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Abstract 

This study examines design preference in Completely Randomized (CR) split-plot experiments involving random whole 

plot factor effect and fixed sub-plot factor effect. Many previous works on optimally designing split-plot experiments 

assumed only factors with fixed levels. However, the cases where interests are on random factors have received little 

attention. These problems have similarities with optimal design of experiments for fixed parameters of non-linear 

models because the solution rely on the unknown parameters.  Design Space (DS) containing exhaustive list of 

balanced designs for a fixed sample size were compared for optimality using the product of determinants of derived 

information matrices of the Maximum Likelihood (ML) estimators equivalent to random and fixed effect in the model. 

Different magnitudes of components of variance configurations where variances of factor effects are larger than 

variances of error term were empirically used for the comparisons. The results revealed that the D-optimal designs are 

those with whole plot factor levels greater than replicates within each level of whole plot. 

Keywords: whole plot, sub-plot, information matrices, D-optimal, variance component 

1. Introduction 

1.1 Introduce the Problem 

Split-plot designs are applied when there is restricted randomization of the factor-levels of whole-plots. Whole-plot 

factors are usually called hard-to-change factors because their levels are not retuned independently for each 

experimental run (restricted randomization of factor levels). The sub-plot factor levels are referred to as easy-to-change 

factors because there is no such restriction of factor levels. The simplicity in the manner in which split-plot experiments 

are set-up has made it an experiment of choice in the industry. Many industrial experiments include hard-to-change 

factors in which funds and time are scarce (Goos and Vanderbroek 2001). Many authors have written articles devoted to 

the application of these designs in industrial experiments, some of them are Cornell (1988), Letsinger et.al. (1996), 

Bingham and Sitter (2001), and Trinca and Gilmour (2001). Computer procedures for constructing D-optimal split-plot 

design was given by Goos and Vanderbroek (2001, 2003). These algorithms are useful in several experimental situations 

that allow the combinations of factor levels. An algorithm which does not require allowable combinations of factor 

levels was proposed by Goos and Donev (2007). The algorithm requires specifying the type of factors, size of the 

whole-plot, size of the easy-to-change factor, ratio of error variances, model and starting design size. The constructions 

of these entire algorithms were based on the assumptions that factor levels are fixed. The part of the Fisher Information 

matrix for the estimation of the fixed parameters was used for the development of these procedures. Many works on 

optimal design in the fixed-effect study are based on the Fedorov algorithm (1972). A modification of the Fedorov 

procedure was employed by Goos and Vandebroek (2003) to construct optimal split-plot designs in the fixed-effect 

study. However, there is no unique approach for optimal designs in variance components models. As noted by Khuri 

(2000), the works on variance components analysis is fairly large but the quantity of articles dedicated to problems of 

designing experiment to estimate variance components is rather limited. Most of the works in this area of research were 

published in the sixties and seventies and were limited to some certain models. These problems have similarities with 

optimal experimental design for fixed parameters of non-linear models because the solution depends on the magnitude 

of unknown parameters. The solution also depends on the model and the method of estimation  

Crump (1954) used the Analysis of Variance (ANOVA) estimation procedure to optimally design experiments for the 
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one-way random model. Crump’s result was later published by Anderson and Crump (1967). They showed that for a 

fixed number of experimental runs and a fixed number of levels of the random factor, the 𝑉𝑎𝑟(𝜎𝛼
2) and𝑉𝑎𝑟 (𝜎𝛼

2 𝜎𝑒
2⁄ ) 

are minimized when there is an almost equal allocation of observation into each level of the random factor. The optimal 

number of levels of the random-effects depends on the true value of the variance components. Thompson & Anderson 

(1975) used the truncated analysis of variance, Maximum Likelihood (ML) and modified ML estimators to re-examined 

the optimal designs proposed by Anderson & Crump. The design criterion employed was the mean squared error for 

both balanced and unbalanced situations. The results revealed that for balanced design, modified ML estimator was 

superior as the optimal design was less sensitive to the interclass correlation 𝜌 = 𝜎𝛼
2 (𝜎𝛼

2 + 𝜎𝑒
2)⁄ when 𝜌 < 0.5. 

Herrendofer (1979) constructed A-optimal designs of the ANOVA estimator for the one-way random model; he showed 

that for a fixed number of runs and a fixed number of levels of the random factor, designs with equal class frequencies 

is A-optimal. Other authors that have published work on optimal designs for the one-way random model include 

Murkerjee and Huda (1988), Giovagnoli and Sebastiani (1989, 1990). Norell (2006) 

Gaylor (1960) constructed optimal designs in a two-way cross classification random model using the fitting constant 

method of estimation for the unbalanced data. Muse & Anderson (1978) compared quite a few designs for the two-way 

crossed classification random model without interaction using both small-sample and asymptotic ML results. It was 

found that the optimum selection depends on the ratio of the main effect variance to the error variance. Shen et al. (1996) 

compared a number of balanced and unbalanced two-way designs for estimation of genetic parameters using simulated 

and asymptotic variances of the ML estimates. Recently, Loeza and Donev (2014) provided a general algorithm for 

constructing A-optimal and D-optimal balanced designs in a two-way crossed classification model without interaction. 

