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Abstract

In this article, additional properties of the Gumbel-Burr XII distribution, denoted by (GBXII(L)), defined in (Osatohan-
mwen et al., 2017), are studied. We consider some useful characterizations for the GBXII(L) distribution and some of its
properties. A simulation study is conducted to assess the performance of the MLEs and the usefulness of the GBXII(L)
distribution is illustrated by means of three real data sets. The simulation study suggests that the maximum likelihood
method can be used to estimate the distribution parameters, and the three examples show that the GBXII(L) is very flexible
in fitting different shapes of data. A log-GBXII(L) regression model is proposed and a survival data is used in an applica-
tion of the proposed regression model. The log-GBXII(L) regression model is adequate and can be used in comparison to
other models.

Keywords: beta-generated, generalized class, T -X(L) framework, regression, survival time, censored data

1. Introduction

Statistical distributions can be used to model many real life scenarios, such as reliability, actuarial science, survival
analysis and lifetime (Tahir and Cordeiro, 2016). Seeking flexibility in modeling real life phenomena has been a strong
reason to develop new statistical distributions. Many distributions have been developed by adding new shape, scale or
location parameters.

Eugene et al. (2002) introduced the beta-generated class of distributions with cumulative distribution function (CDF)
G(x) =

∫ F(x)
0

1
B(α,β) t

α−1(1 − t)β−1dt, α > 0, β > 0, where F(x) is the CDF of any continuous random variable X. Many
distributions were developed utilizing this technique, such as the beta-normal (Eugene et al., 2002), beta-Weibull (Famoye
et al., 2005), beta-generalized exponential (Barreto-Souza et al., 2010), beta-Cauchy (Alshawarbeh et al., 2012) and beta-
Pareto (Akinsete et al., 2008).

Jones (2009) and Cordeiro and de Castro (2011) proposed the Kumaraswamy-generated distributions (KwG) with CD-
F F(x) =

∫ G(x)
0 αβtα−1(1 − tα)β−1dt, α > 0, β > 0. Distributions developed using the KwG technique include the

Kumaraswamy-Weibull (Cordeiro et al., 2010), the Kumaraswamy-generalized half-normal (Cordeiro et al., 2012) and
the Kumaraswamy-geometric (Akinsete et al., 2014).

Alzaatreh et al. (2013) proposed a transformer-transformed technique to generate a class of distributions T -X(W) by using
a transformation W(F(x)) of the CDF F(x) of a random variable X, that satisfies the conditions:

(i) W [F(x)] ∈ [a, b],
(ii) W [F(x)] is differentiable and monotonically non-decreasing, and
(iii) W [F(x)]→ a as x→ −∞ and W [F(x)]→ b as x→ ∞.

(1)

The class of T -X(W) distributions is then defined by

GT X(W)(x) =

∫ W(FX (x))

a
rT (t)dt, (2)

where T is a random variable with probability density function (PDF) rT (t) on (a, b).

Aljarrah et al. (2014) used W(F(x)) = QY (F(x)), the quantile of a random variable Y , as a transformation of a CDF F(x).
They defined the CDF of the T -X{Y} family as

GT X{Y}(x) =

∫ QY (FX (x))

a
rT (t)dt. (3)
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Families of distributions developed using (2) and (3) include the Weibull-G (Bourguignon, et al., 2014), the T -normal
(Alzaatreh et al., 2014), the T -Weibull (Almheidat, et al., 2015) and the T -X(Logit) (Al-Aqtash, 2013). For more on
recent developments in distribution theory, we refer the interested reader to Lee et al. (2013) and Tahir and Cordeiro
(2016).

Al-Aqtash (2013) and Al-Aqtash et al. (2015) utilized the logit of a CDF, W(F(x)) = Qlogistic(F(x)) = ln{F(x)/(1− F(x))}
as a transformation in (2) and studied general properties such as symmetry, Shannon entropy and quantile function of the
T -X(Logit) family. Al-Aqtash et al. (2014) and Al-Aqtash et al. (2015) defined the Gumbel-X (Logit) family and studied
a member of the family, namely the Gumbel-Weibull distribution (GWD). The CDF for the Gumbel-X (Logit) family is
given by

GGX(logit)(x) = exp[−β{F(x)/(1 − F(x))}−1/σ], β > 0, σ > 0. (4)

Osatohanmwen et al. (2017) used the CDF of the Burr XII distribution (F(x) = 1 − (1 + (x/λ)c)−k) (Burr, 1942) in (4) to
define the CDF of the five parameter GBXII(L) distribution

FGBXII(L)(x) = exp[−β{(1 + (x/λ)c)k − 1}−1/σ], x ≥ 0; β, σ, c, k, λ > 0. (5)

The PDF of the GBXII(L) distribution is given by

fGBXII(L)(x) =
βkc
σλ

(x/λ)c−1(1 + (x/λ)c)k−1((1 + (x/λ)c)k − 1)−1−1/σ exp[−β{(1 + (x/λ)c)k − 1}−1/σ]. (6)

Osatohanmwen et al. (2017) studied the shapes, hazard, Shannon entropy, moments and parameter estimation of the
GBXII distribution. Figure 1 displays some of the different shapes of the GBXII density. In this article, we discuss
additional properties of the GBXII distribution.

0 1 2 3 4

0.
0

0.
4

0.
8

A

β = 1        σ = 6     c = 2     k = 2     λ = 1
β = 0.75  σ = 14   c = 5     k = 11   λ = 2
β = 1        σ = 4     c = 4     k = 2     λ = 1

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

B

 

β = 0.5    σ = 10   c = 20   k = 14    λ = 3
β = 2        σ = 10   c = 8     k = 3     λ = 1
β = 2        σ = 5     c = 4     k = 18   λ = 3

Figure 1. GBXII(L) density plot

The rest of the article is organized as follows: In section 2, we discuss some characterizations of the GBXII(L) model.
In section 3, we present some additional properties of the GBXII(L) distribution. In section 4, the maximum likelihood
method for parameter estimation is discussed and simulation results are presented to study and assess the performance of
the maximum likelihood estimators. In section 5, three data sets are used to exhibit the flexibility of this distribution. In
section 6, a log GBXII regression model is proposed and a survival time censored data set is used in an application of the
proposed regression model. Finally, some concluding remarks are provided in section 7.

2. Characterizations of GBXII(L) Distribution

This section deals with various characterizations of GBXII(L) distribution. These characterizations are presented in three
directions:

• based on the ratio of two truncated moments,

• in terms of the reverse hazard function and

• based on the conditional expectation of certain function of the random variable.
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It should be noted that characterization based on truncated moments can be employed even when the CDF does not have
a closed form.

2.1 Characterization Based on Truncated Moments

Our first characterization employs a theorem due to Glänzel (1987), see Theorem A1 of Appendix A. The result, however,
holds also when the interval H is not closed since the condition of Theorem A1 is on the interior of H. We like to mention
that this kind of characterization based on a truncated moment is stable in the sense of weak convergence (Glänzel, 1990).

