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Abstract  

Many authors have proposed measures for between groups income inequalities. Mostly, these measures are based on 

functional of the income distribution. Others are based on Gini index, measures of entropies or additive functions. 

Butler and McDonald (1987) developed a class of between groups income inequality measures based on incomplete 

moments and showed its applicability. In this article, A unified class of interdistributional inequality measures are 

introduced. Most of previous measures are special cases from the new class, such as Butler-McDonald measures. These 

new measures are estimated and studied. Also, the new general class is based on probability weighted moments which 

can be given any values as the upper value. A real data application is presented to compare among all these measures 

and show the benefits of the new measures. 

Keywords: income inequality measures, interdistributional inequality measures, probability weighted moments, 

asymptotic normality, and simulation 

1. Introduction  

Butler and McDonald (1987) conferred four interdistributional Lorenz curves based on normalized incomplete moments. 

Also, they outlined Lorenz curve, Gini, and pietra measures of inequality across two populations.  

The ℎ𝑡ℎ partial moment given by 𝑦 < 𝑥 for density function f(𝑦)is defined as  

𝐼(𝑥; ℎ) = ∫ 𝑦ℎ 𝑓(𝑦)
𝑥

0
𝑑𝑦 =

∫ 𝑦ℎ 𝑓(𝑦)
𝑥
0 𝑑𝑦

𝐸(𝑦ℎ )
=

𝐼(𝑥;ℎ)

𝐸(𝑦ℎ )
                                    (1) 

They referred to as the normalized incomplete moment that represents the proportion of each respective moment that is 

accounted for by income levels less than x 

The Gini coefficient was introduced by them as a weighted average of incomplete moments. 

                 𝐺𝑖𝑛𝑖 = ∫ [(𝑥 𝜇⁄ )∅(𝑥; 0) − ∅(𝑥; 1)]𝑓(𝑥)𝑑𝑥                                                     
∞

0
         (2) 

They used a Lorenz curve to look at the disparity between black and white income distributions see for example Akee at 

el (2019), Smith and Welch (1985), Bloome at el (2014), Kearney at el (2014), and Bollinger at el (2015). 

2. Probability Weighted Moments  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from a continuous distribution with density function 𝑓(𝑥), quantile function 

𝑥(𝐹) = 𝐹−1(𝑥) = 𝑄(𝐹), 0 < 𝐹 < 1, cumulative distribution function 𝐹(𝑥) = 𝐹, mean  𝜇 = 𝐸(𝑋), and 𝜎 is the 

standard deviation of the distribution. The probability weighted moments are a generalization of the usual moments of a 

probability distribution. The probability weighted moments of a random variable 𝑋 with distribution function F(𝓍) =
 P(x≤ 𝓍) are the quantities 

                        𝑀𝑝,𝑟,𝑠 = 𝐸[𝑋
𝑝{𝐹(𝑋)}𝑟{1 − 𝐹(𝑋)}𝑠]                                                                    (3) 

where 𝑝, 𝑟 and 𝑠 are real numbers. PWM are likely the most useful when the quantile function 𝑥(𝐹) can be written in 

closed form, so we can rewrite 
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                           𝑀𝑝,𝑟,𝑠 = ∫ [𝑥(𝐹)]
𝑝1

0
𝐹𝑟 (1 − 𝐹)𝑠𝑑𝐹                                                                          (4) 

The quantities 𝑀𝑝,0,0 are the usual non-central moments. When 𝑟 and 𝑠 are integers, 𝐹𝑟(1 − 𝐹)𝑠 may be expressed 

as a linear combination of either powers of 𝐹 or powers of (1 − 𝐹), so it is natural to summarize a distribution either 

by the moments 𝑀1,𝑟,0 or 𝑀1,0,𝑠  , where 

              𝛽𝑟 = 𝑀1,𝑟,0 = 𝐸[𝑋{𝐹(𝑋)}
𝑟],       𝑟 = 0,1,2, …                                                                (5) 

and 

                𝛽𝑠 = 𝑀1,0,𝑠 = 𝐸[𝑋{1 − 𝐹(𝑋)}
𝑠],      𝑠 = 0,1,2, …                                                            (6) 

where the expected value of order statistics is 

  𝐸(𝑋𝑟:𝑛) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
∫ 𝑥(𝐹)
1

0

𝐹𝑟−1 (1 − 𝐹)𝑛−𝑟𝑑𝐹    

Therefore, PWM can be written in terms of expected value of order statistics as   

              𝛽𝑟 = ∫ 𝑥(𝐹)𝐹𝑟𝑑𝐹 =
𝐸(𝑋𝑟+1:𝑟+1)