There are also published works on the two-way nested classification random model, such as Delgado and Iyer (1999), 

who developed an algorithm to construct locally optimum design for a two-way nested model. Also, Loeza and Donev 

(2014) developed a general algorithm for constructing locally A-optimal and D-optimal balanced designs.   Nuga et al. 

(2014), proposed an algorithm that assumes a random effect model for a completely randomized split-plot design, the 

estimation method they consider was the Maximum Likelihood Estimator. Nuga et al (2017) extended the work by 

constructing D-optimal design for the same model using the restricted maximum likelihood. For both works only the 

part of the fisher information matrix corresponding to the estimation of the random parameters was used.   

This present work examined the choice of designs for estimating a random hard-to-change factor or whole-plot factor 

and a fixed easy-to-change factor or sub-plot factor in a balanced completely randomized split-plot design. The main 

aim is to identify the structure of the completely randomized design that will maximize the product of determinants of 

the Fisher Information matrices corresponding to the fixed and random part of the model.  Consider an experiment 

described by Stone and Sidel (2004) to investigate the effect of different varieties of wheat (plants) on the sensorial 

quality of product (bread) produced. This type of experiment can be conducted at two levels of randomization. The first 

level involves the randomization of varieties to samples, while the second level is the randomization of judges/panelist 

to divided samples. The samples are the whole-plots while the variety is the whole-plot factor effect.  Judges are the 

sub-plot factor effects whereas the divided samples are the sub-plots. If the varieties are selected from population of 

wheat varieties and the interest is to estimate the variation within this population and panelist are specific panelist of 

interest whereby the effect on judges are assumed fixed.   

The description of this split-plot model, the structure of the dispersion matrix and the derivation of the information 

matrices of the Maximum Likelihood (ML) estimator are given in details in the next section. In section 3, the work 

described procedures for generating exhaustive group of balanced designs corresponding to a fixed whole-plots size and 

sub-plot factor levels. Generated designs are compared in section 4 for D-optimality. 

2. Method 

2.1 Completely Randomized Split-plot Designs 

Completely randomized split-plot designs involve randomizing levels of whole-plot factor to whole-plots arranged in 

completely randomized design and then randomizing levels of sub-plot factor to sub-plots within each whole-plot. The 

model equation for this work is 

             𝑦
𝑖𝑗𝑘

= 𝜇 + 𝛼𝑖 + 𝛽
𝑗
+ (𝛼𝛽)

𝑖𝑗
+ 𝛾

𝑖𝑘
+ 𝑒𝑖𝑗𝑘                               (1) 

  𝑖 = 1,2, . . , 𝑣, 𝑗 = 1,2, . . , 𝑠, 𝑘 = 1,2, . . , 𝑟 

Where v is number of whole-plot factor level, 

s is number of sub-plot factor level 

r is number of replicates of whole-plot within each factor level. 

For the completely randomized split-plot design, the size or number of whole-plots (R) is given as. 𝑅 = 𝑉𝑟 
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𝑦
𝑖𝑗𝑘 is the dependent variable at the 𝑘𝑡ℎ replicate in the 𝑖𝑡ℎ level of whole-plot factor and the 𝑗𝑡ℎ replicate of sub-plot 

factor, 𝜇 is the constant, 𝛼𝑖 is the effect of the 𝑖𝑡ℎ  level of random whole-plot factor  𝛽
𝑗 is effect of the 𝑗𝑡ℎ 

replicate of the fixed sub-plot factor.  (𝛼𝛽)𝑖𝑗 is the interaction effect. 𝛾
𝑖𝑘

 is the whole-plot error term,  𝑒𝑖𝑗𝑘 is the 

sub-plot error term 

2.1 Matrix Formulation for the Model 

The matrix formulation of equation (1) to reflect response generated from the experimental set-up with a random 

whole-plot factor and fixed sub-plot factor is  

𝑌1𝑁 = 𝜇1𝑁 + 𝑋𝛽 + 𝑍3𝛼 + 𝑍2𝛼𝛽 + 𝑍1𝛾 + 𝑍0𝑒                        (2) 

Y is Nx1 vector of observations, µ is the general mean, X is the model matrix for the sub-plot fixed effect and Z’s are 

the indicator matrices for the random effects, here 

Here,𝛼 = [
𝛼1

.
𝛼𝑣

],𝛽 = [
𝛽1

.
𝛽𝑠

],𝛼𝛽 = [
𝛼1𝛽1

.
𝛼𝑣𝛽𝑠

],𝛾 = [
𝛾1

.
𝛾𝑅

],  𝑒 = [
𝑒1

.
𝑒𝑁

]                    (3) 

The dispersion matrix is given as    

                          𝑉(𝑦) = 𝑉 = ∑ 𝜎𝑖
23

𝑖=0 𝑍𝑖𝑍𝑗
′3        (4) 

It is assumed that the expected values of the random effects are zero and the covariance as follows 

𝑐𝑜𝑣( 𝛼𝑖) = 𝜎𝛼
2𝐼𝛼,𝑐𝑜𝑣( 𝛼𝛽)

𝑖𝑗
= 𝜎𝛼𝛽

2 𝐼𝛼𝛽,𝑐𝑜𝑣( 𝛾
𝑖𝑘
) = 𝜎𝛾

2𝐼𝑅,𝑐𝑜𝑣( 𝑒) = 𝜎𝑒
2𝐼𝑁 

Where, 𝜎𝛼
2 , 𝜎𝛼𝛽,

2  𝜎𝛾
2and 𝜎𝑒

2 the variances of factor effects and error respectively.  

