yousof (2017), Alizadeh et al. (2018) proposed and studied transmuted Weibull-G family of 
distribution, Marshall-Olkin generalized-G Poisson family of distribution was developed and studied by Korkmaz et al. 
(2018). Oluyede, et al. (2018) introduced the gamma Weibull-G family of distributions by combining the gamma 
generator with the Weibull-G family of distributions which was defined by Bourguignon et al. (2014) and odd Lomax-G 
family of distribution was studied by Cordeiro et al. (2019) Recently, the alpha power transformation was proposed and 
studied by Mahdavi and Kundu (2017). 
Let 𝐻 be the CDF of any continuous random variable X, then the CDF of Alpha Power Transformed (APT) family is 
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given by 

𝐺(𝑥) = ( ) , 𝑖𝑓 𝛼 > 0, 𝛼 ≠ 1𝐻(𝑥),           𝛼 = 0                                                                         (1) 

And the associated pdf is given by  𝑔(𝑥) = ℎ(𝑥)𝛼 ( ),   𝑖𝑓 𝛼 > 0, 𝛼 ≠ 1𝐻(𝑥),          𝑖𝑓  𝛼 = 0                                                                   (2) 

The transformation has been used by several researchers to obtain alpha transformed distributions. Namely, Dey et al. 
(2017a, 2017b, 2018, 2019) studied the properties of the new extensions of generalized exponential distribution with an 
application to ozone data, a new extension of Weibull distribution with application to real-life data, extended Weibull 
distribution with application to real-life data, alpha transformed inverse Lindley distribution which exhibits 
upside-down bathtub shape failure rate, and alpha power transformed Lindley distribution with applications to 
earthquake data. Hassan et al. (2018) investigate the properties of alpha power transformed extended exponential 
distribution, alpha power Weibull distribution was studied by Nasser et al. (2017). Ogunde et al. (2020a, 2020b) studied 
the properties of alpha power extended Bur II distribution and alpha power extended inverted Weibull distribution 
respectively.  
Motivated by the advantages offered by a generalized distribution which makes it more relevant in modeling lifetime 
data that are non-monotonic, exhibiting different shapes of the hazard function ranges from increasing, decreasing, and 
bathtub shapes, as well as the versatility of compounding alpha power Inverse Weibull and Poisson distribution in 
modeling real-life data. We study a new generalization called the Alpha power extended Inverse Weibull Poisson 
(APEIWP) distribution which possesses these properties. 
We are also motivated to study the APEIWP distribution because of its simplicity and extensive usage of IW distribution 
in modeling lifetime events. Also, the current generalization provides a wider application even to complex situations 
that involve different shapes of the hazard function. 
2. The Model, Sub-Models, and Properties of Alpha Power Extended Inverse Weibull Poisson (APEIWP) 
Distribution 
The probability density function (PDF) and the associated distribution function (CDF) of the two-parameter inverse 
Weibull (IW) distribution is given by  ℎ(𝑥; 𝜂, 𝜔) = 𝜂𝜔𝑥 𝑒 ,      𝑥 > 0                                                        (3) 
and   𝐻(𝑥; 𝜂, 𝜔) = 𝑒 ,        𝑥 > 0                                                                           (4) 
where 𝜂 is a positive scale parameter  (𝜂 > 0) and 𝜔 is a positive shape parameter (ω > 0), respectively. Keller et al. 
(1982) used the IW distribution to describe the wear and tear phenomena of some mechanical components such as 
crankshaft and pistons of diesel engines. In addition, the IW model has many important applications in Insurance, 
reliability engineering, useful life, wear-out periods, service records, and life testing, see Khan and King (2012).  
Several generalizations of the Inverse Weibull distribution have been proposed and studied, see, for example, beta 
Inverse Weibull by Khan (2010), generalized Inverse Weibull was studied by de Gusmao et al. (2011), modified Inverse 
Weibull by Khan and King (2012), Pararai et al. (2014) studied the properties of gamma Inverse Weibull, 
Kumaraswamy generalized Inverse Weibull by Oluyede and Yang (2014), Aryal and Elbatal (2015 ) investigated the 
properties of Kumaraswamy modified Inverse Weibull distribution, the properties of Marshall-Olkin Inverse Weibull 
was investigated by Okasha et al. (2017), alpha power Inverse Weibull was studied by Basheer (2019), and the extended 
Inverse Weibull distribution was developed and studied by Said Alkarni et al. (2020).  
Given that 𝐻(𝑥) is the CDF of a distribution given in (4), then inserting (4) in (1) given another distribution called 
Alpha power extended Inverse Weibull distribution (APEIW) which CDF is given by  

𝐺(𝑥) = 𝛼 − 1𝛼 − 1 , 𝑖𝑓 𝛼 > 0, 𝛼 ≠ 1𝛼 ,           𝛼 = 0                                                                   (5) 

And the corresponding PDF is given by 
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𝑔(𝑥) = 𝑙𝑜𝑔𝛼𝛼 − 1 𝜂𝜔𝑥 𝑒 𝛼 ,   𝑖𝑓 𝛼, > 0, 𝛼 ≠ 1𝜂𝜔𝑥 𝑒 ,          𝑖𝑓  𝛼 = 0                                        (6) 

Suppose that X has at the Alpha power extended Inverse Weibull distribution where its PDF and CDF are given in (5) 
and (6) respectively. Given 𝑁, let 𝑋 , … , 𝑋  be independent and identically distributed random variables from 𝐴𝑃𝐸𝐼𝑊 
distribution. Let N be distributed according to the zero truncated Poisson distribution with pdf 𝑃(𝑁 = 𝑛) = 𝜆 𝑒𝑛! (1 − 𝑒 ) ,       𝑛 = 1,2,3, … , 𝜆 > 0 

Let 𝑋 = 𝑚𝑎𝑥(𝑍 , … , 𝑍 ), then the CDF of 𝑋 𝑁 = 𝑛⁄  is given by  

𝐹 ⁄ (𝑥) = 𝛼 − 1𝛼 − 1 ,  
Which is the exponentiated alpha power extended Inverse Weibull distribution. The Alpha power Extended Inverse 
Weibull Poisson distribution is the marginal CDF of 𝑋, given by 