𝑟+1

1

0
,          𝑟 = 0,1, …                                                              (7) 

and 

             𝛽𝑠 = ∫ 𝑥(𝐹)(1 − 𝐹)𝑠𝑑𝐹
1

0
=
𝐸(𝑋1:𝑠+1)

𝑠+1
,        𝑠 = 0,1, …                                                        (8) 

Note that 𝛽𝑟 and 𝛽𝑠 are used in many; see for example, Abouelmagd, and Ahmed (2015), Bartolucci et al (1999), 

Greenwood et al (1979), Wei et al (2019), Hosking (1990), Hosking et al (1985), Basso et al (2016) and Moisello 

(2007). 

3. A Unified General Class of Interdistributional Income Inequality Measures Using PWM 

A proposed class of inequality measures which is a generalization of Butler-McDonald measure is   

𝑀𝑃𝑊𝑀
(ℎ,𝑟,𝑠)

=
∫ [𝑥ℎ{𝐹(𝑥)}𝑟{1−𝐹(𝑥)}𝑠]
𝑦∗
0 𝑑𝐹(𝑥)

∫ [𝑥ℎ{𝐹(𝑥)}𝑟{1−𝐹(𝑥)}𝑠]
1
0 𝑑𝐹(𝑥)

  −   
∫ [𝑦ℎ{𝐹(𝑦)}𝑟{1−𝐹(𝑦)}𝑠]
𝑥∗
0 𝑑𝐹(𝑦) 

∫ [𝑦ℎ{𝐹(𝑦)}𝑟{1−𝐹(𝑦)}𝑠]
1
0 𝑑𝐹(𝑦)

                                             (9) 

 𝑀𝑃𝑊𝑀
(ℎ,𝑟,𝑠)

= 𝜙(𝑦∗; ℎ, 𝑟, 𝑠) − 𝜙(𝑥∗; ℎ, 𝑟, 𝑠)    

This can be called “interdistributional normalized weighted incomplete moment”. 

3.1 Measures Based on 𝛽𝑟 

We propose first version of measure of inequality based on PWM. This version will give more weight for income in the 

largest part of the distribution 

𝑀𝐺𝐵𝑀1
(𝑟,𝑠)

= (𝜇𝐺𝑋
(𝑟,𝑠))

−1
∫ [𝑥𝑟{𝐹(𝑥)}𝑠]
𝜇𝑌
𝑟,𝑠

0
𝑑𝐹(𝑥) − (𝜇𝐺𝑌

(𝑟,𝑠))
−1
∫ [𝑦𝑟{𝐹(𝑦)}𝑠]𝑑𝐺(𝑦).                     
𝜇𝑋
(𝑟,𝑠)

0
(11) 

𝑀𝐺𝐵𝑀1
(𝑟,𝑠)  can be explained as the difference between the proportion of the first population with total weighted income 

accounted for by those with weighted income less than 𝜇𝑌
𝑟,𝑠

and the proportion of the second population with total 

weighted income accounted for by those with weighted income less than 𝜇𝑋
(𝑟,𝑠) . 

Special cases 

1-when r=0 and s=0 

𝑀𝐺𝐵𝑀1
(0,0)

= (𝜇𝐺𝑋
(0,0))

−1
∫ [𝑥𝑜{𝐹(𝑥)}0]
𝜇𝐺𝑌
𝑜,0

0
𝑑𝐹(𝑥) − (𝜇𝐺𝑌

(0,0))
−1
∫ [𝑦0{𝐹(𝑦)}0]𝑑𝐺(𝑦)
𝜇𝐺𝑋
(0,0)

0
                     (12) 

𝑀𝐺𝐵𝑀1
(0,0)

 can be explained as the difference between the fraction of the first population with income less than the mean of 

the second population and the fraction of the second population with income less than the mean of the first population. 