2.2 Fisher Information Matrices of the ML Estimators 

This split-plot model requires the derivation of two information matrices, the first one for the part of the model 

corresponding to the fixed parameter and the other to the variance components, the derivation begins with information 

matrix for the fixed parameter β. 

From the general one given by Searle (1992), the Fisher-information matrix of the ML estimators for the fixed 

parameters is  

                            𝐹𝐼𝑚𝑙[𝛽] = 𝑋 𝑉−1𝑋                                     (5) 

For this model, X is defined in (6) 

                  𝑋 = 1𝑣 ⊗ 𝐼𝑠 ⊗ 1𝑟 ⊗ 1𝑛                                 (6) 

Where 𝐼𝑠 is an Identity matrix of order  .  

1𝑣, 1𝑟 and 1𝑛 are column vectors (with all the elements as one) of order 𝑣, 𝑠 and 𝑟 respectively.  

The inverse of the dispersion matrix (𝑉−1) is obtained by firstly deriving the one for the full random model and then 

redefining the eigen values. 

The 𝑉−1 for the full random model as derived by Nuga et al. (2014, 2017) with the eigen values 𝜃′𝑠 now redefined as 

shown below in equation 7 

𝑉−1 = (𝐼𝑣 ⊗ 𝐼𝑠 ⊗ 𝐼𝑟 ⊗ 𝐶𝑛)𝜃0
−1 + (𝐼𝑣 ⊗ 𝐽

𝑠

−

⊗ 𝐶𝑟 ⊗ 𝐽
𝑛

−

)𝜃1
−1 + (𝐶𝑣 ⊗ 𝐶𝑠 ⊗ 𝐽

𝑟

−

⊗ 𝐽
𝑛

−

)𝜃2
−1 

+(𝐽𝑣
−

⊗ 𝐶𝑠 ⊗ 𝐽𝑟
−

⊗ 𝐽𝑛
−

)𝜃3
−1 + (𝐶𝑣 ⊗ 𝐽𝑠

−

⊗ 𝐽𝑟
−

⊗ 𝐽𝑛
−

)𝜃4
−1 + (𝐽𝑣

−

⊗ 𝐽𝑠
−

⊗ 𝐽𝑟
−

⊗ 𝐽𝑛
−

)𝜃5
−1                 (7) 

where, 

𝜃0 = 𝜎𝑒
2,    

𝜃1 = 𝜎𝑒
2 + 𝑠𝑛𝜎𝛾

2 

𝜃2 = 𝜃3 = 𝜎𝑒
2 + 𝑟𝑛𝜎𝛼𝛽

2  
𝜃4 = 𝜎𝑒

2 + 𝑠𝑛𝜎𝛾
2 + 𝑟𝑛𝜎𝛼𝛽

2 + 𝑠𝑟𝑛𝜎𝛼
2      

𝜃5 = 𝜎𝑒
2 + 𝑏𝑛𝜎𝛾

2 + 𝑟𝑛𝜎𝛼𝛽
2 + 𝑠𝑟𝑛𝜎𝛼

2                

The matrix notations used in equation (7) are defined below as 
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𝐽𝑣
−

=
1

𝑣
𝐽𝑣 ,      𝐽𝑠

−

=
1

𝑠
𝐽𝑠 ,  𝐽𝑟

−

=
1

𝑟
𝐽𝑟   and    𝐽𝑛

−

=
1

𝑛
𝐽𝑛.  

𝐶𝑣 = 𝐼𝑣 − 𝐽𝑣
−

,   𝐶𝑠 = 𝐼𝑠 − 𝐽𝑠
−

,    𝐶𝑟 = 𝐼𝑟 − 𝐽𝑟
−

 and    𝐶𝑛 = 𝐼𝑛 − 𝐽𝑛
−

 

𝐽𝑣, 𝐽𝑠, 𝐽𝑟and 𝐽𝑛 square matrix (with all the elements as one) of order 𝑣, 𝑠  𝑟 and 𝑛 respectively. 

𝐶𝑣, 𝐶𝑠, 𝐶𝑟 and 𝐶𝑛 are the centering matrices of order 𝑣, 𝑠  𝑟 and 𝑛 respectively. 