𝐹(𝑥; 𝜂, 𝜔, 𝜆) = 1 − 𝑒𝑥𝑝 −𝜆 𝛼 − 1𝛼 − 1𝑒 − 1 ,          𝑥 > 0                                       (7) 

Where 𝜔,  and 𝜆 are positive shape parameters and 𝜂 is a positive scale parameter respectively. The corresponding 𝐴𝑃𝐸𝐼𝑊𝑃 density function is given by  

𝑓(𝑥) = 𝜂𝜔𝜆𝑥 𝑙𝑜𝑔𝛼𝑒 𝛼 𝑒𝑥𝑝 −𝜆 𝛼 − 1𝛼 − 1(𝛼 − 1)(𝑒 − 1) , 𝑥 > 0                         (8) 

Where 𝜔, and 𝜆 are positive shape parameters and 𝜂 is a positive scale parameter respectively. The graph of the CDF 
and PDF are respectively drawn below in figure (1) and (2) for various values of the parameters of APEIWP 
distribution. 

 
Figure 1. The graph of the CDF of 𝐴𝑃𝐸𝐼𝑊𝑃 distribution 

 Figure 1 indicates that the 𝐴𝑃𝐸𝐼𝑊𝑃 distribution has a proper density function. 
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Figure 2. The graph of the PDF of 𝐴𝑃𝐸𝐼𝑊𝑃 distribution 

 Figure 2 indicates that the graph of 𝐴𝑃𝐸𝐼𝑊𝑃 distribution is unimodal 

The survival function (𝑆(𝑥)) is obtained by using the relation, 𝑆(𝑥) = 1 − 𝐹(𝑥)                                                                                (9) 

= 1 − 1 − 𝑒𝑥𝑝 −𝜆 𝜆𝛼 − 1𝛼 − 1𝑒 − 1  

And the hazard function is given as ℎ(𝑥) = ( )( )                                                                                           (10) 

                      = 𝜂𝜔𝜆𝑥 𝑙𝑜𝑔𝛼𝑒 𝛼 𝑒𝑥𝑝 −𝜆 𝜆𝛼 − 1𝛼 − 1
(𝛼 − 1)(𝑒 − 1) ⎝⎜

⎛𝟏 − 1 − 𝑒𝑥𝑝 −𝜆 𝜆𝛼 − 1𝛼 − 1𝑒 − 1 ⎠⎟
⎞                             

Figures 3 and 4 are the graph of the hazard function of 𝐴𝑃𝐸𝐼𝑊𝑃 distribution for various values of the parameters. The 
graph shows that the hazard function of 𝐴𝑃𝐸𝐼𝑊𝑃 model exhibits the non-monotone failure rate or upside-down 
bathtub failure rate for the values of the parameters considered. 
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Figure 3. The graph of the hazard function of APEIWP distribution 

 
Figure 4. The graph of the hazard function of 𝐴𝑃𝐸𝐼𝑊𝑃 distribution 

2.1 Quantile Function 
Quantile function can be defined as an inverse of the distribution function. Consider the relation 𝐹(𝑋) = 𝑈 ⇒ 𝑋 = 𝐹 (𝑈) 

Where 𝑈 follows standard Uniform distribution. The 𝑝  quantile of 𝐴𝑃𝐸𝐼𝑊𝑃 distribution is given by 𝑋 = − 𝑙𝑜𝑔 (𝛼 − 1) 1 − 𝑙𝑜𝑔 (𝛼 − 1) 1 − 𝑢 𝑒 − 1                              (11) 

The lower quartile, mean, and the upper quartile 𝐴𝑃𝐸𝐼𝑊𝑃 distribution can be obtained from (11) by setting the value 
of 𝑢 to be 0.25, 0.5, and 0.75 respectively. An expression for the lower quartile, median, and upper quartile is given as 𝑋 . = − 𝑙𝑜𝑔 (𝛼 − 1) 1 − 𝑙𝑜𝑔 (𝛼 − 1) 1 − 0.25 𝑒 − 1                     (12) 

𝑋 . = − 𝑙𝑜𝑔 (𝛼 − 1) 1 − 𝑙𝑜𝑔 (𝛼 − 1) 1 − 0.5 𝑒 − 1                        (13) 

and  𝑋 . = − 𝑙𝑜𝑔 (𝛼 − 1) 1 − 𝑙𝑜𝑔 (𝛼 − 1) 1 − 0.75 𝑒 − 1                    (14) 

Random numbers generation 
Random numbers can be generated for the 𝐴𝑃𝐸𝐼𝑊𝑃 (𝛼, 𝜆, 𝜂, 𝜔) distribution, for this let, simulating values of random 
variable X with the CDF given in (7) and 𝑞 denote a uniform random variable in (0, 1), then the simulated values of X 
are obtained by as,  
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𝑋 = − 1𝜂 1𝑙𝑜𝑔𝛼 𝑙𝑜𝑔 (𝛼 − 1) 1 − 1𝜆 𝑙𝑜𝑔 (𝛼 − 1) 1 − 𝑞 𝑒 − 1  

Skewness and Kurtosis 
The quantile function can be used to determine Bowley’s skewness (𝐵 ), Kenny and keeping (1992) and Moor’s 
kurtosis (𝑀 ), Moor’s (1988). These measures are obtained as 

𝐵 = 𝑄 34 + 𝑄 14 − 2𝑄 24𝑄 34 − 𝑄 14  

and 

𝑀 = 𝑄 78 − 𝑄 58 + 𝑄 38 − 𝑄 18𝑄 68 − 𝑄 28  

Table 1 drawn below gives the values of Bowley’s skewness (𝐵 ) and kurtosis (𝑀 ) for various values of the parameters 
of 𝐴𝑃𝐸𝐼𝑊 distributions taken 𝜂 = 1.3 and 𝜔 = 1.2. 