2-when r=1 and s=0 
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𝑀𝐺𝐵𝑀1
(1,0)

= (𝜇𝐺𝑋
(1,0))

−1
∫ [𝑥1{𝐹(𝑥)}0]
𝜇𝐺𝑌
1,0

0
𝑑𝐹(𝑥) − (𝜇𝐺𝑌

(1,0))
−1
∫ [𝑦1{𝐹(𝑦)}0]𝑑𝐺(𝑦)
𝜇𝐺𝑋
(1,0)

0
                       (13) 

This is Butler-McDonald measure when r=1. 𝑀𝐺𝐵𝑀1
(1,0)  can be explained as the difference between the fraction of the first 

population with total income accounted for by those with total income less than the mean income of second population 

and the fraction of the second population with total income accounted for by those with  total income less than the 

mean income of first population.  

3-when r=0 and s=1 

𝑀𝐺𝐵𝑀1
(0,1)

= (𝜇𝐺𝑋
(0,1))

−1
∫ [𝑥0{𝐹(𝑥)}1]
𝜇𝐺𝑌
0,1

0

𝑑𝐹(𝑥) − (𝜇𝐺𝑌
(0,1))

−1
∫ [𝑦0{𝐹(𝑦)}1]𝑑𝐺(𝑦).
𝜇𝐺𝑋
(0,1)

0

 

𝑀𝐺𝐵𝑀1
(0,1)

= (𝜇𝐺𝑋
(0,1))

−1
∫ 𝐹(𝑥)𝑑𝐹
𝜇𝐺𝑌
0,1

0
− (𝜇𝐺𝑌

(0,1))
−1
∫ 𝐹(𝑦)𝑑𝐺
𝜇𝐺𝑋
(0,1)

0
                                  (14) 

4-when r=1 and s=1 

𝑀𝐺𝐵𝑀1
(1,1)

= (𝜇𝐺𝑋
(1,1))

−1
∫ [𝑥1{𝐹(𝑥)}1]
𝜇𝐺𝑌
1,1

0

𝑑𝐹(𝑥) − (𝜇𝐺𝑌
(1,1))

−1
∫ [𝑦1{𝐹(𝑦)}1]𝑑𝐺(𝑦)
𝜇𝐺𝑋
(1,1)

0

 

MGBM1
(1,1)

= (μGX
(1,1))

−1
∫ x F(x)dF
μGY
1,1

0
− (μGY

(1,1))
−1
∫ y F(y)dF
μGX
(1,1)

0
                                       (15) 

MGBM1
(1,1)  can be explained as the difference between the fraction of the first population with total weighted income 

accounted for by those with total weighted  income less than the mean income of second population and the fraction of 

the second population with total weighted income accounted for by those with  total weighted income less than the 

mean income of first population.  

3.2 Measures Based on 𝜷𝒔 

We propose second version of measure of inequality based on PWM. This version will give more weight for income in 

the lowest part of the distribution 

MGBM2
(r,s)

= (μGX
(r,s))

−1
∫ [xr{1 − F(x)}s]
μY
r,s

0
dF(x) − (μGY

(r,s))
−1
∫ [yr{1 − F(y)}s]dG(y)            
μX
(r,s)

0
(16) 

Special cases 

1-when r=0 and s=0 

𝑀𝐺𝐵𝑀2
(0,0)

= (𝜇𝐺𝑋
(0,0))

−1
∫ [𝑥0{1 − 𝐹(𝑥)}0]
𝜇𝐺𝑌
0,0

0
𝑑𝐹(𝑥) − (𝜇𝐺𝑌

(0,0))
−1
∫ [𝑦0{1 − 𝐹(𝑦)}0]𝑑𝐺(𝑦)                 
𝜇𝐺𝑋
(0,0)

0
(17) 

2-when r=1 and s=0 

𝑀𝐺𝐵𝑀2
(1,0)

= (𝜇𝐺𝑋
(1,0))

−1
∫ [𝑥1{1 − 𝐹(𝑥)}0]
𝜇𝐺𝑌
1,0

0
𝑑𝐹(𝑥) − (𝜇𝐺𝑌

(1,0))
−1
∫ [𝑦1{1 − 𝐹(𝑦)}0]𝑑𝐺(𝑦)                 
𝜇𝐺𝑋
(1,0)

0
(18) 