Multiplying equation 5, we have 

𝑋′ 𝑉−1𝑋 = (1𝑣
′ ⊗ 𝐼𝑠 ⊗ 1𝑟

′ ⊗ 1𝑛
′ )𝑉−1𝑋 

= 𝜃3
−1(𝑣 ⊗ 𝐶𝑠 ⊗ 𝑟 ⊗ 𝑛) + 𝜃5

−1(𝑣 ⊗ 𝐽𝑠
−

⊗ 𝑟 ⊗ 𝑛) 

                              𝑋𝜄𝑉=1𝑋 = 𝑣𝑟𝑛 [
𝐶𝑠

𝜃3
+

𝐽𝑠

−

𝜃5
]             (8) 

For the random part of the model, the general expression of the Fisher-Information matrix given by Searle (1992)   

1

2
{𝑡𝑟{𝑉−1𝑍𝑖𝑍𝑖

′𝑉−1𝑍𝑗𝑍𝑗
′}

𝑖,𝑗=0.....3
} =

1

2
{𝑆𝑆{𝑍𝑖

′𝑉−1𝑍𝑗}𝑖,𝑗=0...3
}             (9) 

Where for example 

𝑆𝑆(𝐴): Sum of squares for component of matrix 𝐴 = {𝑎𝑖𝑗}: 𝑖, 𝑗 = 0. . . . . 𝑏 

𝑡𝑟(𝐴): Trace of the elements of matrix A 

The Fisher-information matrix of the ML estimators for the random part of the model is obtained by writing (9) 

explicitly as 

. =
1

2
 𝑆𝑆

(

 
 

𝑍0
′𝑉−1𝑍0 𝑍0

′𝑉−1𝑍1 𝑍0
′𝑉−1𝑍2 𝑍0

′𝑉−1𝑍3

𝑍1
′𝑉−1𝑍0 𝑍1

′𝑉−1𝑍1 𝑍1
′𝑉−1𝑍2 𝑍1

′𝑉−1𝑍3

𝑍2
′𝑉−1𝑍0 𝑍2

′𝑉−1𝑍 𝑍2
′𝑉−1𝑍2 𝑍2

′𝑉−1𝑍3

𝑍3
′𝑉−1𝑍0 𝑍3

′𝑉−1𝑍1 𝑍3
′𝑉−1𝑍2 𝑍3

′𝑉−1𝑍3)

 
 

                     (10) 

Solving equation 11, this becomes 

           =
1

2

[
 
 
 
 

𝑡𝑒𝑒 𝑡𝛾𝛾 𝑠𝑛⁄ 𝑡𝛼𝛽 𝑟𝑛⁄ 𝑡𝛼𝛼 𝑠𝑟𝑛⁄

𝑡𝛾𝛾 𝑠𝑛⁄ 𝑡𝛾𝛾 𝑡𝛼𝛼 𝑠𝑟⁄ 𝑡𝛼𝛼 𝑟⁄

𝑡𝛼𝛽 𝑟𝑛⁄ 𝑡𝛼𝛼 𝑠𝑟⁄ 𝑡𝛼𝛽 𝑡𝛼𝛼 𝑠⁄

𝑡𝛼𝛼 𝑠𝑟𝑛⁄ 𝑡𝛼𝛼 𝑟⁄ 𝑡𝛼𝛼 𝑠⁄ 𝑡𝛼𝛼 ]
 
 
 
 

         (11) 

where, 

𝑡𝑒𝑒 = (
𝑣𝑒

𝜃0
2 +

𝑣𝛾

𝜃1
2

𝑡𝛼𝛽

(𝑟𝑛)2
) ,       𝑡𝛼𝛼 = (𝑠𝑟𝑛)2 (

𝑣𝛼

𝜃4
2 +

1

𝜃5
2), 

𝑡𝛼𝛽 = (𝑟𝑛)2 (
𝑣𝜀𝛽

𝜃2
2 +

𝑣𝛽

𝜃2
2

𝑣𝛼

𝜃4
2 +

1

𝜃5
2),  𝑡𝛾𝛾 = (𝑠𝑛)2 (

𝑣𝛾

𝜃1
2 +

𝑣𝛼

𝜃4
2 +

1

𝜃5
2) 

and 

𝑣𝑒 = 𝑣(𝑠 − 1)(𝑟 − 1), 𝑣𝛾 = 𝑣(𝑠 − 1), 𝑣𝛼𝛽 = (𝑣 − 1)(𝑠 − 1), 𝑣𝛽 = 𝑠 − 1, 𝑣𝛼 = 𝑣 − 1 

The work is aimed at identify designs that optimizes product of the determinant of (8) and (11) 

2.3 Design Space Formulation 

Loeza and Donev (2014) described construction procedures for balanced A-optimal and D-optimal designs for the 

two-way crossed and nested classification random models. Nuga et al (2014, 2017) modified this approach using a 

random effect split-plot model This work further modified the approach to a design with a random whole plot factor and 

a fixed sub-plot factor. The procedure is described in this section 

To generate Design Space (DS) of balanced design for the same number of sample size, the following steps are used. 

 The sizes of whole plot (𝑅) that corresponds to any given sample size (𝑁) are non-prime numbers that are 

factors of 𝑁 and within the interval 4 ≤ 𝑅 ≤ 𝑁 2⁄ .  
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 The number of sub-plot factor level (𝑠) is obtained by the dividing 𝑁 with each 𝑅 i.e. 𝑠 =
𝑁

𝑅
 

 To obtain the whole plot factor level (𝑣) and the number of replicates within each level (𝑟) we recognize that 

the least number possible is two, i.e., two levels of the whole-plot factor and two whole-plots within each of 

these levels. Each 𝑅 is decomposed into its entire possible divisor. 