 𝛼 = 2, 𝜆 = 0.25 𝛼 = 1.8, 𝜆 = 5.2 𝛼 = 1.8, 𝜆 = 4.2 𝛼 = 2, 𝜆 = 3.2 

𝑄 14  
2.9862 3.0184 3.0817 8.4553 

𝑄 24  
1.5227 2.4677 2.4073 5.0001 

𝑄 34  
0.9554 2.2449 2.1499 3.7314 

𝑄 18  
5.5389 3.0184 3.0817 14.6247 

𝑄 38  
2.0364 2.6128 2.5794 6.1975 

𝑄 58  
1.1922 2.3471 2.2669 4.2501 

𝑄 78  
0.7716 2.1569 2.0404 3.3493 

𝐵  −0.4413 −0.4239 −0.4475 −0.4628 𝑀  1.9318 0.7703 0.7821 1.9746 
 
2.2 Mixture Representation for the Density Function 
The mixture representation of the density function is a very useful tool used in deriving the statistical properties of 
generalized distribution. In this section, the mixture representation of the APEIWP density function is obtained. Using 
the following series representation: 

𝑒 = 𝑦𝑡!                                                                                         (15) 

(1 − 𝑧) = (−1) 𝑦𝑡 𝑧                                                                     (16) 
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𝛼 = (𝑙𝑜𝑔𝛼)𝑡! 𝑣                                                                                    (17) 

Using the series expansion given in (15) in (8), we have 𝑒𝑥𝑝 −𝜆 = ∑ ( )!                                                      (18) 

Also, using (16) in (18), we have 

                                                            𝛼 − 1𝛼 − 1 = (−1) 1𝛼 − 1 1 − 𝛼  

          = (−1) 1𝛼 − 1 𝑖𝑗 (−1) 𝛼  

Consequently, 

𝑓(𝑥) = 𝜂𝜔𝜆𝑥 𝑙𝑜𝑔𝛼𝑒(𝛼 − 1)(𝑒 − 1) 1𝛼 − 1 𝑖𝑗 (−1) (−𝜆)𝑖! 1𝛼 − 1 𝛼( ),  (19) 

applying (17) to (19), finally we have, 

𝑓(𝑥) = 𝜂𝜔𝜆(𝑒 − 1) 𝑖𝑗 (−1) (−𝜆)𝑖! 1𝛼 − 1 (1 + 𝑗) (𝑙𝑜𝑔𝛼) 𝑥 𝑒 ( ), , (20) 

The above expression is a density of inverse Weibull distribution with scale parameter (1 + 𝑘)𝜂 and shape parameter 𝛼 
3. Ordinary and Incomplete Moment 
The ordinary moments of distribution play a very important role in statistical applications. The 𝑟  moment of a 
random variable X can be obtained using  

           𝐸(𝑋 ) = 𝜇 = 𝑥 𝑓(𝑥)𝑑𝑥                                                                         (21) 

Putting (20) in (21), we have 

𝜇 = 𝜂𝜔𝜆(𝑒 − 1) 𝑖𝑗 (−1), ,
(−𝜆)𝑖! 1𝛼 − 1 (1 + 𝑗) (𝑙𝑜𝑔𝛼) 𝑓 ,  

where 

𝑓 , = 𝑥 𝑒 ( )  𝑑𝑥                                                                               (22) 

By letting 𝑧 = (1 + 𝑘)𝜂𝑥 , 𝑥 = 𝑧 (1 + 𝑘)𝜂  and putting it in (22), we have 

𝑓 , = 1𝜔 (1 + 𝑘)𝜂 𝛤(1 − 𝑟 𝜔⁄ ) 

Finally 𝑟  moment of 𝐴𝑃𝐸𝐼𝑊𝑃 distribution is given by 
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𝜇  = 𝜂𝜆(𝑒 − 1) 𝑀 , ,, , (1 + 𝑘)𝜂 𝛤(1 − 𝑟 𝜔⁄ )                                             (23) 

where  𝑀 , , = 𝑖𝑗 (−1) (−𝜆)𝑖! 1𝛼 − 1 (1 + 𝑗) (𝑙𝑜𝑔𝛼)  𝑟 < 𝜔. Fo 𝑟 = 1,2, . .. 𝛤(. ) is the gamma function. By taking 𝑟 = 1, we obtain the mean of 𝑋 that is, 𝜇 = 𝜇. The 
variance of X obtained by 𝜎 = 𝐸 (𝑋 − 𝜇) = 𝜇 − 𝜇 . Also, we can determine the 𝑟  central moment and 𝑟  
cumulant of X respectively defined by 

𝜇 = 𝐸 (𝑋 − 𝜇) = 𝑟𝑚 𝜇 (−1) 𝜇 , 𝑘 = 𝜇 − 𝑟 − 1𝑚 − 1 𝑘 𝜇 , 
Taking 𝑘 = 𝜇, several measures of skewness and kurtosis based on the central moments (or cumulants) can be obtained. 

Table 1 drawn below gives the first six moments and variance (𝜎 ) and coefficient of variation (𝐶𝑉) of 𝐴𝑃𝐸𝐼𝑊𝑃 

distributions. The values for 𝐶𝑉 = = − 1 

Table 2. First six moments and 𝜎  and 𝐶𝑉 for 𝐴𝑃𝐸𝐼𝑊𝑃 distribution 𝑀𝑜𝑚𝑒𝑛𝑡 𝛼 = 0.2, 𝜆 = 0.5 𝛼 = 0.5, 𝜆 = 1.0 𝛼 = 1.5, 𝜆 = 2.5 𝛼 = 5.5, 𝜆 = 5.5 𝜇  1.0664 1.0867 1.0696 1.0364𝜇  1.1769 1.2268 1.1809 1.0917𝜇  1.3645 1.4623 1.3637 1.1733𝜇  1.7140 1.9029 1.6940 1.2978𝜇  2.5349 2.9491 2.4452 1.5175𝜇  6.5953 8.1991 6.0485 2.2605𝜎  0.0397 0.0459 0.0369 0.0176𝐶𝑉 0.1868 0.1972 0.1796 0.1280
An expression for an Incomplete moment is given by            𝜑 (𝑡) = 𝑥 𝑓(𝑥)𝑑𝑥                                                                              (24) 