This is Butler-McDonald measure 

3-when r=0 and s=1 

𝑀𝐺𝐵𝑀2
(0,1)

= (𝜇𝐺𝑋
(0,1))

−1
∫ [𝑥0{1 − 𝐹(𝑥)}1]
𝜇𝐺𝑌
0,1

0

𝑑𝐹(𝑥) − (𝜇𝐺𝑌
(0,1))

−1
∫ [𝑦0{1 − 𝐹(𝑦)}1]𝑑𝐺(𝑦) 
𝜇𝐺𝑋
(0,1)

0

 

𝑀𝐺𝐵𝑀2
(0,1)

= (𝜇𝐺𝑋
(0,1))

−1
∫ {1 − 𝐹(𝑥)}𝑑𝐹
𝜇𝐺𝑌
0,1

0
− (𝜇𝐺𝑌

(0,1))
−1
∫ {1 − 𝐹(𝑦)}𝑑𝐺
𝜇𝐺𝑋
(0,1)

0
                              (19) 

4-when r=1 and s=1 
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𝑀𝐺𝐵𝑀
(1,1) = (𝜇𝐺𝑋

(1,1))
−1
∫ [𝑥1{1 − 𝐹(𝑥)}1]
𝜇𝐺𝑌
1,1

0

𝑑𝐹(𝑥) − (𝜇𝐺𝑌
(1,1))

−1
∫ [𝑦1{1 − 𝐹(𝑦)}1]𝑑𝐺(𝑦)
𝜇𝐺𝑋
(1,1)

0

 

𝑀𝐺𝐵𝑀2
(1,1) = (𝜇𝐺𝑋

(1,1))
−1
∫ 𝑥 {1 − 𝐹(𝑥)}𝑑𝐹
𝜇𝐺𝑌
1,1

0
− (𝜇𝐺𝑌

(1,1))
−1
∫ 𝑦 {1 − 𝐹(𝑦)}𝑑𝐺                     
𝜇𝐺𝑋
(1,1)

0
 (20) 

4. Estimation  

Using the sample income data 𝑥1, 𝑥2, … . , 𝑥𝑛  and the empirical distribution function the above measures can be 

estimated as follows. 

4.1 Measures Based on 𝜷𝒓 

𝑀̂𝐺𝐵𝑀
(𝑟,𝑠) =

∑ 𝐼(𝑤𝑟𝑖𝑥𝑖
𝑟<𝑦̅𝑟)𝑤𝑟𝑖𝑥𝑖

𝑟𝑛
𝑖=1

∑ 𝑤𝑟𝑖𝑥𝑖
𝑟𝑛

𝑖=1
− 

∑ 𝐼(𝑤𝑟𝑖𝑦𝑖
𝑟<𝑥̅𝑟)𝑤𝑟𝑖𝑦𝑖

𝑟𝑛
𝑖=1

∑ 𝑤𝑟𝑖𝑦𝑖
𝑟𝑛

𝑖=1
                                                     (21) 

and  

𝑀̂𝐺𝐴
(𝑟,𝑠) =

∑ 𝐼(𝑤𝑟𝑖𝑥𝑖
𝑟<𝑦̅𝑟)𝑤𝑟𝑖𝑥𝑖

𝑟𝑛
𝑖=1

𝐹̂(𝑦̅𝑟)
−  

∑ 𝐼(𝑤𝑟𝑖𝑦𝑖
𝑟<𝑥̅𝑟)𝑤𝑟𝑖𝑦𝑖

𝑟𝑛
𝑖=1

𝐹̂(𝑥̅𝑟)
                                                 (22) 

Where 𝐹̂ is the empirical distribution function and  

𝑤𝑟𝑖 = (
𝑖 − 0.5

𝑛
)
𝑟

           

4.2 Measures Based on 𝛽𝑠 

𝑀̂𝐺𝐵𝑀
(𝑟,𝑠) =

∑ 𝐼(𝑤𝑠𝑖𝑥𝑖
𝑟<𝑦̅𝑠)𝑤𝑠𝑖𝑥𝑖

𝑟𝑛
𝑖=1

∑ 𝑤𝑠𝑖𝑥𝑖
𝑟𝑛

𝑖=1
−  

∑ 𝐼(𝑤𝑠𝑖𝑦𝑖
𝑟<𝑥̅𝑠)𝑤𝑠𝑖𝑦𝑖

𝑟𝑛
𝑖=1

∑ 𝑤𝑠𝑖𝑦𝑖
𝑟𝑛

𝑖=1
                                               (23) 