 The permutations of each divisor are performed to obtain all possible CR designs and consequently all possible 

balance designs for any 𝑁 

2.4 Design Space Classification 

The DS generated in the last sub-section for N = 24, 36 ,are classified into designs with the same number of 

whole-plots. Generated designs are also classified based on the structure of the CR design. Designs in which the number 

of whole plot factor levels are at least as large as replicates of whole-plots i.e., 𝒗 ≥ 𝒓 are in Group A, while designs in 

which the number of whole-plot factor levels is smaller than replicates of whole-plots i.e., 𝒗 < 𝒓 are in Group B. 

The DS from N = 24 and 36 contained 9 and 12 candidate designs respectively, the designs are listed below together 

with the class of designs in table 1. 

Table 1. Design Space for N=24 and N=36 

No of 

Whole- 

plot (R) 

Candidates  

Designs N=36 

Class of  

Designs 

No of  

Whole-  

plot (R) 

Candidates  

Designs N=24 

Class of  

Designs 

4 v=2, r=2, s=9 A 4 v=2,r=2, s=6 A 

6 v=3, r=2, s=6 A 6 v=3, r=2, s=4 A 

6 v=,2 r=3, s=6 B 6 v=2, r=3, s=4 B 

9 v=3, r=3, s=4 A 8 v=4, r=2, s=3 A 

12 v=4, r=3, s=3 A 8 v=2, r=4, s=3 B 

12 v=6, r=2, s=3 A 12 v=4, r=3, s=2 A 

12 v=2, r=6, s=3 B 12 v=6, r=2, s=2 A 

12 v=3, r=4, s=3 B 12 v=3, r=4, s=2 B 

18 v=6, r=3, s=2 A 12 v=2, r=6, s=2 B 

18 v=9, r=2, s=2 A 
   

18 v=3, r=6, s=2 B 
   

18 v=,2 r=9, s=2 B 
   

2.5 Comparison and Optimality 

Designs with the same number of whole-plots will be compared in this section. The work compares designs from  

R = 6 and 12 using the products of determinants of (8) and (10). The derived information matrices are functions of the 

unknown variances. Therefore, comparisons were done for prior proportional values of variance components. In many 

experimental situations, the factor variances are expected to be larger than the error variances. The whole plot error 

variance is also expected to be at least as large as the sub-plot error variance (Goos 2003) The work therefore compares 

designs with R = 6 and 12  from N = 24 and 36 based on some randomly selected values of variance components 

compatible with the two configurations shown below. The idea was to give different weights to the factor and interaction 

variances in other to test the robustness of the choice of optimal design to minimal and extreme differences 

(𝑖)𝜎𝛼
2 > 𝜎𝛼𝛽

2 > 𝜎𝛾
2 ≥ 𝜎𝑒

2        (𝑖𝑣)𝜎𝛼𝛽
2 > 𝜎𝛼

2 > 𝜎𝛾
2 ≥ 𝜎𝑒

2 

3. Results 

3.1 Results for Configuration (𝜎𝛼
2 > 𝜎𝛼𝛽

2 > 𝜎𝛾
2 ≥ 𝜎𝑒

2)  

In this sub-section, the work used the eight randomly selected values of variance components compatible with the first 

configuration to compare candidate designs from (𝑅, 𝑠) = (6,4), (6,6) and (R, s) = (12,2) and (12,3). The first vector 

on table 2 assumes that 84% of the total variation in observation is accounted for by the variation in the whole-plot 

factor, while only 6%, 5% and 5% is accounted for by the interaction variance, the whole plot error variance and the 

sub-plot error variance respectively. The second vector assumes that 46% of the total variation in observation is 

accounted for by the whole plot factor variance while 44%, 5% and 5% is accounted for by the interaction variance, the 

whole plot error variance and the sub-plot error variance respectively. The remaining vectors specified on table 2 and 

table 3 are interpreted in the same way. Table 2 and table 3 show designs with the largest determinant (D-optimal) and 

the smallest determinant designs (Worst Designs) 
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Table 2. Optimal Designs, Worst Designs and the Product of Determinant Using Selected Configuration 

𝜎𝛼
2 = 8.4, 𝜎𝛼𝛽

2 = 0.6, 𝜎𝛾
2 = 0.5, 𝜎𝑒

2 = 0.5 

(R,s) 

Sample 

Sizes  

Optimal 

Designs 

Product 

of DET  

Worst 

Design  

Product 

of DET 

(R, s) Optimal 

Designs 

Product 

of DET  

Worst 

Designs 

Product 

of DET  

R=6, s=4 v=3, r=2 709.8 v=2, r=3 213.1 R=12, s=2 v=6, r=2 24.0 v=2, r=6 271.4 

R=6, s=6 v=3, r=2 28720 v=2, r=3 4707 R=12, s=3 v=6, r=2 9907 v=2, r=6 363.3 

              𝜎𝛼
2 = 4.6, 𝜎𝛼𝛽

2 = 4.4, 𝜎𝛾
2 = 0.5, 𝜎𝑒

2 = 0.5   

(R,s) 