Putting (20) in (24), we have 

   𝝋𝒓(𝒕) = 𝜂𝜔𝜆(𝑒 − 1) 𝑖𝑗 (−1) (−1) (−𝜆)𝑖! 1𝛼 − 1 (1 + 𝑗) (𝑙𝑜𝑔𝛼) 𝑓∗ 

where 𝑓∗ = 𝑥 𝑒 ( )  𝑑𝑥                                                                               (25) 

Also, by letting 𝑧 = (1 + 𝑘)𝜂𝑥 , 𝑥 = 𝑧 (1 + 𝑘)𝜂  and putting it in (25), we have 

𝑓 , = 1𝜔 (1 + 𝑘)𝜂 𝛤(1 − 𝑟 𝜔⁄ , (1 + 𝑘)𝜂𝑡 ) 

Finally the 𝑟  incomplete moment of APEIWP distribution is given by  
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   𝜑 (𝑡) = ∑ 𝑀 , ,, , (1 + 𝑘)𝜂 𝛤(1 − 𝑟 𝜔⁄ , (1 + 𝑘)𝜂𝑡 )                                       (26) 

Where 𝑀 , ,  is defined in (23), 𝛤(𝑚, 𝑛) = 𝑣 𝑒 𝑑𝑣 is the complementary incomplete gamma function.. the 
first incomplete moment of APEIWP distribution is given as  𝜑 (𝑡) = ∑ 𝑀 , ,, , (1 + 𝑘)𝜂 𝛤 1 − 1 𝜔 , (1 + 𝑘)𝜂𝑡                               (27) 

The mean deviation, 𝛾 (𝑥) and median deviation, 𝛾 (𝑥), can be obtained by using the relation, 𝛾 (𝑥) = 2𝜇𝐹(𝜇) −2𝛾 (𝜇)  and 𝛾 (𝑥) = 𝜇 − 2𝛾 (𝑀). Where 𝜇 = 𝐸(𝑋) and 𝑀 is the median of the APEIWP random variable. Both the 𝛾 (𝜇)  and 𝛾 (𝑀)  are calculated from the first incomplete moment as given in (27) 
4. Inequality Measures 
Inequality measures can be applied in biomedical sciences, product quality control economics, insurance and 
demography, and many more. Here we consider the following inequality measures: 
4.1 Mean Residual Life (𝑴𝑹𝑳) 
Residual life is defined as the expected additional life length for a unit that is alive at age 𝑡, and it is represented 
mathematically by 𝑚 (𝑡) = 𝐸(𝑋 − 𝑡/𝑋 > 𝑡), 𝑡 > 0. 
The 𝑀𝑅𝐿 of 𝑋 can be obtained by using the formula: 𝑚 (𝑡) = ( )( ) − 𝑡,                                                                                (28) 

Where 𝑆(𝑡) is the survival function of 𝑋 and 𝜑 (𝑡) as given in (27). Then we have 𝑚 (𝑡) = ( ) ∑ 𝑀 , ,, , (1 + 𝑘)𝜂 𝛤 1 − 1 𝜔 , (1 + 𝑘)𝜂𝑡  − 𝑡,              (29) 

The mean inactivity time (𝑀𝐼𝑇) (mean waiting time) is defined by 𝑀 (𝑡) = 𝐸(𝑡𝑋/𝑋 ≤ 𝑡), 𝑡 > 0, and it can be 
obtained by the formula: 𝑀 (𝑡) = 𝑡 − ( ) ( )                                                                                      (30) 

Also putting (27) in (30), we obtain an expression for 𝑀𝐼𝑇 for 𝐴𝑃𝐸𝐼𝑊𝑃 distribution as 

𝑀 (𝑡) = 𝑡 −  ∑ , ,, , ( ) ,( )( )                                         (31) 

4.2 Bonferroni And Lorenz Curves 
The Bonferroni and Lorenz curve of APEIWP distribution are respectively given by  𝔅 = ( ) 𝑥 𝑓(𝑥)𝑑𝑥                                                                            (32) 

Since,  

𝑥 𝑓(𝑥)𝑑𝑥 = 𝜂𝜆(𝑒 − 1) 𝑀 , ,, , (1 + 𝑘)𝜂 𝛤 1 − 1 𝜔 , (1 + 𝑘)𝜂𝑡      
therefore 𝔅 (𝑡) = ( ) ∑ 𝑀 , ,, , (1 + 𝑘)𝜂 𝛤 1 − 1 𝜔 , (1 + 𝑘)𝜂𝑡                       (33) 

And the Lorenz curve 𝐿 (𝑡) = 𝑥 𝑓(𝑥)𝑑𝑥                                                                                    (34) 
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                    = 1𝜇 𝜂𝜆(𝑒 − 1) 𝑀 , ,, , (1 + 𝑘)𝜂 𝛤 1 − 1 𝜔 , (1 + 𝑘)𝜂𝑡  

4.3 Stress-Strenght Parameter 
Suppose 𝑋  and 𝑋  be two continuous and independent random variables where 𝑋 ~𝐴𝑃𝐸𝐼𝑊𝑃  (𝛼 , 𝜆 , 𝜂, 𝜔) and 𝑋 ~𝐴𝑃𝐸𝐼𝑊𝑃  (𝛼 , 𝜆 , 𝜂, 𝜔), then the stress-strength parameter, say, , is defined as 

Ꞩ = 𝑓 (𝑥)𝐹 (𝑥)𝑑𝑥                                                                            (35) 

Using the CDF and the PDF of APEIWP in (35), the stress-strength parameters can be obtained as 

Ꞩ = 𝐹 (𝑥)𝑒 − 1𝑒 ( ) (−1) 𝑖𝑗 𝑙𝑚 (𝛼 − 1) (𝑙𝑜𝑔𝛼 ), , , , , (𝑙𝑜𝑔𝛼 ) 𝑖 𝑙𝑖! 𝑙! 𝑝! 𝑞! 
            × 1(𝑞 + 1)𝜂                                                                                 (36) 