𝑀̂𝐺𝐴
(𝑟,𝑠) =

∑ 𝐼(𝑤𝑠𝑖𝑥𝑖
𝑟<𝑦̅𝑠)𝑤𝑠𝑖𝑥𝑖

𝑟𝑛
𝑖=1

𝐹̂(𝑦̅𝑠)
−
∑ 𝐼(𝑤𝑠𝑖𝑦𝑖

𝑟<𝑥̅𝑠)𝑤𝑠𝑖𝑦𝑖
𝑟𝑛

𝑖=1

𝐹̂(𝑥̅𝑠)
                                                 (24) 

Where  

𝑤𝑠𝑖 = (1 − 
(𝑖 − 0.5)

𝑛
)
𝑠

 

5. Applications 

5.1 Theoretical Application 

If 𝑋1, 𝑋2, …… , 𝑋𝑛  from pareto distribution with density function  𝑝𝑑𝑓 = 𝑎𝑘𝑎 𝑥−(𝑎+1) , cumulative distribution 

function 𝐹 = 1 − (
𝑘

𝑥
)
𝑎

, quantile function X(F) = k (1 − 𝐹)
−1

𝑎 ,  𝑟𝑡ℎ noncertral moments  𝜇𝑟
ˋ = 𝑎𝑘𝑟(𝑎 − 𝑟)−1 and 

𝜇𝐺𝑋
(𝑟,𝑠) = ∫ 𝑥𝑟  𝐹𝑠𝑑𝐹

∞

0
, 𝜇𝐺𝑌

(𝑟,𝑠) = ∫ 𝑦𝑟  𝐹𝑠𝑑𝐺
∞

0
, then we can drive  

a. Measures based on 𝜷𝒓 

𝑀𝐺𝐵𝑀
(𝑟,𝑠)

= (𝜇𝐺𝑋
(𝑟,𝑠))

−1
∫ [𝑥𝑟{𝐹(𝑥)}𝑠]
𝜇𝑌
𝑟,𝑠

0

𝑑𝐹(𝑥) − (𝜇𝐺𝑌
(𝑟,𝑠))

−1
∫ [𝑦𝑟{𝐹(𝑦)}𝑠]𝑑𝐺(𝑦).
𝜇𝑋
(𝑟,𝑠)

0

 

which when using the indicator function gives                                                   

 𝑀𝐺𝐵𝑀
(𝑟,𝑠) =

1

 ∫ 𝑥𝑟 𝐹𝑠𝑑𝐹
1
0

∫ 𝐼(𝑥 ≤
∞

0
𝜇𝐺𝑦
(𝑟,𝑠)) 𝑥𝑟 𝐹𝑠𝑑𝐹 −

1

∫ 𝑦𝑟 𝐹𝑠𝑑𝐺
1
0

∫ 𝐼(𝑦 ≤
∞

0
𝜇𝐺𝑥
(𝑟,𝑠)) 𝑦𝑟  𝐹𝑠𝑑𝐺 

Or equivalently,  

𝑀𝐺𝐵𝑀
(𝑟,𝑠) =

1

 ∫ (𝑥(𝐹))
𝑟
 𝐹𝑠𝑑𝐹

1

0

∫ 𝐼(𝑥 ≤
∞

0

𝜇𝐺𝑦
(𝑟,𝑠)) (𝑥(𝐹))

𝑟
 𝐹𝑠𝑑𝐹 −

1

 ∫ (𝑦(𝐹))𝑟 𝐹𝑠𝑑𝐺
1

0

∫ 𝐼(𝑦 ≤
∞

0

𝜇𝐺𝑥
(𝑟,𝑠)) (𝑦(𝐹))𝑟 𝐹𝑠𝑑𝐺 
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𝑀𝐺𝐵𝑀
(𝑟,𝑠)

=
1

∫ ( (1 − 𝐹)
−1
𝑎1)

𝑟

𝐹𝑠𝑑𝐺
1

0

∫ 𝐼(𝑘1(1 − 𝐹)
−1
𝑎1 ) ≤  𝜇𝐺𝑦

(𝑟,𝑠)) ( (1 − 𝐹)
−1
𝑎1)