Sample 

Sizes  

Optimal 

Designs 

Product 

of DET 

Worst 

Design  

Product 

of DET 

(R, s) Optimal 

Designs 

Product 

of DET  

Worst 

Design 

Product 

of DET  

R=6, s=4 v=3, r=2 0.16 v=2, r=3 0.03 R=12, s=2 v=6, r=2 1.01 v=2, r=6 0.05 

R=6, s=6 v=3, r=2 0.28 v=2, r=3 0.024 R=12, s=3 v=6, r=2 9.68 v=2, r=6 0.15 

𝜎𝛼
2 = 7.4, 𝜎𝛼𝛽

2 = 1.1, 𝜎𝛾
2 = 1, 𝜎𝑒

2 = 0.5 

(R,s) 

Sample 

Sizes  

Optimal 

Designs 

Product 

of DET 

Worst 

Design  

Product 

of DET 

(R, s) Optimal 

Designs 

Product 

of DET  

Worst 

Design 

Product 

of DET  

R=6, s=4 v=3, r=2 32.4 v=2, r=3 8.46 R=12, s=2 v=6, r=2 31.52 v=2, r=6 2.36 

R=6, s=6 v=3, r=2 514.9 v=2, r=3 68.5 R=12, s=3 v=6, r=2 719.8 v=2, r=6 21 

𝜎𝛼
2 = 4.3, 𝜎𝛼𝛽

2 = 4.2, 𝜎𝛾
2 = 1, 𝜎𝑒

2 = 0.5 

(R,s) 

Sample 

Sizes  

Optimal 

Designs 

Product 

of DET 

Worst 

Design  

Product 

of DET 

(R, s) Optimal 

Designs 

Product 

of DET  

Worst 

Design 

Product 

of DET  

R=6, s=4 v=3, r=2 0.1 v=2, r=3 0.02 R=12, s=2 v=6, r=2 0.6 v=2, r=6 0.034 

R=6, s=6 v=3, r=2 0.18 v=2, r=3 0.002 R=12, s=3 v=6, r=2 6.29 v=2, r=6 0.11 

 

Table 3. Optimal Designs, Worst Designs and the Product of Determinant Using Selected Configuration 

𝜎𝛼
2 = 3.6, 𝜎𝛼𝛽

2 = 3.4, 𝜎𝛾
2 = 1.5, 𝜎𝑒

2 = 1.5 

(R, s) 

Sample 

Sizes  

Optimal 

Designs 

Product 

of DET 

Worst 

Design  

Product 

of DET 

(R, s) Optimal 

Designs 

Product 

of DET  

Worst 

Designs 

Product 

of DET  

R=6, s=4 v=3, r=2 0.008 v=2, r=3 0.002 R=12, s=2 v=6, r=2 0.05 v=2, r=6 0.005 

R=6, s=6 v=3, r=2 0.02 v=2, r=3 0.002 R=12, s=3 v=6, r=2 0.45 v=2, r=6 0.01 

              𝜎𝛼
2 = 5.4, 𝜎𝛼𝛽

2 = 1.6, 𝜎𝛾
2 = 1.5, 𝜎𝑒

2 = 1.5   

(R, s) 

Sample 

Sizes  

Optimal 

Designs 

Product 

of DET 

Worst 

Design  

Product 

of DET 

(R, s) Optimal 

Designs 

Product 

of DET  

Worst 

Design 

Product 

of DET  

R=6, s=4 v=3, r=2 0.1 v=2, r=3 0.03 R=12, s=2 v=6, r=2 0.03 v=2, r=6 0.27 

R=6, s=6 v=3, r=2 0.53 v=2, r=3 0.01 R=12, s=3 v=6, r=2 3,59 v=2, r=6 0.17 

 
𝜎𝛼

2 = 4.4, 𝜎𝛼𝛽
2 = 2.1, 𝜎𝛾

2 = 2, 𝜎𝑒
2 = 1.5 

 

(R,s) 

Sample 

Sizes  

 

Optimal 

Designs 

 

Product 

of DET 

 

Worst 

Design  

 

Product 

of DET 

 

(R,s) 

 

Optimal 

Designs 

 

Product 

of DET  

 

Worst 

Design 

 

Product 

of DET  

R=6, s=4 v=3, r=2 0.03 v=2, r=3 0.01 R=12, s=2 v=6, r=2  v=2, r=6  

R=6, s=6 v=3, r=2  v=2, r=3  R=12, s=3 v=6, r=2 1.38 v=2, r=6 0.06 

                                          𝜎𝛼
2 = 3.3, 𝜎𝛼𝛽

2 = 2.2, 𝜎𝛾
2 = 2, 𝜎𝑒

2 = 1.5 

(R, s) 

Sample 

Sizes  

Optimal 

Designs 

Product 

of DET 

Worst 

Design  

Product 

of DET 

(R, s) Optimal 

Designs 

Product 

of DET  

Worst 

Design 

Product 

of DET  

R=6, s=4 v=3, r=2 0.007 v=2, r=3 0.002 R=12, s=2 v=6, r=2 0.05 v=2, r=6 0.004 

R=6, s=6 v=3, r=2 0.02 v=2, r=3 0.002 R=12, s=3 v=6, r=2 0.43 v=2, r=6 0.01 
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3.2 Results for Configuration ( 𝜎𝛼𝛽
2 > 𝜎𝛼