Proposition 1. Let X : Ω→ (0,∞) be a continuous random variable and let

q2 (x) = exp
[
β
{(

1 +
(

x
λ

)c)k
− 1

}−1/σ
]

and q1 (x) = q2 (x)
{(

1 +
(

x
λ

)c)k
− 1

}−1/σ
for x > 0. The random variable X belongs

to the family (6) if and only if the function η defined in Theorem A1 has the form

η (x) = 2
{(

1 +

( x
λ

)c)k
− 1

}1/σ

, x > 0.

Proof : Assume X is a random variable with PDF (6), then

(1 − F (x)) E
[
q1 (X) |X ≥ x

]
=
β

2

{(
1 +

( x
λ

)c)k
− 1

}−2/σ

and

(1 − F (x)) E
[
q2 (X) |X ≥ x

]
= β

{(
1 +

( x
λ

)c)k
− 1

}−1/σ

.

Further,
η (x) q1 (x) − q2 (x) = q2 (x) > 0 f or x > 0.

Conversely, if η is given as above, then

s′ (x) =
η′ (x) q1 (x)

η (x) q1 (x) − q2 (x)
=

2kc
(

x
λ

)c−1 (
1 +

(
x
λ

)c)k−1

λσ
{(

1 +
(

x
λ

)c)k
− 1

} , x > 0,

and hence

s (x) =
2
σ

log
{(

1 +

( x
λ

)c)k
− 1

}
, x > 0.

Now, according to Theorem A1, random variable X has density (6) .

Corollary 1. Let X : Ω→ (0,∞) be a continuous random variable and let q2 be as in Proposition 1. Then, X has PDF (6)
if and only if there exist functions q1 and η defined in Theorem A1 satisfying the differential equation

η′ (x) q1 (x)
η (x) q1 (x) − q (x)

=
2kc

(
x
λ

)c−1 (
1 +

(
x
λ

)c)k−1

λσ
{(

1 +
(

x
λ

)c)k
− 1

} , x > 0.

The general solution of the differential equation in Corollary 1 is

η (x) =

{(
1 +

( x
λ

)c)k
− 1

}−1 [
−

∫
2kc

( x
λ

)c−1 (
1 +

( x
λ

)c)k−1
(q1 (x))−1 q2 (x) dx + D

]
,

where D is a constant. Note that a set of functions satisfying the above differential equation is given in Proposition 1 with
D = 0.

Remark 1. For k = 1, q2 (x) = exp
[
β
(

x
λ

)c/σ
]

and q1 (x) = q2 (x) x−c/σ, we have η (x) = 2xc/σ, x > 0, s′ (x) = c
σ

x−1, x > 0
and

η (x) = x
[
−

∫
c
σ

(q1 (x))−1 q2 (x) dx + D
]
.
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2.2 Characterization in Terms of the Reverse Hazard Function

The reverse hazard function, rF , of a twice differentiable distribution function, F, is defined as

rF (x) =
f (x)
F (x)

, x ∈ support o f F.

In this subsection we present characterization of GBXII(L) distribution in terms of the reverse hazard function.

Proposition 2. Let X : Ω→ (0,∞) be a continuous random variable. Then, X has PDF (6) if and only if its reverse hazard
function rF (x) satisfies the differential equation

r′F (x) − (c − 1) x−1rF (x) =
βkc
σλc xc−1 d

dx


(
1 +

(
x
λ

)c)k−1

[(
1 +

(
x
λ

)c)k
− 1

] 1
σ+1

 , x > 0.

Proof : If X has PDF (6), then clearly the differential equation holds. Now, if the differential equation holds, then

d
dx

{
x−(c−1)rF (x)

}
=
βkc
σλc

d
dx


(
1 +

(
x
λ

)c)k−1

[(
1 +

(
x
λ

)c)k
− 1

] 1
σ+1

 ,
from which we arrive at the reverse hazard function of (6).

Remark 2. For k = 1, we have the following simple differential equation

r′F (x) +

(c + σ

σ

)
x−1rF (x) = 0.

2.3 Characterization Based on the Conditional Expectation of Certain Function of the Random Variable

In this subsection we employ a single function ψ of X and characterize the distribution of X in terms of the conditional
expectation of ψ. The following proposition has already appeared in Hamedani(2013), so we will just state it here which
can be used to characterize GBXII(L) distribution.

Proposition 3. Let X : Ω→ (a, b) be a continuous random variable with CDF F. Let ψ (x) be a differentiable function on
(a, b) with limx→b− ψ (x) = 1. Then for δ , 1 ,

E
[
ψ (X) | X ≤ x

]
= δψ (x) , x ∈ (a, b) ,

implies

ψ (x) = (F (x))
1
δ−1 , x ∈ (a, b) .

Remarks 3.

A. For (a, b) = (0,∞) , ψ (x) = exp
[
−

{(
1 +

(
x
λ

)c)k
− 1

}−1/σ
]

and δ =
β

1+β
, Proposition 3 provides a characterization of

the GBXII(L) distribution.

B. For k = 1, ψ (x) = exp
[
−xc/σ

]
and δ =

βλc/σ

1+βλc/σ , Proposition 3 provides a characterization of this special submodel of
the GBXII(L) model.

In the next section we present some structural properties of the GBXII(L) distribution.

3. Additional Properties of GBXII(L) Distribution

3.1 Mean Deviations

Two measures of dispersion for GBXII(L) are the mean absolute deviation from the mean and the mean absolute deviation
from the median. Let X be a random variable from GBXII(L) with mean µ and median M. The mean absolute deviation
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from the mean is given by

E(|X − µ|) =

∫ ∞

0
|x − µ| fGBXII(L)(x)dx

= 2
∫ µ

0
(µ − x) fGBXII(L)(x)dx +

∫ ∞

0
(x − µ) fGBXII(L)(x)dx

= 2µFGBXII(L)(µ) − 2
∫ µ

0
x fGBXII(L)(x)dx. (7)

The mean absolute deviation from the median is given by

E(|X − M|) =

∫ ∞

0
|x − M| fGBXII(L)(x)dx

= 2
∫ M

0
(M − x) fGBXII(L)(x)dx +

∫ ∞

0
(x − M) fGBXII(L)(x)dx

= µ − 2
∫ M

0
x fGBXII(L)(x)dx. (8)

The integral I1,(0,τ) =
∫ τ

0 x fGXBII(L)(x)dx in (7) and (8) can be calculated numerically.

3.2 Transformation

A special case of the GBXII(L) distribution, when c = 1, is the Gumbel-Lomax distribution, studied by Tahir et al. (2016).
The connection between the GBXII(L) to the Gumbel, standard uniform, standard exponential and Weibull distributions
were discussed in Osatohanmwen et al. (2017). The link between the GBXII(L) to the Weibull-Dagum distribution is
given in the following lemma.