𝑟∞

0

 𝐹𝑠𝑑𝐹

− 
1

∫ ( (1 − 𝐹)
−1
𝑎2)

𝑟

𝐹𝑠𝑑𝐺
1

0

 ∫ 𝐼(𝑘2(1 − 𝐹)
−1
𝑎2 ) ≤  𝜇𝐺𝑥

(𝑟,𝑠)) ( (1 − 𝐹)
−1
𝑎2)

𝑟∞

0

 𝐹𝑠𝑑𝐺 

𝑀𝐺𝐵𝑀
(𝑟,𝑠)

=
1

∫ ( (1 − 𝐹)
−𝑟
𝑎1)

1

0
𝐹𝑠𝑑𝐹

 ∫ (1 − 𝐹)
−𝑟
𝑎1

1− (
𝑘1

𝜇𝐺𝑦
(𝑟,𝑠)

)

𝑎1

0

 𝐹𝑠𝑑𝐹               −   
1

∫ ( (1 − 𝐹)
−𝑟
𝑎2)

1

0
𝐹𝑠𝑑𝐹

 ∫  (1 − 𝐹)
−𝑟
𝑎2

1− (
𝑘2

𝜇𝐺𝑥
(𝑟,𝑠)

)

𝑎2

0

 𝐹𝑠𝑑𝐺 

𝑀𝐺𝐵𝑀
(𝑟,𝑠)

=
1

∫ ( (1 − 𝐹)
−𝑟
𝑎1)

1

0
𝐹𝑠𝑑𝐹

 ∫ (1 − 𝐹)
−𝑟
𝑎1

1− (
𝑘1

𝜇𝐺𝑦
(𝑟,𝑠)

)

𝑎1

0

 𝐹𝑠𝑑𝐹               −   
1

∫ ( (1 − 𝐹)
−𝑟
𝑎2)

1

0
𝐹𝑠𝑑𝐹

 ∫  (1 − 𝐹)
−𝑟
𝑎2

1− (
𝑘2

𝜇𝐺𝑥
(𝑟,𝑠)

)

𝑎2

0

 𝐹𝑠𝑑𝐺 

And by using Karl Pearson’s incomplete beta function. We find 

𝑀𝐺𝐵𝑀
(𝑟,𝑠)

=

 I

(

 −𝑟
𝑎1
+ 1,   𝑠 + 1   ;  (1 − (

𝑘1

𝛽 (
−𝑟
𝑎1
+ 1,   𝑠 + 1)

)

𝑎1

)

)

 

𝛽 (
−𝑟
𝑎1
+ 1,   𝑠 + 1)

−   

 I

(

 −𝑟
𝑎2
+ 1,   𝑠 + 1; (1 − (

𝑘2

𝛽 (
−𝑟
𝑎2
+ 1,   𝑠 + 1)

)

𝑎2

)

)

 

𝛽 (
−𝑟
𝑎2
+ 1,   𝑠 + 1)

 

b. Measures Based on 𝜷𝒔 

𝑀𝐺𝐵𝑀
(𝑟,𝑠)

= (𝜇𝐺𝑋
(𝑟,𝑠))

−1
∫ [𝑥𝑟{1 − 𝐹(𝑥)}𝑠]
𝜇𝑌
𝑟,𝑠

0

𝑑𝐹(𝑥) − (𝜇𝐺𝑌
(𝑟,𝑠))

−1
∫ [𝑦𝑟{1 − 𝐹(𝑦)}𝑠]𝑑𝐺(𝑦).
𝜇𝑋
(𝑟,𝑠)

0

 

which when using the indicator function gives: 

𝑀𝐺𝐵𝑀
(𝑟,𝑠)

=
1

∫ (𝑥(𝐹))
𝑟
 (1 − 𝐹)𝑠𝑑𝐹

1

0

∫ (𝑥(𝐹))𝑟   (1 − 𝐹)𝑠
1− (

𝑘1

𝜇𝐺𝑦
(𝑟,𝑠)

)