2 > 𝜎𝛾
2 ≥ 𝜎𝑒

2)  

By interchanging the values of whole-plot variance with the values of the interaction variance used in the last 

sub-section, eight selected vectors of values of variance components compatible with second configuration were 

obtained and used to compare candidate designs from (𝑅, 𝑠) = (6,4), (6,6) and (R, s) = (12,2) and (12,3). The first 

vector on table 4 assumes that 84% of the total variation in observation is accounted for by the interaction variance 

while only 6%, 5% and 5% is accounted for by the whole plot factor variance, the whole plot error variance and the 

sub-plot error variance respectively. Likewise, the second vector assumes that 46% of the total variation in observation 

is accounted for by the interaction variance, while 44%, 5% and 5% is accounted for by the whole plot factor variance, 

the whole plot error variance and the sub-plot error variance respectively. The remaining vectors specified on table 4 

and table 5 are interpreted in the same way 

Table 4 and table 5 show the D-optimal (largest determinant) designs with the product of its determinant, the worst 

designs (smallest determinant) designs with the product of its determinants for eight selected configurations 

Table 4. Optimal Designs, Worst Designs and the Product of Determinant Using Selected Configuration 

𝜎𝛼
2 = 0.6, 𝜎𝛼𝛽

2 = 8.4, 𝜎𝛾
2 = 0.5, 𝜎𝑒

2 = 0.5 

(R, s) 
Sample 
Sizes  

Optimal 
Designs 

Product 
of DET 

Worst 
Design  

Product 
of DET 

(R, s) Optimal 
Designs 

Product 
of DET  

Worst 
Designs 

Product 
of DET  

R=6, s=4 v=3, r=2 0.02 v=2, r=3 0.003 R=12, s=2 v=6, r=2 0.18 v=2, r=6 0008 

R=6, s=6 v=3, r=2 0.015 v=2, r=3 0.001 R=12, s=3 v=6, r=2 1.5 v=2, r=6 0.02 

              𝜎𝛼
2 = 4.4, 𝜎𝛼𝛽

2 = 4.6, 𝜎𝛾
2 = 0.5, 𝜎𝑒

2 = 0.5   

(R, s) 
Sample 
Sizes  

Optimal 
Designs 

Product 
of DET 

Worst 
Design  

Product 
of DET 

(R, s) Optimal 
Designs 

Product 
of DET  

Worst 
Design 

Product 
of DET  

R=6, s=4 v=3, r=2 0.13 v=2, r=3 0.02 R=12, s=2 v=6, r=2 0.89 v=2, r=6 0.04 

R=6, s=6 v=3, r=2 0.22 v=2, r=3 0.02 R=12, s=3 v=6, r=2 8.29 v=2, r=6 0.13 

𝜎𝛼
2 = 1.1, 𝜎𝛼𝛽

2 = 7.4, 𝜎𝛾
2 = 1, 𝜎𝑒

2 = 0.5 

(R, s) Optimal 
Designs 

Product 
of DET 

Worst 
Design  

Product 
of DET 

(R, s) Optimal 
Designs 

Product 
of DET  

Worst 
Design 

Product 
of DET  

R=6, s=4 v=3, r=2 0.01 v=2, r=3 0.003 R=12, s=2 v=6, r=2 0.15 v=2, r=6 0.007 

R=6, s=6 v=3, r=2 0.012 v=2, r=3 0.001 R=12, s=3 v=6, r=2 1.15 v=2, r=6 0.02 

𝜎𝛼
2 = 4.2, 𝜎𝛼𝛽

2 = 4.3, 𝜎𝛾
2 = 1, 𝜎𝑒

2 = 0.5 

(R,s) 
Sample 
Sizes  

Optimal 
Designs 

Product 
of DET 

Worst 
Design  

Product 
of DET 

(R, s) Optimal 
Designs 

Product 
of DET  

Worst 
Design 

Product 
of DET  

R=6, s=4 v=3, r=2 0.09 v=2, r=3 0.02 R=12, s=2 v=6, r=2 0.03 v=2, r=6 0.64 

R=6, s=6 v=3, r=2 0.16 v=2, r=3 0.02 R=12, s=3 v=6, r=2 5.8 v=2, r=6 0.1 

 

Table 5. Optimal Designs, Worst Designs and the Product of Determinant Using Selected Configuration 

𝜎𝛼
2 = 3.4, 𝜎𝛼𝛽

2 = 3.6, 𝜎𝛾
2 = 1.5, 𝜎𝑒

2 = 1.5 

Sample 

Sizes  

(R, s) 

Optimal 

Designs 

Product 

of DET 

Worst 

Design  

D-value  (R, s) Optimal 

Designs 

D- 

value 

 