Lemma 1. If Y is a random variable following the Weibull-Dagum distribution (Tahir et al., 2016) with CDF F(y) =

1 − exp((1 + λ1y−δ1 )β1 − 1)−b1 , y ≥ 0, b1, λ1, δ1, β1 > 0, then the random variable X = 1/Y has a GBXII(L) distribution
with parameters β = 1, σ = 1/b1, c = δ1, k = β1 and λ = λ−1/c

1 .

Proof : The results follow directly from the transformation technique.

3.3 Quantile Function

Osatohanmwen et al. (2017) derived the formulas for the quantile function and the median for GBXII(L), respectively, as

QGBXII(L)(p) = λ{((−(ln p)/β)−σ + 1)1/k − 1}1/c, 0 < p < 1. (9)

M = QGBXII(L)(0.5) = λ{((0.69314718/β)−σ + 1)1/k − 1}1/c.

Remarks 4. It follows directly from (9) that the quantile function for GBXII(L) is

• an increasing function of λ, when all other parameters are held fixed,

• a decreasing function of k, when all other parameters are held fixed,

• an increasing function of β, when all other parameters are held fixed,

• decreasing, increasing, or constant function of σ when all other parameters are held fixed, if p < e−β, p > e−β, or
p = e−β respectively.

• decreasing, increasing, or constant function of c when all other parameters are held fixed, if p > exp(−β(2k−1)−1/σ),
p < exp(−β(2k − 1)−1/σ), or p = exp(−β(2k − 1)−1/σ) respectively.

4. Parameter Estimation and Simulation

According to Nadarajah and Okorie (2018), the log likelihood function for the GBXII(L) distribution reported in Osato-
hanmwen et al. (2017) is incorrect and hence might affect the accuracy of the simulation and estimation results. Nadarajah
and Okorie (2018) provided the correct log likelihood function for the GBXII(L) which can be written as

` = `(Θ) = n(ln β + ln k + ln c − lnσ − ln λ) + (c − 1)
n∑

i=1

ln
( xi

λ

)
+ (k − 1)

n∑
i=1

ln
(
1 +

( xi

λ

)c)
−

(
1 +

1
σ

) n∑
i=1

ln
{(

1 +

( xi

λ

)c)k
− 1

}
− β

n∑
i=1

{(
1 +

( xi

λ

)c)k
− 1

}−1/σ

,
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where x1, . . . , xn are the observed values of GBXII(L) with parameters β, σ, c, k and λ.

The correct log likelihood function for the GBXII(L), provided by Nadarajah and Okorie (2018), is used in estimation of
the unknown parameters of the GBXII(L) distribution, using the method of maximum likelihood.

The components of the score vector, U (Θ) = ∂`
∂Θ

=
(
∂`
∂β
, ∂`
∂σ
, ∂`
∂c ,

∂`
∂k ,

∂`
∂λ

)ᵀ
=

(
Uβ,Uσ,Uc,Uk,Uλ

)ᵀ
, are

Uβ =
n
β
−

n∑
i=1

{(
1 +

( xi

λ

)c)k
− 1

}−1/σ

,

Uσ = −
n
σ

+
1
σ2

n∑
i=1

ln
{(

1 +

( xi

λ

)c)k
− 1

}
−

β

σ2

n∑
i=1

{(
1 +

( xi

λ

)c)k
− 1

}−1/σ

ln
{(

1 +

( xi

λ

)c)k
− 1

}
,

Uc =
n
c

+

n∑
i=1

ln
( xi

λ

)
+ (k − 1)

n∑
i=1

(xi/λ)c ln(xi/λ)
1 + (xi/λ)c − k

(
1 +

1
σ

) n∑
i=1

(1 + (xi/λ)c)k−1(xi/λ)c ln(xi/λ)
(1 + (xi/λ)c)k − 1

+
βk
σ

n∑
i=1

{
(1 + (xi/λ)c)k − 1

}−1−1/σ
(1 + (xi/λ)c)k−1(xi/λ)c ln(xi/λ),

Uk =
n
k

+

n∑
i=1

ln
(
1 +

( xi

λ

)c)
−

(
1 +

1
σ

) n∑
i=1

(1 + (xi/λ)c)k ln(1 + (xi/λ)c)
(1 + (xi/λ)c)k − 1

+
β

σ

n∑
i=1

{
(1 + (xi/λ)c)k − 1

}−1−1/σ
(1 + (xi/λ)c)k ln(1 + (xi/λ)c),

Uλ = −
nc
λ
−

c(k − 1)
λ

n∑
i=1

(xi/λ)c

1 + (xi/λ)c −
kc
λ

(
1 +

1
σ

) n∑
i=1

(1 + (xi/λ)c)k−1(xi/λ)c−1

(1 + (xi/λ)c)k − 1

+
βkc
σλ

n∑
i=1

{
(1 + (xi/λ)c)k − 1

}−1−1/σ
(1 + (xi/λ)c)k−1(xi/λ)c−1.

Solving Uβ = Uσ = Uc = Uk = Uλ = 0 simultaneously yields the MLE Θ̂ = (̂β, σ̂, ĉ, k̂, λ̂).

The initial vlues are calculated using the criteria reported in Osatohanmwen et al. (2017) as follows: Since c, k and λ are
coming from Burr XII distribution (BXII), and β and σ are coming from Gumbel distribution (GD), we can assume that
the random sample x1, . . . , xn is following BXII, and use the BXII MLEs c̃, k̃, and λ̃ as initial values c0, k0 and λ0. The
next step is to transform the sample from GBXII(L) to GD using the transformation yi = ln((1 + (xi/̃λ)̃c)̃k − 1). Then the
initial values for the last two parameters are β0 = eν0/σ0 and σ0 = sy

√
6/π, where ν0 = ȳ−γσ0 and σ0 are the GD moment

estimates, γ is the Euler’s constant, ȳ and sy are the mean and standard deviation of y1, . . . , yn respectively (Johnson et al.,
1995, p. 12).

4.1 Simulation Study

A simulation study is conducted to assess the performance of the maximum likelihood estimators based on the bias and
the standard deviation. For this purpose we fix the value of scale parameter λ as 1.0 and k as 2.0 and use a total of 10
parameter combinations and different sample sizes:

• β = 0.9, 1.6, 2.4, 3.0, 3.6

• σ = 0.8, 1.2

• c = 2.0

• n = 200, 400, 600, 1000.
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Table 1. Bias and standard deviation of MLEs

Parameter Values Bias Standard deviation
n β σ c β̂ σ̂ ĉ β̂ σ̂ ĉ

0.9 0.8 2.0 0.0405 -0.1099 -0.2869 0.2584 0.1965 0.5151
1.2 2.0 -0.0522 -0.0831 -0.1445 0.2413 0.3504 0.6509

1.6 0.8 2.0 0.1048 -0.1327 -0.3389 0.4419 0.1984 0.5287
1.2 2.0 -0.0708 -0.1124 -0.1768 0.4254 0.3679 0.6061

200 2.4 0.8 2.0 0.1866 -0.1539 -0.3727 0.7029 0.2155 0.5439
1.2 2.0 -0.1125 -0.0852 -0.1181 0.6022 0.3292 0.5119