𝑎1

0

𝑑𝐹(𝑥) −
1

∫ (𝑦(𝐹))
𝑟
 (1 − 𝐹)𝑠𝑑𝐺

1

0

∫ (𝑦(𝐹))𝑟(1 − 𝐹)𝑠𝑑𝐺(𝑦).
1− (

𝑘2

𝜇𝐺𝑥
(𝑟,𝑠)

)

𝑎2

0

 

Or equivalently,  

𝑀𝐺𝐵𝑀
(𝑟,𝑠)

=
1

∫ (𝑘1 (1 − 𝐹)
−1
𝑎1)

𝑟

 (1 − 𝐹)𝑠𝑑𝐹
1

0

∫ (𝑘1 (1 − 𝐹)
−1
𝑎1)

𝑟

 (1 − 𝐹)𝑠
1−  (

𝑘1

𝜇𝐺𝑦
(𝑟,𝑠)

)

𝑎1

0

𝑑𝐹(𝑥)

−
1

∫ (𝑘2 (1 − 𝐹)
−1
𝑎2)

𝑟

(1 − 𝐹)𝑠𝑑𝐺
1

0

∫ (𝑘2 (1 − 𝐹)
−1
𝑎2)

𝑟

 (1 − 𝐹)𝑠𝑑𝐺(𝑦).
1− (

𝑘2

𝜇𝐺𝑥
(𝑟,𝑠)

)

𝑎2

0

 

𝑀𝐺𝐵𝑀
(𝑟,𝑠)

=
1

∫  (1 − 𝐹)
−𝑟
𝑎1
+𝑠
𝑑𝐹

1

0

∫ (1 − 𝐹)
− 𝑟
𝑎1
 + 𝑠

1−  (
𝑘1

𝜇𝐺𝑦
(𝑟,𝑠)

)

𝑎1

0

𝑑𝐹(𝑥) −
1

∫  (1 − 𝐹)
−𝑟
𝑎2
+𝑠
𝑑𝐺

1

0

∫ (1 − 𝐹)
− 𝑟
𝑎2
 + 𝑠

1−  (
𝑘2

𝜇𝐺𝑥
(𝑟,𝑠)

)

𝑎2

0

𝑑𝐺 

𝑀𝐺𝐵𝑀
(𝑟,𝑠)

=
1

∫  (1 − 𝐹)
−𝑟
𝑎1
+𝑠
𝐹0  𝑑𝐹

1

0

∫ (1 − 𝐹)
− 𝑟
𝑎1
 + 𝑠
 𝐹0

1− (
𝑘1

𝜇𝐺𝑦
(𝑟,𝑠)

)

𝑎1

0

𝑑𝐹(𝑥) −
1

∫  (1 − 𝐹)
−𝑟
𝑎2
+𝑠
𝐹0  𝑑𝐹

1

0

∫ (1 − 𝐹)
− 𝑟
𝑎2
 + 𝑠
 𝐹0

1−  (
𝑘2

𝜇𝐺𝑥
(𝑟,𝑠)

)

𝑎2

0

𝑑𝐺 
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𝑀𝐺𝐵𝑀
(𝑟,𝑠)

=

𝐼

(

 −𝑟
𝑎1
 +  𝑠 + 1 ,   1 ;  (1 − (

𝑘1

𝛽 (
−𝑟
𝑎1
+ 𝑠 + 1, 1)

)

𝑎1

)

)

 

𝛽 (
−𝑟
𝑎1
+ 𝑠 + 1, 1)

  −   

 𝐼

(

 −𝑟
𝑎2
 +  𝑠 + 1 ,   1; (1 − (

𝑘2

𝛽 (
−𝑟
𝑎2
+ 𝑠 + 1, 1)

)

𝑎2

)

)

 

𝛽 (
−𝑟
𝑎2
+ 𝑠 + 1, 1)

 

c. Butler-McDonald  

𝑀𝐵𝑀
𝑟 =

1

∫ 𝑥𝑟
1

0
𝑑𝐹
∫ 𝑥𝑟
𝜇𝑌
(𝑟)

0

𝑑𝐹(𝑥) −
1

∫ 𝑦𝑟
1

0
𝑑𝐺
∫ 𝑦𝑟 𝑑𝐹(𝑦) = 𝜙𝑋 (𝑟, 𝜇𝑌

(𝑟)) − 𝜙𝑌(𝑟, 𝜇𝑋
(𝑟))