5. Entropy 
The Renyi entropy of APEIWP distribution can be obtained using a formula suggested by Renyi (1961) as  

𝑅 = 1𝑣 − 1 𝑓 (𝑥)𝑑𝑥                                                                                        (37) 

Inserting (8) in (36), we have  

𝑅 = 1𝑣 − 1 ⎩⎪⎨
⎪⎧𝜂𝜔𝜆𝑥 𝑙𝑜𝑔𝛼𝑒 𝛼 𝑒𝑥𝑝 −𝜆 𝛼 − 1𝛼 − 1(𝛼 − 1)(𝑒 − 1) ⎭⎪⎬

⎪⎫ 𝑑𝑥         (38) 

Using Taylor series expansion in (15), (16), and (17), we have 

𝑓 (𝑥)𝑑𝑥 = 𝜂 𝜔 𝜆(𝑒 − 1) (𝑣𝜆) (𝑣 + 𝑗) (−1)(𝛼 − 1) 𝑖! 𝑘!, ,
𝑖𝑗 𝑥 ( )𝑒 ( ) 𝑑𝑥 

By letting the value of 𝑧 = (𝑘 + 𝑣)𝜂𝑥 , 𝑥 = 𝑧 ((𝑘 + 𝑣)𝜂) , 
𝑓 (𝑥)𝑑𝑥 = 𝜂 𝜔 𝜆(𝑒 − 1) (𝑣𝜆) (𝑣 + 𝑗) (−1)(𝛼 − 1) 𝑖! 𝑘!, ,

𝑖𝑗 𝐺∗  

Where, 𝐺∗ = ((𝑘 + 𝑣)𝜂) ( )𝛤 1 + (𝜔 + 1)(𝑣 − 1)𝜔  

Finally, the Renyi entropy of APEIWP distribution is given by 

𝑅 = 1𝑣 − 1 𝜂 𝜔 𝜆(𝑒 − 1) (𝑣𝜆) (𝑣 + 𝑗) (−1)(𝛼 − 1) 𝑖! 𝑘!, ,
𝑖𝑗 𝐺∗                                                 (39) 

5.1 Order Statistics 
Suppose a random sample is drawn from the 𝐴𝑃𝐸𝐼𝑊𝑃 (𝜶, 𝜂, 𝜔, 𝜆) denoted by 𝑋 of size 𝑚 have the following order 
statistics denoted by 𝑋 : < 𝑋 : <. . . < 𝑋 : . Then, the PDF of the 𝑟 order statistics is given by 
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𝑓 : (𝑥) = !( )!( )! 𝐹 (𝑥) 1 − 𝐹(𝑥) 𝑓(𝑥)                                                     (40) 

Using the series expansion (16) in (39), we have 𝑓 : (𝑥) = !( )!( )! ∑ (−1) 𝐹 (𝑥)𝑓(𝑥)                                                   (41) 

Considering, 𝐹 (𝑥)𝑓(𝑥) and further applying the Taylor series given in (15) and (16), we have 

𝐹 (𝑥)𝑓(𝑥) = 𝜂𝜔𝜆(𝑒 − 1) 𝑥 (−1)𝑚! 𝑞! (𝛼 − 1) −𝜆(𝑙 + 1) 𝑚𝑝, , , (𝑙𝑜𝑔𝛼)  

× (𝑝 + 1) 𝑒 ( )                                                                            (42) 
Finally the 𝑟 order statistics of 𝐴𝑃𝐸𝐼𝑊𝑃 distribution is given by  

𝑓 : (𝑥) = 𝑛! 𝜂𝜔𝜆(𝑟 − 1)! (𝑛 − 𝑟)! (−1) _𝑚! 𝑞! (𝛼 − 1) (𝑒 − 1) −𝜆(𝑙 + 1) 𝑛 − 𝑟𝑗, , ,  

× (𝑙𝑜𝑔𝛼) (𝑝 + 1) 𝑒 ( )                                                        (43) 

6. Simulation Study  
In this section, we carry out t6he simulation study to ascertain the performance of MLEs of APEIWP distribution. The 
random number generation is obtained with its quantile function (qf) given in (11). We generated N=1000 sample sizes 
50, 100, 200, 300, 400, and 500 from APEIWP distribution using its qf taking 𝛼 = 2.0, 𝜆 = 0.5, 𝜂 = 1.3 𝑎𝑛𝑑 𝜔 = 1.2. 
Then we calculated the empirical means, standard deviation (SD), variance (𝜎 ) absolute bias (AB). We observed that 
as the sample size increases, for each of the parameter estimates the mean square error approaches zero as expected. 
Table 2. The empirical means, 𝐴𝐵, 𝑆𝐷, 𝜎  and 𝑀𝑆𝐸 for 𝐴𝑃𝐸𝐼𝑊𝑃 distribution parameters  
 parameter 𝑚𝑒𝑎𝑛 𝐴𝐵 𝑆𝐷 𝛿  MSE 
 𝑛 = 50 

𝛼 0.3226 1.6774 0.4206 0.1769 2.9906 𝜆 0.9420 0.4420 1.7967 3.2281 3.4235 𝜂 3.5929 2.2929 0.8280 0.6856 5.9430 𝜔 1.4026 0.2026 0.3593 0.1291 0.1702 
 
 𝑛 = 100 

𝛼 0.2933 1.7067 0.2964 0.0879 3.0007 𝜆 0.7827 0.2827 1.0925 1.1936 1.2735 𝜂 3.1679 1.8679 0.5142 0.2647 3.7538 𝜔 1.3456 0.01456 0.2220 0.0493 0.0705 
 
 𝑛 = 200 

𝛼 0.4834 1.5166 0.4982 0.2482 2.5483 𝜆 1.0536 0.5536 0.9687 0.9384 1.2449 𝜂 3.1661 1.8661 0.4276 0.1828 3.6651 𝜔 1.2840 0.0840 0.1964 0.0386 0.0457 
 