3.0 0.8 2.0 0.2090 -0.1371 -0.3220 0.8689 0.2007 0.4975
1.2 2.0 -0.1481 -0.0753 -0.0997 0.7513 0.3192 0.4094

3.6 0.8 2.0 0.2908 -0.1410 -0.3272 0.9849 0.2000 0.4989
1.2 2.0 -0.1868 -0.0615 -0.0725 0.8934 0.3093 0.4723

0.9 0.8 2.0 -0.0055 -0.0678 -0.1824 0.2692 0.1952 0.5327
1.2 2.0 -0.0491 -0.0514 -0.0794 0.2203 0.3218 0.5503

1.6 0.8 2.0 0.0240 -0.0836 -0.2115 0.4559 0.1986 0.5196
1.2 2.0 -0.0787 -0.0539 -0.0794 0.3683 0.3079 0.5197

400 2.4 0.8 2.0 -0.0180 -0.0669 -0.1641 0.6924 0.1949 0.5006
1.2 2.0 -0.1328 -0.0450 -0.0579 0.5631 0.3156 0.5154

3.0 0.8 2.0 0.0210 -0.0784 -0.1896 0.8723 0.2009 0.5086
1.2 2.0 -0.2187 -0.0315 -0.0342 0.7729 0.3279 0.5264

3.6 0.8 2.0 0.0848 -0.0886 -0.2067 0.9795 0.2044 0.5119
1.2 2.0 -0.2238 -0.0363 -0.0393 0.8898 0.3134 0.4933

0.9 0.8 2.0 0.0096 -0.0701 -0.1838 0.2370 0.1834 0.4824
1.2 2.0 -0.0056 -0.0912 -0.1564 0.1708 0.2995 0.5166

1.6 0.8 2.0 0.0312 -0.0779 -0.1995 0.4125 0.1871 0.4857
1.2 2.0 -0.0978 -0.0439 -0.0647 0.3992 0.3188 0.5299

600 2.4 0.8 2.0 0.0692 -0.0786 -0.1945 0.5941 0.1809 0.4542
1.2 2.0 -0.1537 -0.0417 -0.0572 0.6028 0.3258 0.5237

3.0 0.8 2.0 0.1197 -0.0883 -0.2148 0.7443 0.1843 0.4581
1.2 2.0 -0.1559 -0.0456 -0.0605 0.7134 0.3109 0.4860

3.6 0.8 2.0 0.1697 -0.0942 -0.2253 0.8988 0.1941 0.4729
1.2 2.0 -0.1421 -0.0577 -0.0784 0.8394 0.3103 0.4806

0.9 0.8 2.0 -0.0111 -0.0571 -0.1545 0.2536 0.1975 0.5211
1.2 2.0 -0.0474 -0.0348 -0.0594 0.1995 0.3003 0.5249

1.6 0.8 2.0 0.0322 -0.0814 -0.2140 0.4513 0.1957 0.5093
1.2 2.0 -0.0928 -0.0118 -0.0147 0.3381 0.2625 0.4435

1000 2.4 0.8 2.0 0.0672 -0.0747 -0.1911 0.6325 0.1747 0.4406
1.2 2.0 -0.1895 -0.0100 -0.0233 0.5365 0.2649 0.4324

3.0 0.8 2.0 0.0679 -0.0706 -0.1763 0.7933 0.1741 0.4325
1.2 2.0 -0.2058 -0.0068 -0.0055 0.7023 0.2791 0.4466

3.6 0.8 2.0 0.0977 -0.0719 -0.1738 0.9267 0.1709 0.4202
1.2 2.0 -0.1815 -0.0211 -0.0237 0.8076 0.2709 0.4289

For each parameter combination and each sample size, a random sample is simulated from the GBXII(L) distribution. The
SAS NLPTR subroutine is used to estimate the parameters by maximizing the log-likelihood function. This process is
repeated 100 times and the bias and the standard deviation are presented in Table 1. These results show that the maximum
likelihood estimation method performs reasonably well. It is observed that the shape parameters σ and c are negatively
biased and β is positively (or negatively) biased depending on σ less (or greater) than 1. In general, bias and the standard
deviation of the parameters are reasonable and decrease as the sample size increases. The simulation study suggests that
the maximum likelihood method can be used efficiently to estimate the parameters of the GBXII(L) distribution.

5. Application

In this section, three examples are used for the purpose of illustration. The MLEs are computed and the fit is compared
to other well known distributions based on the p-value of the Kolmogorov-Smirnov (K-S) test statistic, the Akaike infor-
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mation criterion (AIC), and the log-likelihood value. These data sets were selected because they come from completely
diverse disciplines, have different sample sizes, have non-negative values, beside that they differ structurally, i.e., in terms
of skewness and kurtosis.

5.1 Actuarial Science Data

This Actuarial Science data (skewness = 0.07, kurtosis = 0.08) is taken from Balakrishnan et. al. (2009) and later on
was also used for model fitting by Tahir et. al. (2016). In order to be able to do long and short term financial estimation,
such as the assessment of the reserve required to pay the ‘minimum pensions’, it is important for the Mexican Institute of
Social Security (IMSS) to study the distributional behavior of the mortality of retired people on disability. This data set
corresponding to lifetime (in years) of retired women with temporary disabilities, which are incorporated in the Mexican
insurance public system and who died during 2004, are:

22, 24, 25(2), 27, 28, 29(4), 30, 31(6), 32(7), 33(3),34(6), 35(4), 36(11), 37(5), 38(3), 39(6), 40(14), 41(12), 42(6), 43(5),
44(7), 45(10), 46(6), 47(5),48(11), 49(8), 50(8), 51(8), 52(14), 53(10), 54(13), 55(11), 56(10), 57(15), 58(11), 59(9),
60(7),61(2), 62, 63, 64(4), 65(2), 66(3), 71, 74, 75, 79, 86.

Tahir et. al. (2016) have compared the performance of four different distributions namely Dagum (D), Beta-Dagum (BD),
McDonald-Dagum (McD) and Weibull-Dagum (WD) in modeling the above data set based on the following goodness-
of-fit criteria: Kolmogorov-Smirnov test(K-S), Akaike information criterion (AIC) and Bayesian information criterion
(BIC) and concluded that WD gives the overall best fit, followed by McD. We fit the Weibull-Dagum distribution, the
beta-normal (BN) distribution, the Gumbel-Weibull (GW) distribution, and the GBXII(L) distribution to the data. The
maximum likelihood estimates along with their standard errors and different goodness-of-fit statistics or model selection
criteria are reported in Table 2. It is evident from this table that GBXII(L) has the smallest lowest AIC, BIC and K-S test
statistic value and consequently the highest p-value. Figure 2 presents the histogram of the Actuarial Science data along
with the estimated densities and also the empirical and estimated CDFs of the four models. Thus it can be concluded that
the GBXII(L) model outperforms the other distributions under consideration.