Worst 

Designs 

Product 

of DET  

R=6, s=4 v=3, r=2 0.008 v=2, r=3 0.002 R=12, s=2 v=6, r=2 0.04 v=2, r=6 0.003 

R=6, s=6 v=3, r=2 0.011 v=2, r=3 0.001 R=12, s=3 v=6, r=2 0.45 v=2, r=6 0.01 

              𝜎𝛼
2 = 1.6, 𝜎𝛼𝛽

2 = 5.4, 𝜎𝛾
2 = 1.5, 𝜎𝑒

2 = 1.5   

Sample 

Sizes  

(R, s) 

Optimal 

Designs 

Product 

of DET 

Worst 

Design  

Product 

of DET 

(R, s) Optimal 

Designs 

Product 

of DET  

Worst 

Design 

Product 

of DET 

 

R=6, s=4 v=3, r=2 0.002 v=2, r=3 0.001 R=12, s=2 v=6, r=2 0.02 v=2, r=6 0.001 

R=6, s=6 v=3, r=2 0.002 v=2, r=3 0.000 R=12, s=3 v=6, r=2 0.13 v=2, r=6 0.004 
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                                     𝜎𝛼
2 = 2.1, 𝜎𝛼𝛽

2 = 4.4, 𝜎𝛾
2 = 2, 𝜎𝑒

2 = 1.5 

Sample 

Sizes  

(R,s) 

Optimal 

Designs 

Product 

of DET 

Worst 

Design  

Product 

of DET 

(R,s) Optimal 

Designs 

Product 

of DET  

Worst 

Design 

Product 

of DET  

R=6, s=4 v=3, r=2 0.002 v=2, r=3 0.001 R=12, s=2 v=6, r=2 0.12 v=2, r=6 0.013 

R=6, s=6 v=3, r=2 0.12 v=2, r=3 0.02 R=12, s=3 v=6, r=2 0.18 v=2, r=6 0.01 

                                          𝜎𝛼
2 = 3.2, 𝜎𝛼𝛽

2 = 3.3, 𝜎𝛾
2 = 2, 𝜎𝑒

2 = 1.5 

(R,s) 

Sample 

Sizes  

Optimal 

Designs 

Product 

of DET 

Worst 

Design  

Product 

of DET 

(R,s) Optimal 

Designs 

Product 

of DET  

Worst 

Design 

Product 

of DET  

R=6, s=4 v=3, r=2 0.01 v=2, r=3 0.002 R=12, s=2 v=6, r=2 0.04 v=2, r=6 0.004 

R=6, s=6 v=3, r=2 0.014 v=2, r=3 0.002 R=12, s=3 v=6, r=2 0.40 v=2, r=6 0.01 

4 Results Discussion 

The D-optimal designs and the smallest determinant designs (Worst Designs) are unchanged for all the sixteen vectors 

of values used in (𝑅, 𝑠) = (6,4), (6,6) and (R, s) = (12,2) and (12,3). It is also observed from all the vector of values 

and sample sizes used that the D-optimal designs are designs in which the size of the whole-plot factor is larger than 

size of replication and the designs with the smallest determinant are the designs in which the size of the whole-plot 

factor are smaller than the size of replication. Which can be stated that CR design structure of D-optimal and D-worst 

designs were 𝑣 > 𝑟 and 𝑣 < 𝑟, respectively. The choice of optimal design is not affected by the size of the sub-plot 

factor.  

Practically, if an experimenter has six whole plots (samples) that can each be divided into four sub-plot plots (smaller 

samples) available for an experiment. To have an efficient estimation of random effects of whole-plot factor (varieties of 

wheat) and fixed effect of the sub-plot factor (judges)., he should allocate two samples each into three randomly 

selected varieties of wheat (v=3, r=2). In the same vein, if he has available twelve whole plot that can each be divided 

into two sub-plot plots (smaller samples) available for an experiment. To have an efficient estimate of random effects of 

whole-plot factor (varieties of wheat) and fixed effect of the sub-plot factor (judges)., he should allocate two samples 

each into six randomly selected varieties of wheat (v=6, r=2). 

5. Summary and Conclusions 

This study investigates design preference in Completely Randomized (CR) split-plot experiments involving random 

whole-plot factor and fixed sub-plot factor. Split-plot experiments are generally named according to the design used at 

the first stage of randomization. In this work, a completely randomized design was used at the first stage of 

randomization. The main problem studied is on the optimal structure of the completely randomized design used at the 

whole-plot stage. The fisher-information matrices of the Maximum Likelihood estimators of the parameters of the 

model were derived. The criterion for optimality is the design that maximizes the determinant of the product of two 

information matrices corresponding to the random and fixed part of the model. Comparisons was done using sixteen 

vectors of values of variance components where the factor variances are larger than the error variances. The sixteen 

vectors were selected carefully in an attempt to show the robustness of the D-optimal design to different prior 

proportional values of variances. The results show that designs in which the size of the whole-plot factor is larger than 

size of replication are D-optimal designs for all the sixteen vectors used. This suggest that when factor variances are 

larger than the error variances, D-optimal designs are not affected by changes in the prior proportional values of 

variances. However, each experimenter can specify prior proportional values of the four variances based on the 

available information. It was also observed from that the choice of the sizes of the sub-plot factor does not affect the 

structure of the completely randomized design at the whole plot stage. This work can be extended to the unbalanced 

data case and other forms of split-plot design for balanced and unbalanced data 
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