 𝑛 = 300 

𝛼 0.4490 1.5510 0.1409 0.0196 2.4252 𝜆 0.7217 0.5783 0.3242 0.1051 0.4395 𝜂 2.8109 1.5109 0.1583 0.0251 2.3079 𝜔 1.2667 0.0667 0.0743 0.0055 0.0099 
 
 𝑛 = 400 

𝛼 0.4707 1.5293 0.2466 0.0608 2.3996 𝜆 0.8501 0.3501 0.5583 0.3117 0.4342 𝜂 2.9522 1.6522 0.2672 0.0714 2.8012 𝜔 1.2558 0.0558 0.1235 0.0153 0.0184 
 
 𝑛 = 500 

𝛼 0.4917 1.5083 0.2611 0.0682 2.3432 𝜆 0.8693 0.3693 0.4945 0.2445 0.3809 𝜂 2.9023 1.6023 0.2397 0.0575 2.6248 𝜔 1.2402 0.0402 0.1092 0.0119 0.0135 
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6.1 Maximum Likelihood Estimation 
Let 𝑋 , 𝑋 , . . . , 𝑋  be a random sample drawn from APEIWP (𝛼, 𝜂, 𝜆, 𝜔) then the likelihood function is given by  

𝑳 𝒙, 𝛼, 𝜂, 𝜆, 𝜔 = ∏ ( )( ) ,                         𝒏𝒊 𝟎 (44) 

Then, taking 𝑧 = 𝑒 the loglikelihood function (𝑙𝑜𝑔𝐿 = 𝑙) is given by 

𝑙 = 𝑛𝑙𝑜𝑔 𝜂𝜔𝜆(𝛼 − 1)(𝑒 − 1) + 𝑛𝑙𝑜𝑔 log (𝛼) − 𝜂 𝑥 + log (𝛼) 𝑧  

        − ( ) ∑ 𝛼 − 1                                                                         (45) 

We differentiate (45) with respect 𝛼, 𝜆, 𝜂 and 𝜔, to obtain the element of the score vector 𝑉 = , 𝑉 = , 𝑉 =
, 𝑉 =  . The elements of the score vector are given by  

𝑉 = 𝑛𝛼 − 1 + 𝑛(𝛼 − 1 − 𝛼log (𝛼)𝛼(𝛼 − 1)log (𝛼) + 1𝛼 𝑧 − 𝜆(𝛼 − 1) 𝛼  + 𝜆𝛼(𝛼 − 1) 𝛼 𝑧  

𝑉 = 𝑛𝜆 − 𝑛𝑒𝑒 − 1 − 1(𝛼 − 1) 𝛼 − 1 ,                                                                           
𝑉 = 𝑛𝜂 − 𝑥 − log(𝛼) 𝑥 𝑧 − 𝜆(𝛼 − 1) 𝑙𝑜𝑔(𝛼) 𝑥 𝛼 𝑧                          
𝑉 = 𝑛𝜔 − 𝜂 𝑥 𝑙𝑜𝑔(𝛼) − 𝜂𝑙𝑜𝑔(𝛼) 𝑥 𝑒 − 𝜂𝑜𝑔(𝛼) 𝑥 log(𝑥) 𝑧 𝛼      
By setting the non-linear system of equations 𝑉 = 𝑉 = 𝑉 = 𝑉 = 0 and obtaining a feasible solution by solving the 
simultaneously, the MLE of the parameters of the APEIWP model are obtained. However, these equations cannot be 
solved analytically, statistical software can be employed to solve them numerically by using iterative methods such as 
Newton-Raphson algorithms. To carry out interval estimation of the model parameters, we require the observed 
information matrix 

𝐻(𝜉) = − ⎣⎢⎢⎢
⎡𝑉 𝑉 𝑉 𝑉𝑉 𝑉 𝑉 𝑉𝑉 𝑉 𝑉 𝑉𝑉 𝑉 𝑉 𝑉 ⎦⎥⎥⎥

⎤
 

Under certain standard regularity conditions as 𝑛 ⟶ ∞, the distribution of 𝜉 can be approximated by a multivariate 
normal 𝑁 0, 𝐻 𝜉  distribution to construct approximate confidence intervals for the parameters. Here, 𝐻 𝜉  
represent the total observed information matrix calculated at 𝜉. 
Asymptotic (1 − 𝑝)100% confidence intervals for parameters can be obtained as 𝛼 ± 𝑍 𝛴 ,        𝜆 ± 𝑍 𝛴 ,        �̂� ± 𝑍 𝛴 ,     𝜔 ± 𝑍 𝛴  

6.2 Least Square Method (LSE) 
Let 𝑥 , … , 𝑥  be a random sample from APEIWP distribution with parameters 𝛼, 𝜆, 𝜂, and 𝜔. By considering the 
corresponding order statistics 𝑋 : , … , 𝑋 : , taking 𝐸 𝐹(𝑋 : ) = .  The least square estimates can be obtained by 
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minimizing the following expression 

𝐿 (𝜉) = 𝐹(𝑥 ) − 𝐸 𝐹(𝑥 ) = 𝐹(𝑥 ) − 𝑖𝑛 + 1 . 
Minimizing 𝐿 (𝜉) with respect to 𝛼, 𝜆, 𝜂 and 𝜔, we have the following system of non-linear equations: 𝜕𝐿 (𝜉)𝜕𝛼 = 2 𝐹(𝑥 ) − 𝑖𝑛 + 1 𝐹 (𝑥 ) = 0, 

𝜕𝐿 (𝜉)𝜕𝜆 = 2 𝐹(𝑥 ) − 𝑖𝑛 + 1 𝐹 (𝑥 ) = 0 

𝜕𝐿 (𝜉)𝜕𝜂 = 2 𝐹(𝑥 ) − 𝑖𝑛 + 1 𝐹 (𝑥 ) = 0 

𝜕𝐿 (𝜉)𝜕𝜔 = 2 𝐹(𝑥 ) − 𝑖𝑛 + 1 𝐹 (𝑥 ) = 0 

Where 𝐹 (𝑥 ) = 𝐹(𝑥 ), 𝐹 (𝑥 ) = 𝐹(𝑥 )  𝐹 (𝑥 ) = 𝐹(𝑥 ) and 𝐹 (𝑥 ) = 𝐹(𝑥 ). These equations can 

be solved numerically by any software to obtain the estimates 𝛼 , 𝜆 , �̂� , and 𝜔  