Table 2. MLEs (standard errors in parentheses) and model selection criteria for the Actuarial Science data

Distribution WD* BN GW GBXII(L)
b̂ =3.4237 â =0.4095 β̂ =2.4296 β̂ =0.7250
(2.0727) (0.1240) (0.8430) (0.1071)

Parameter λ̂ =4.5590 b̂ =0.2673 σ̂ =1.9914 σ̂ =8.5001
estimates (9.5120) (0.0274) (0.2775) (2.9947)
(standard error) δ̂ =1.0948 µ̂ =44.4852 â =3.6281 ĉ =25.1386

(0.6243) (2.7850) (0.5796) (9.3949)
β̂ =11.7383 σ̂ =5.2866 λ̂ =36.9150 k̂ =4.7764
(13.7411) (0.3680) (4.2805) (0.8112)

λ̂ =52.3397
(1.0324)

Log Likelihood -1050.59 -1051.02 -1050.86 -1041.01
AIC 2109.18 2110.04 2109.72 2092.02
BIC 2123.72 2124.58 2124.26 2110.19
K-S 0.0687 0.0729 0.0700 0.0416
(p-value) (0.1427) (0.1017) (0.1288) (0.7189)
*parameter estimates are from Tahir et al. (2016).

5.2 Skin Folds Data

The second example considered here is taken from Cook and Weisberg (1994). The data was recorded at the Australian
Institute of Sport (AIS) and contains 13 variables on 100 female Australian athletes. The sum of skin folds (SSF) for the
100 female Australian athletes given below is used to illustrate the application of the GBXII(L) distribution. The data is
right skewed (skewness = 0.79, kurtosis = 0.73) and shows a bimodal trend.

33.8, 36.8, 38.2, 41.1, 41.6, 42.3, 43.5, 43.5, 46.1, 46.2, 46.3, 47.5, 47.6, 48.4, 49.0, 49.9, 50.0, 52.5, 52.6, 54.6, 54.6,
55.6, 56.8, 57.9, 58.9, 59.4, 61.9, 62.6, 62.9, 65.1, 67.0, 68.3, 68.9, 69.9, 70.0, 71.3, 71.6, 73.9, 74.7, 74.9, 75.1, 75.2,
76.2, 76.8, 77.0, 80.1, 80.3, 80.3, 80.3, 80.6, 83.0, 87.2, 88.2, 89.0, 90.2, 90.4, 91.0, 91.2, 95.4, 96.8, 97.2, 97.9, 98.0, 98.1,
98.3, 98.5, 99.8, 99.9, 101.1, 102.8, 102.8, 103.6, 103.6, 104.6, 106.9, 109.0, 109.1, 109.5, 109.6, 110.2, 110.7, 111.1,
113.5, 114.0, 115.9, 117.8, 122.1, 123.6, 125.9, 126.4, 126.4, 131.9, 136.3, 143.5, 148.9, 156.6, 156.6, 171.1, 181.7, 200.8
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Figure 2. (A) Histogram and the estimated PDFs and (B) The empirical and the estimated CDFs for the Actuarial
Science data

Four distributions are used to fit the data, namely, the exponentiated-Weibull (EW) distribution (Mudholkar et al., 1995),
the beta-normal (BN) distribution, the Gumbel-Weibull (GW) distribution and the GBXII(L) distribution. The MLEs and
the goodness of fit statistics are included in Table 3. Figure 3 contains the histogram and the fitted densities, in addition
to the empirical and the fitted CDFs. The GBXII(L) has the best fit when compared to the other distributions. The GW
and the BN can be unimodal or bimodal, however in this case they are unable to capture the bimodal trend of the data.

Table 3. MLEs (standard errors in parentheses) and model selection criteria for the skin folds data

Distribution EW* BN* GW* GBXII(L)
â =1.2245 â =9.7706 β̂ =1.0299 β̂ =0.5779
(0.4378) (0.4008) (1.0094) (0.1028)

Parameter θ̂ =6.5038 b̂ =0.1967 σ̂ =1.3303 σ̂ =14.3367
estimates (6.3413) (0.0223) (0.3218) (1.7127)
(standard error) σ̂ =41.4980 µ̂ =9.1517 â =2.2896 ĉ =30.1079

(24.4832) (4.3612) (0.9184) (1.3824)
σ̂ =25.4309 λ̂ =81.7841 k̂ =2.7477

(0.9049) (27.2786) (0.5391)
λ̂ =94.6603

(3.4293)
Log Likelihood -487.17 -487.06 -485.89 -483.09
AIC 980.34 982.12 979.78 976.18
BIC 988.16 992.54 990.20 989.21
K-S 0.0808 0.0711 0.0705 0.0422
(p-value) (0.5307) (0.6925) (0.7022) (0.9941)
*parameter estimates are from Al-Aqtash et al. (2014)

5.3 Glass Fibers Data

The strengths of 1.5 cm glass fibers data presented below was recorded at the National Physical Laboratories, England.
This data is reported in Smith and Naylor (1987) and is left skewed with skewness = -0.95 and kurtosis = 1.10. The data
was used by Barreto-Souza et al. (2010) in an application of the beta-generalized exponential (BGE) distribution, and was
also used by Al-Aqtash et al. (2015) as an application of the Gumbel-Weibull (GW) distribution.

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48(2), 1.49(2),
1.50(2), 1.51, 1.52, 1.53, 1.54, 1.55(2), 1.58, 1.59, 1.60, 1.61(4),1.62(2), 1.63, 1.64, 1.66(3), 1.67, 1.68(2), 1.69, 1.70(2),
1.73, 1.76(2), 1.77, 1.78, 1.81, 1.82, 1.84(2), 1.89, 2.00, 2.01, 2.24.

Again four distributions are used to fit the data, namely, the beta-generalized exponential distribution, the beta-Birnbaum-
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Figure 3. (A) Histogram and the estimated PDFs and (B) The empirical and the estimated CDFs for the skin folds data

Saunders (BBS) distribution (Cordeiro and Lemonte, 2011), the Gumbel-Weibull distribution, and the GBXII(L) distribu-
tion. The MLEs and goodness of fit statistics are presented in Table 4. Figure 4 contains the histogram of the data and the
fitted PDFs as well as the empirical and fitted CDFs.

Table 4. MLEs (standard errors in parentheses) and model selection criteria for the glass fibers data

Distribution BGE* BBS** GW** GBXII(L)
â =0.4125 â =0.2938 β̂ =2.5598 β̂ =1.4292

(0.1133) (0.6502) (0.2573)
Parameter b̂ =93.4655 b̂ =1080.71 σ̂ =5.5826 σ̂ =16.9395
estimates (24.4015) (1.7978) (4.9064)
(standard error) α̂ =22.6124 α̂ =0.3995 â =5.2124 ĉ =24.2216

(0.1316) (0.8858) (5.8116)
λ̂ =0.9227 β̂ =6.1727 λ̂ =1.0675 k̂ =10.0843

(1.9987) (0.1271) (2.9373)
λ̂ =1.5232
(0.0421)

Log Likelihood -15.60 -16.72 -11.52 -8.39
AIC 39.20 41.44 31.04 26.78
BIC 47.77 50.01 39.61 37.50
K-S 0.1673 0.1830 0.0979 0.075
(p-value) (0.0588) (0.0294) (0.5819) (0.9989)
*parameter estimates are from Barreto-Souza et al. (2010)
**parameter estimates are from Al-Aqtash et al. (2015)

By comparing the goodness of fit statistics among the four distributions, we observe that the GBXII(L) outperforms the
other distributions.

6. The Log-GBXII Regression Model With Application to Survival Data

Suppose that the survival time X follows the GBXII distribution in (5) with the parameters β, σ, c, k, λ > 0, then the
survival function for the GBXII distribution is given by

S GBXII(x) = 1 − exp[−β{(1 + (x/λ)c)k − 1}−1/σ], 0 < x < ∞; β, σ, c, k, λ > 0.

If we take the log transform of X, and redefine the parameters as c = 1/τ and λ = eµ, then, Y = log(X), can be written
as a log linear model, Y = µ + τW, where the random variable W = (Y − µ)/τ is the standardized log-GBXII (SLGBXII)
distribution with PDF,

πS LGBXII(w) =
βk
σ

ew(1 + ew)k−1
[
(1 + ew)k

− 1
]−1−1/σ

exp
{
− β

[
(1 + ew)k

− 1
]−1/σ

}
(10)
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Figure 4. (A) Histogram and the estimated PDFs and (B) The empirical and the estimated CDFs for the glass fibers data

Thus, the underlying PDF and survival function, respectively, for Y , are respectively given by

gLGBXII(y) =
βk
στ

e
((y−µ)/τ)(

1 + e
((y−µ)/τ))k−1

[(
1 + e

((y−µ)/τ))k
− 1

]−1−1/σ
exp

{
− β

[(
1 + e

((y−µ)/τ))k
− 1

]−1/σ
}

(11)

and

S LGBXII(y) = 1 − exp
{
− β

[(
1 + e

((y−µ)/τ))k
− 1

]−1/σ
}
,

where y ∈ R, µ ∈ R, τ, β, σ, k > 0. Plots of the LGBXII density function in (11) for some parameter values are given in
Figure 5

 

Figure 5. Plots of LGBXII density function for some parameter values: (A) β = 1, µ = 0 and τ = 1 and (B) β < 1, µ = 0
and τ = 1

In the analysis of most survival data, the relationship between the covariates and the survival time X is of interest. This
relationship might be written as a linear relationship between the log of the survival time X and the covariate values as
follows:

Consider the survival time Xi of the ith individual in the sample, for i = 1, . . . , n, and suppose that we also have a set
of p covariates such that Zi = (1, zi1, . . . , zip)T , where the 1 is for the intercept term. The log-linear (or location-scale)
regression model which links the dependent variable Yi = log(Xi) and the set of covariates is given by

Yi = log(Xi) = γT Zi + τWi, (12)

where γT = (γ0, γ1, . . . , γp) are the unknown regression coefficients of the values of p covariates, τ is an unknown scale
parameter, and Wi is the error variable.
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In order to incorporate covariates into the LGBXII model, we use the log-linear model (12) for the survival time Xi, where
Wi has the SLGBXII distribution (10) such that µi = γT Zi is the location parameter of Yi and τ, β, σ, k > 0 are unknown
parameters. With the model in (12), the survival function for Y is expressed as

S LGBXII(y|Z) = 1 − exp

− β
(1 + exp

(
y −γT Z

τ

))k

− 1

−1/σ
 .

Now, consider a sample of n independent observations, and let the random variables Xi and Ci denote the lifetime and
censoring time for the ith individual, whereas the response Yi represents a log-lifetime or a log-censoring time for the ith

individual, such that Yi = min(log(Xi), log(Ci)) for i = 1, 2, . . . , n. If all the observations are uncensored, then based on
the LGBXII distribution in (11), the log likelihood for the model parameters θ = (β, k, σ, τ, γT )T can be written as

l(θ) =

n∑
i=1

log (gLGBXII(yi))

= n log(βk) − n log(στ) +
∑n

i=1
wi + (k − 1)

∑n

i=1
log(1 + ewi )

− (1 + (1/σ ))
∑n

i=1
log

[
(1 + ewi )k

− 1
]
− β

∑n

i=1

[
(1 + ewi )k

− 1
]−1/σ

, (13)

where wi = (yi − γ
T zi)/τ.

Assume some of the observations are right censored and let C and F be the sets of censored and uncensored observations,
respectively. In addition, if we assume non-informative censoring such that the censoring times are independent of the
observed survival times, then the log-likelihood function for the model parameters Θ = (β, k, σ, τ, γT )T is given by

l(θ) =
∑
i∈F

log(gLGBXII(yi)) +
∑
i∈C

log(S LGBXII(yi))

= m log(βk) − m log(στ) +
∑
i∈F

wi + (k − 1)
∑
i∈F

log(1 + ewi )

− (1 + (1/σ ))
∑
i∈F

log
[
(1 + ewi )k

− 1
]
− β

∑
i∈F

[
(1 + ewi )k

− 1
]−1/σ

+
∑
i∈C

log
(
1 − exp

{
− β

[
(1 + ewi )k

− 1
]−1/σ

})
, (14)

where m is the number of uncensored observations.

The MLE θ̂ can be obtained by maximizing the log-likelihood function in (13) or (14). It is common to use numerical
non-linear optimization methods for that purpose. The NLMIXED procedure in SAS is used in this article to obtain the
values in θ̂.

In the remaining part of this section, we apply the LGBXII regression model to fit the data from a two-arms (different
treatments) clinical trial, which was previously analyzed by Efron (1988), from a study comparing treatment with radio-
therapy alone (Arm A) to radiotherapy plus chemotherapy (Arm B), for head and neck cancer. The response for each
patient is the survival time in days. Nine patients out of 51 in Arm A and 14 patients out of 45 in Arm B were lost to
follow-up (censored).

Now, let Yi be the log survival time for the ith patient and zi1 be a binary covariate: two-arms, which is coded as (0
for Arm A, or 1 for Arm B). We fit this data using the LGBXII regression model. The log linear model is defined as
Yi = γ0 +γ1zi1 + τWi, for i = 1, 2, . . . , 96, where the random variable Wi follows the SLGBXII distribution with PDF (10).

We also compare the fit of the LGBXII regression model with the fits of other competitive lifetime models, namely:
log-Gumbel-Weibull (LGW) (Al-Aqtash et al., 2015), log-beta-Weibull (LBW) (Ortega et al., 2011), and log-Pareto-
Weibull generalized lambda (LPWGL) (Aldeni et al., 2017). The LGW, LBW, and LPWGL survival functions (for
y ∈ R,−∞ < µ = γ0 + γ1zi1 < ∞, τ > 0 and the remaining parameters are all positive) are given below:

LGW survival function
S (y; β, σ, τ, µ) = 1 − exp

{
−β

(
exp

(
exp((y − µ)/τ)

)
− 1

)−1/σ
}
.