6.3 Weighted Least Square (WLS) 
Let 𝑥 , … , 𝑥  be a random sample from APEIWP distribution with parameters 𝛼, 𝜆, 𝜂, and 𝜔. The likelihood function 
for a weighted least square estimate is given by  

𝑾(𝝃) = (𝑛 + 1) (𝑛 + 2)𝑖(𝑛 − 𝑖 + 1) 𝐹(𝑥 ) − 𝑖𝑛 + 1 . 
Minimizing 𝑊(𝜉) with respect to 𝛼, 𝜆, 𝜂 and 𝜔, we have the following system of non-linear equations: 𝜕𝑊(𝜉)𝜕𝛼 = 2 (𝑛 + 1) (𝑛 + 2)𝑖(𝑛 − 𝑖 + 1) 𝐹(𝑥 ) − 𝑖𝑛 + 1 𝐹 (𝑥 ) = 0 

𝜕𝑊(𝜉)𝜕𝜆 = 2 (𝑛 + 1) (𝑛 + 2)𝑖(𝑛 − 𝑖 + 1) 𝐹(𝑥 ) − 𝑖𝑛 + 1 𝐹 (𝑥 ) = 0 
𝜕𝑊(𝜉)𝜕𝜂 = 2 (𝑛 + 1) (𝑛 + 2)𝑖(𝑛 − 𝑖 + 1) 𝐹(𝑥 ) − 𝑖𝑛 + 1 𝐹 (𝑥 ) = 0 
𝜕𝑊(𝜉)𝜕𝜔 = 2 (𝑛 + 1) (𝑛 + 2)𝑖(𝑛 − 𝑖 + 1) 𝐹(𝑥 ) − 𝑖𝑛 + 1 𝐹 (𝑥 ) = 0 

This system of non-linear equations can be solved numerically by any software to obtain the estimates 𝛼 , 𝜆 , �̂� , and 𝜔  
6.4 Cramer Von Mises (CVM) 
Crammer von Mises is a type of minimum distance estimators. Let 𝑥 , … , 𝑥  be a random sample from APEIWP 
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distribution with parameters 𝛼, 𝜆, 𝜂, and 𝜔. The likelihood function for Crammer von Mises estimate is given by  
𝐶(𝜉) = 112𝑛 + 𝐹(𝑥 ) − 2𝑖 − 12𝑛 . 

Minimizing 𝐶(𝜉) with respect to 𝛼, 𝜆, 𝜂 and 𝜔, we have the following system of non-linear equations: 𝜕𝐶(𝜉)𝜕𝛼 = 2 𝐹(𝑥 ) − 2𝑖 − 12𝑛 𝐹 (𝑥 ) = 0, 
𝜕𝑊(𝜉)𝜕𝜆 = 2 𝐹(𝑥 ) − 2𝑖 − 12𝑛 𝐹 (𝑥 ) = 0 

𝜕𝑊(𝜉)𝜕𝜂 = 2 𝐹(𝑥 ) − 2𝑖 − 12𝑛 𝐹 (𝑥 ) = 0 

𝜕𝐿 (𝜉)𝜕𝜔 = 2 𝐹(𝑥 ) − 2𝑖 − 12𝑛 𝐹 (𝑥 ) = 0 

These equations can be solved numerically by any software to obtain the estimates 𝛼 , 𝜆 , �̂� , and 𝜔  
6.5 Practical Applications 
In this subsection, we evaluate the performance of the APEIWP distributions with the other four competing models to 
two reliability data sats. The data sets are described as follows: 
The data set (data set 1). The data set was presented by Murthy et al. (2004) on the failure times (in weeks) of 50 
components. The data set are: 0.013, 0.065,0.111, 0.111,0.163, 0.309, 0.426, 0.535, 0.684, 0.747, 0.997, 1.284, 1.304, 
1.647, 1.829, 2.336, 2.838, 3.269, 3.977, 3.981, 4.520,4.789, 4.849, 5.202, 5.291, 5.349, 5.911, 6.018, 6.427, 6.456, 
6.572, 7.023, 7.087, 7.291, 7.787, 8.596, 9.388, 10.261, 10.713, 11.658, 13.006, 13.388, 13.842, 17.152, 17.283, 19.418, 
23.471, 24.777, 32.795, 48.105. 
The data set (data set 2). The data set is made up of failure time in hours of Kevlar 49/epoxy strands with pressure at 90% 
and was already studied by Andrews and Herzberg (2012). The data consists of 101 observations and the numbers are: 
0.01, 0.01, 0.02, 0.02,0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09,0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 
0.18, 0.19, 0.20,0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42,0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 
0.67, 0.68,0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85,0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 
1.10,1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40,1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 
1.58,1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17,2.33, 3.03, 3.03, 3.34, 4.20,4.69, 7.89. 
The descriptive statistics of the two data sets are given in Table 3 and the graph of Total Time on Test plot is given in 
figure 5 and Boxplot in figure 6. From this table, it can be observed that the two data sets are over-dispersed, leptokurtic, 
and positively skewed. Also, from figure 5, it can be observed that data 1 exhibits decreasing failure rate and data 2 
exhibit a non-monotone failure rate 
Table 3. Exploratory data Analysis of Failure data 𝐷𝑖𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑣𝑒 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 𝐷𝑎𝑡𝑎 1 𝐷𝑎𝑡𝑎 2 𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 50 101 𝑀𝑒𝑎𝑛 7.82 1.03 𝐿𝑜𝑤𝑒𝑟 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 1.39 0.24 𝑈𝑝𝑝𝑒𝑟 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 10.04 1.45 𝑀𝑒𝑑𝑖𝑎𝑛 5.32 0.80 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 84.75 1.25 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 7.23 14.41 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 2.38 3.05 
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Diagram I                Diagram 2  