LBW survival function
S (y; a, b, τ, µ) = 1 − I1−exp[− exp((y−µ)/τ)](a, b).

12



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 10, No. 6; 2021

LPWGL survival function

S (y; β, b, s, τ, µ) =

(
β

β − 1 + exp
(
b exp((y − µ)/τ)

) )s

Table 5. Parameter estimates and fit statistics for the two-arms data (standard errors in parentheses) and [p-values in
brackets]

Model LPWGL LGW LBW LGBXII
τ̂ =1.2044 τ̂=5.4525 τ̂=4.2531 τ̂ =0.0734
(0.1104) (3.5904) (1.2971) (0.0134)
γ̂0 =6.0071 γ̂0=2.4528 γ̂0=-2.0623 γ̂0 =4.0116

Parameter (0.1232) (7.4229) (1.2296) (0.1698)
estimates [<0.0001] [0.7418] [0.0967] [<0.0001]
(standard error) γ̂1 =0.7552 γ̂1=0.5820 γ̂1=0.5573 γ̂1 =0.3186
[p-value] (0.2789) (0.2692) (0.2660) (0.1821)

[0.0080] [0.0331] [0.0388] [0.0833]
b̂ =0.0410 σ̂=0.4626 b̂=0.4912 σ̂ =39.6338
(0.0051) (0.3481) (0.3976) (22.7883)

ŝ =279.1100 β̂=19.8368 â=81.8537 k̂ =2.7447
(48.2961) (85.6856) (8.3787) (1.3543)
β̂ =12.2901 β̂ =2.9077

(2.1498) (0.4447)
AIC 316.2 293.9 293.3 287.2
BIC 331.6 306.7 306.1 302.5

Among the fitted models, the LGBXII model has the lowest AIC and BIC values as indicated in Table 5, so the LGBXII
model provides the best fit to the data, followed successively by the LBW and LGW models. In the fitted LGBXII
regression model, we see that the covariate two-arms is not significant at the 5% level. In other words, Arm A clinical
trial is not significantly different from Arm B clinical trial for the survival times. The plots of the empirical survival
(Kaplan-Meier) function and the estimated survival functions of the LGBXII, LBW, and LGW models are depicted in
Figure 6. These plots suggest that the LGBXII model is appropriate to fit this data. The two shape parameters, k and σ
provide more flexibility to this distribution, so it can be considered a very competitive model to other lifetime models.

 

Figure 6. Kaplan-Meier and the estimated survival functions for the two-arms data (A) LGBXII model versus LBW
model. (B) LGBXII model versus LGW model

7. Concluding Remarks

In this article, we discuss a member of the T -X(Logit) family of distributions, namely the GBXII(L) distribution. Some
useful characterizations and additional properties of the GBXII(L) are discussed. A simulation study is conducted to
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assess the estimation of the parameters using the maximum likelihood method. From the results of the simulation study,
the MLEs perform reasonably well and improve as the sample size increases. To illustrate the usefulness of GBXII(L)
model in application, three real data sets arising from diverse disciplines and having different characteristics (different
sample sizes and different shapes) are used. The fit is compared with other existing models based on the K-S, AIC and
BIC statistics. The GBXII(L) performed very well in fitting different right skewed or left skewed data that can be unimodal
or bimodal. A LGBXII regression model is proposed to explain and predict a response variable. A two-arm (clinical trial)
survival time data is used in an application of the proposed LBGXII regression model and the fit is compared to three other
comparable models. The LBGXII regression model performed very well based on the AIC and the BIC statistics. Thus our
results exhibit the fact that GBXII(L) probability model and the LGBXII regression model may be used as alternatives
to some other well-known models. Future research includes exploring efficient parameter estimation, extension to the
multivariate cases and associated inference.

References

Akinsete, A., Famoye, F., & Lee, C. (2008). The beta-Pareto distribution. Statistics, 42(6), 547-563.

Akinsete, A., Famoye, F., & Lee, C. (2014). The Kumaraswamy-geometric distribution. Journal of Statistical Distribu-
tions and Applications, 1(17), 1-21. https://doi.org/10.1186/s40488-014-0017-1

Al-Aqtash, R. (2013). On Generating New Families of Distributions Using the Logit Function. Unpublished doctoral
dissertation, Central Michigan University, Mt Pleasant, MI.

Al-Aqtash, R., Famoye, F., & Lee, C. (2015). On generating a new family of distributions using the logit function, Journal
of Probability and Statistical Science, 1, 135-152.

Al-Aqtash, R., Lee, C., & Famoye, F. (2014). The Gumbel-Weibull distribution: Properties and applications, Journal of
Modern Applied Statistical Methods, 13(1), 201-225. https://doi.org/10.22237/jmasm/1414815000

Aldeni, M., Lee, C., & Famoye, F. (2017). Families of distributions arising from the quantile of generalized lambda
distribution. Journal of Statistical Distributions and Applications, 4(25), 1-18. https://doi.org/10.1186/s40488-017-
0081-4

Aljarrah, M. A., Lee, C., & Famoye F. (2014). On generating T-X family of distributions using quantile functions. Journal
of Statistical Distributions and Applications, 1(2), 1-17. https://doi.org/10.1186/2195-5832-1-2

Almheidat, M., Famoye, F., & Lee, C. (2015). Some Generalized Families of Weibull Distribution: Properties and
Applications. International Journal of Statistics and Probability, 4(3), 18-35. https://doi.org/10.5539/ijsp.v4n3p18

Alshawarbeh, E., Lee, C., & Famoye, F. (2012). The beta-Cauchy distribution. Journal of Probability and Statistical
Science, 10(1), 41-57.

Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions, Metron,
71(1), 63-79. https://doi.org/10.1007/s40300-013-0007-y

Alzaatreh, A., Lee, C., & Famoye, F. (2014). T-normal family of distributions: a new approach to generalize the normal
distribution. Journal of Statistical Distributions and Applications, 1(16), 1-18. https://doi.org/10.1186/2195-5832-
1-16

Balakrishnan, N., Leiva, V., Sanhueza, A., & Cabrera, E. (2009). Mixture inverse Gaussian distributions and its transfor-
mations, moments and applications. Statistics, 43, 91-104.

Barreto-Souza, W., Santos, A. H. S., & Cordeiro, G. M. (2010). The beta generalized exponential distribution. Journal of
Statistical Computation and Simulation, 80(2), 159-172. https://doi.org/10.1080/00949650802552402

Bourguignon, M., Silva, R. B., & Cordeiro, G. M. (2014). The Weibull-G Family of Probability Distributions, Journal of
Data Science, 12, 53-68.

Burr, I. W. (1942). Cumulative frequency functions. Annals of Mathematical Statistics, 13, 215-232.
https://doi.org/10.1214/aoms/1177731607

Cook, R. D., & Weisberg, S. (1994). An Introduction to Regression Graphics. John Wiley and Sons, Inc., New York.
https://doi.org/10.1002/9780470316863

Cordeiro, G. M., & deCastro, M. (2011). A new family of generalized distributions, Journal of Statistical Computation
and Simulation, 81(7), 883-898. https://doi.org/10.1080/00949650903530745

Cordeiro, G. M., & Lemonte, A. J. (2011). The β-Birnbaum-Saunders distribution: An improved distribution for fatigue
life modeling. Computational Statistics and Data Analysis, 55(3), 1445-1461.

14



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 10, No. 6; 2021

https://doi.org/10.1016/j.csda.2010.10.007

Cordeiro, G. M., Ortega, E. M. M., & Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to
failure data. Journal of the Franklin Institute, 347, 1399-1429. https://doi.org/10.1016/j.jfranklin.2010.06.010

Cordeiro, G. M., Pescim, R. R., & Ortega, E. M. M. (2012). The Kumaraswamy generalized half-normal distribution for
skewed positive data. Journal of Data Science, 10, 195-224.

Efron, B. (1988). Logistic regression, survival analysis, and the Kaplan-Meier curve. Journal of the American statistical
Association, 83(402), 414-425. https://doi.org/10.1080/01621459.1988.10478612

Eugene, N., Lee, C., & Famoye, F. (2002). Beta-normal distribution and its applications. Communications in Statistics-
Theory and Methods, 31(4), 497-512. https://doi.org/10.1081/STA-120003130

Famoye, F., Lee, C., & Olumolade, O. (2005). The beta-Weibull distribution. Journal of Statistical Theory and Applica-
tions, 4(2), 121-136.

Glänzel, W. (1986). A Characterization Theorem Based on Truncated Moments and its Application to Some Dis-
tribution Families, Mathematical Statistics and Probability, P. Bauer, F. Konecny, W. Wertz (Eds), Vol B, 75-84.
https://doi.org/10.1007/978-94-009-3965-3 8

Glänzel, W. (1990). Some consequences of a characterization theorem based on truncated moments. Statistics: A Journal
of Theoretical and Applied Statistics, 21(4), 613-618. https://doi.org/10.1080/02331889008802273

Hamedani, G. G. (2013). On certain generalized gamma convolution distributions II. Technical Report No. 484, MSCS,
Marquette University.

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions. (2nd ed.) John Wiley and
Sons, Inc., New York.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with tractability advantages. Statistical
Methodology, 6, 70-81. https://doi.org/10.1016/j.stamet.2008.04.001

Lee, C., Famoye, F., & Alzaatreh, A. (2013). Methods for generating families of univariate continuous distributions in the
recent decades. WIREs Computational Statistics, 5, 219-238. https://doi.org/10.1002/wics.1255

Mudholkar, G. S., Srivastava, D. K., & Freimer, M. (1995). The exponentiated Weibull family: A reanalysis of the
bus-motor-failure data. Technometrics, 37(4), 436-445. https://doi.org/10.1080/00401706.1995.10484376

Nadarajah, S., & Okorie, I. (2018). A Note on a New Member from the T-X Family of Distributions: The Gumbel-Burr
XII Distribution and its Properties. Sankhya A: The Indian Journal of Statistics. https://doi.org/10.1007/s13171-018-
0152-8.

Ortega, E. M., Cordeiro, G. M., & Hashimoto, E. M. (2011). A log-linear regression model for the Beta-Weibull distribu-
tion. Communications in Statistics-Simulation and Computation, 40(8), 1206-1235.
https://doi.org/10.1080/03610918.2011.568150

Osatohanmwen, P., Oyegue F. O., & Ogbonmwan, S. M. (2017). A New Member from the T-X Family of Distributions:
The Gumbel-Burr XII Distribution and Its Properties. Sankhya A: The Indian Journal of Statistics.
https://doi.org/10.1007/s13171-017-0110-x.

Smith, R. L., & Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estimators for the three-
parameter Weibull distribution. Applied Statistics, 36, 358-369.

Tahir, M. H., & Cordeiro, G. M. (2016). Compounding of distributions: a survey and new generalized classes. Journal of
Statistical Distributions and Applications, 3(13), 1-35. https://doi.org/10.1186/s40488-016-0052-1

Tahir, M. H., Cordeiro, G. M., Mansoor, M., Zubair, M., & Alizadeh, M. (2016). The Weibull-Dagum distribution:
Properties and applications. Communications in Statistics - Theory and Methods, 45(24), 7376-7398.

Tahir, M. H., Hussain, M. A., Cordeiro, G. M., Hamedani, G. G., Mansoor, M., & Zubair, M. (2016). The Gumbel-Lomax
Distribution: Properties and Applications. Journal of Statistical Theory and Applications, 15(1), 61-79.

Appendix A

Theorem A1. Let (Ω,F ,P) be a given probability space and let H = [a, b] be an interval for some a < b (a = −∞, b =

∞ might as well be allowed). Let X : Ω→ H be a continuous random variable with the distribution function F and let q1
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and q2 be two real functions defined on H such that

E
[
q2 (X) | X ≥ x

]
= E

[
q1 (X) | X ≥ x

]
η (x) , x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C1 (H), η ∈ C2 (H) and F is twice continuously differentiable
and strictly monotone function on the set H. Finally, assume that the equation ηq1 = q2 has no real solution in the interior
of H. Then F is uniquely determined by the functions q1, q2 and η , particularly

F (x) =

∫ x

a
C

∣∣∣∣∣ η′ (u)
η (u) q1 (u) − q2 (u)

∣∣∣∣∣ exp (−s (u)) du,

where the function s is a solution of the differential equation s′ =
η′q1

ηq1−q2
and C is the normalization constant, such that∫

H dF = 1.

We like to mention that this kind of characterization based on the ratio of truncated moments is stable in the sense of
weak convergence (Glänzel, 1990), in particular, let us assume that there is a sequence {Xn} of random variables with
distribution functions {Fn} such that the functions q1n, q2n and ηn (n ∈ N) satisfy the conditions of Theorem A1 and let
q1n → q1, q2n → q2 for some continuously differentiable real functions q1 and q2. Let, finally, X be a random variable
with distribution F. Under the condition that q1n (X) and q2n (X) are uniformly integrable and the family {Fn} is relatively
compact, the sequence Xn converges to X in distribution if and only if ηn converges to η , where

η (x) =
E

[
q2 (X) |X ≥ x

]
E

[
q1 (X) |X ≥ x

] .
This stability theorem makes sure that the convergence of distribution functions is reflected by corresponding convergence
of the functions q1, q2 and η respectively. It guarantees, for instance, the ‘convergence’ of characterization of the Wald
distribution to that of the Lévy-Smirnov distribution if α→ ∞.

A further consequence of the stability property of Theorem A1 is the application of this theorem to special tasks in
statistical practice such as the estimation of the parameters of discrete distributions. For such purpose, the functions q1,
q2 and, specially, η should be as simple as possible. Since the function triplet is not uniquely determined it is often
possible to choose η as a linear function. Therefore, it is worth analyzing some special cases which helps to find new
characterizations reflecting the relationship between individual continuous univariate distributions and appropriate in other
areas of statistics.
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