Figure 5. TTT Plot for the two failure data 

 

Diagram I                Diagram 2  

Figure 6. Box plot for the two failure data 
The ML estimates along with their standard error (SE) and the confidence interval in a curly bracket of the model 
parameters are provided in Tables 4 and 5. In the same tables, the analytical measures including; minus 
2*log-likelihood(-2log L), Akaike Information Criterion (AIC), Bayesian information criterion (BIC), and Kolmogorov 
Smirnov (KS) test statistic are obtained for the model considered. The fit of the proposed 𝐴𝑃𝐸𝐼𝑊𝑃 distribution is 
compared with three other competitive models namely the conventional Inverse Weibull distribution, Alpha Power 
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Poisson inverse exponential distribution, Alpha Power Extended Inverse Weibull distribution, and Alpha Power 
Extended Inverse Exponential distribution, with the following PDFs: 

𝑓(𝑥) = 𝜂𝜆𝑥 𝑙𝑜𝑔𝛼𝑒 𝛼 𝑒𝑥𝑝 −𝜆 𝛼 − 1𝛼 − 1(𝛼 − 1)(𝑒 − 1) , 𝑥 > 0; 𝛼, 𝜂, 𝜆 > 0 

𝑓(𝑥) = 𝜂𝜔𝑥 𝑙𝑜𝑔𝛼𝑒 𝛼(𝛼 − 1) ,                                     𝑥 > 0;  𝛼, 𝜂, 𝜔 > 0 

𝑓(𝑥) = 𝜂𝑥 𝑙𝑜𝑔𝛼𝑒 𝛼(𝛼 − 1) ,                                                  𝑥 > 0;  𝛼, 𝜂 > 0 

Table 4. Analytical results of the APEIWP model and other competing models for Kevlar 45/epoxy data 𝑀𝑜𝑑𝑒𝑙 𝛼 𝜆 𝜂 𝜔 −2𝑙 𝐴𝐼𝐶 𝐵𝐼𝐶 𝐾𝐴𝑃𝐸𝐼𝑊𝑃 0.07 (0.08) −0.09,0.22  8.36 (2.93) 2.62,14.10  2.94(0.39)2.18,3.70 0.23(0.03) 0.17,0.29 232.06 240.07 250.53 0.11 

𝐴𝑃𝑃𝐼𝐸 6.91 (3.618) −0.19,14.01  −3.39 (0.763) −4.87, −1.91 0.048(0.011)0.03,0.07 −(−)− 247.40 253.41 261.25 0.18 

𝐴𝑃𝐸𝐼𝑊 0.02 (0.01) 0.00,0.04  − (−) −  1.64(0.30) 1.05,2.23 0.32(0.04) 0.24,0.40 247.32 253.31 261.16 0.19 

𝐴𝑃𝐸𝐼𝐸 8.21 (2.34) 3.62.12.77  − (−) −  0.10(0.01) 0.08,0.12 −(−) − 279.40 283.40 288.63 0.32 

𝐼𝑊 − (−) −  − (−) −  0.42(0.06)0.30,0.54 0.62(0.04)0.54,0.70 264.88 268.88 274.11 0.19 

 
Table 5. Analytical results of the APEIWP model and other competing models for failure time of components 𝑀𝑜𝑑𝑒𝑙 𝛼 𝜆 𝜂 𝜔 −2𝑙 𝐴𝐼𝐶 𝐵𝐼𝐶 𝐾𝐴𝑃𝐸𝐼𝑃 7.81 (3.86) 0.24,15.38  −3.82 (1.43) −6.62, −1.02 0.20(0.08)0.04,0.36 0.69(0.07)0.55,0.83 323.00 331.01 338.65 0.17 

𝐴𝑃𝑃𝐼𝐸 10.76 (5.73) −0.47,21.99  −4.99 (1.09) −7.13, −2.85 0.13(0.03)0.07,0.19 −(−)− 343.42 349.41 355.15 0.30 

𝐴𝑃𝐸𝐼𝑊 8.40 (5.35) −2.09,18.89  − (−) −  0.59(0.13)0.34,0.85 0.61(0.05)0.51,0.71 330.54 336.55 342.28 0.21 

𝐴𝑃𝐸𝐼𝐸 19.27 (6.98) 5.59,32.95  − (−) −  0.27(0.04)0.19,0.35 −(−)− 380.64 384.70 388.52 0.46 

1𝑊 − (−) −  − (−) −  1.117(0.17)0.79,1.45 0.48(0.05)0.38,0.58 337.28 341.28 345.11 0.20 

Based on Tables 4 and 5, it is evident that 𝐴𝑃𝐸𝐼𝑊𝑃 model provides the best fit among other competing models, and 
can therefore be taken as the best model based on the data considered. Also, Figures 7 and 8 provide more information 
on the applicability of the 𝐴𝑃𝐸𝐼𝑊𝑃 distribution in modeling lifetime data. 
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Figure 7. Estimated CDF and PDF function and other competing models for 46/Kevlar epoxy strand data 

 
Figure 8. Estimated CDF and PDF function and other competing models for components failure data 

7. Conclusion 
In this work, we study the Alpha power extended inverse Weibull Poisson distribution. Some structural properties of the 𝐴𝑃𝐸𝐼𝑊𝑃 distribution are derived such as ordinary and incomplete moments, Renyi entropy, order statistics, mean 
residual life, mean inactivity time, Bonferroni and Lorenz curves, and stress strength reliability. Estimation of the 
population parameters is carried out by using the maximum likelihood estimation method. Simulation study and two life 
data sets are used to illustrate the applicability of 𝐴𝑃𝐸𝐼𝑊𝑃 distribution in modeling lifetime data. We recommend that 
further studies should be carried out by using different estimations techniques such as the Weighted Least Square 
method, Minimum spacing method, and Bayesian method, etc., and compare the performance of the estimation 
techniques. 
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