𝜇𝑋
(𝑟)

0

 

𝑀𝐵𝑀
𝑟 =

1

∫ [𝑘1 (1 − 𝐹)
−1
𝑎1 ]

𝑟

𝑑𝐹
1

0

∫ [𝑘1 (1 − 𝐹)
−1
𝑎1 ]

𝑟1− (
𝑘1

𝜇𝑦
(𝑟)
)

𝑎1

0

𝑑𝐹(𝑥) −
1

∫ [𝑘2 (1 − 𝐹)
−1
𝑎2 ]

𝑟

𝑑𝐺
1

0

∫ [𝑘2 (1 − 𝐹)
−1
𝑎2 ]

𝑟1− (
𝑘2

𝜇𝑥
(𝑟)
)

𝑎2

0

 𝑑𝐺(𝑦) 

𝑀𝐵𝑀
𝑟 =

1

∫ (1 − 𝐹)
−𝑟
𝑎1

1

0
𝑑𝐹

∫ (1 − 𝐹)
−𝑟
𝑎1

1− (
𝑘1

𝜇𝑦
(𝑟)
)

𝑎1

0

𝑑𝐹(𝑥) −
1

∫ (1 − 𝐹)
−𝑟
𝑎2

1

0
𝑑𝐺

∫ (1 − 𝐹)
−𝑟
𝑎2

1− (
𝑘2

𝜇𝑥
(𝑟)
)

𝑎2

0

 𝑑𝐺(𝑦) 

𝑀𝐵𝑀
𝑟 =

1

∫ (1 − 𝐹)
−𝑟
𝑎1  𝐹0

1

0
𝑑𝐹

∫ (1 − 𝐹)
−𝑟
𝑎1  𝐹0

1− (
𝑘1

𝜇𝑦
(𝑟)
)

𝑎1

0

 𝑑𝐹(𝑥) −
1

∫ (1 − 𝐹)
−𝑟
𝑎2

1

0
 𝐹0𝑑𝐺

∫ (1 − 𝐹)
−𝑟
𝑎2  𝐹0

1− (
𝑘2

𝜇𝑥
(𝑟)
)

𝑎2

0

 𝑑𝐺(𝑦) 

𝑀𝐵𝑀
𝑟 =

 𝐼

(

  
−𝑟
𝑎1
 +  1 ,   1;  (1 − (

𝑘1

𝛽 (
−𝑟
𝑎1
+ 1,   1)

)

𝑎1

)

)

 

𝛽 (
−𝑟
𝑎1
+ 1, 1)

  −   

𝐼

(

  
−𝑟
𝑎2
 +  1 ,   1; (1 − (

𝑘2

𝛽 (
−𝑟
𝑎2
+ 1, 1)

)

𝑎2

)

)

 

𝛽 (
−𝑟
𝑎2
+ 1, 1)

 

5.2 Real Data Application 

We will use real data to compute and compare Butler-MacDonald measure, and the proposed inequality measures. The 

income data is from the survey of national income and individuals’ incomes in Egypt in 2009, and 2011, we consider 

the applicability to calculate and compare among income inequality indicators. The data set was obtained from the 

Central Agency for Public Mobilization and Statistics (CAPMS), which is responsible for systematically researching 

and analyzing incomes and consumptions of people every two years regularly. The CAPMS sample is a random sample 

from all Egyptian Governorates and the sample size is around 25000 units. The CAPMS gave us the data of incomes 

and consumptions of 12000 approximately individuals of the survey in the two years. Also, these data contain all details 

about incomes and consumptions of the individuals. For example, the individual income consists of salary and wages, 

agrarian income, and inherited income etc. Also, the individual consumption consists of the expenditure on cloths, food, 

and drinks etc.  

In addition, we divided the whole country into Cairo, North, South, Canal, Delta sectors, and each of these sectors 

contain several governorates. For example, Cairo sector in 2009 contains Cairo, Giza, Helwan, and 6 Octorber, but in 

2011 Cairo sector consists of Cairo, and Giza. The North sector contains Matruh, Alexanderia, Dumyat, Kafr Alshaykh, 

and Al Buhayrah and the South sector consists of Fayoum, Bani Suif, Menia, Asiut, Sohag, Qinal, luxor, Aswan, and El 

Wady Elgadeed.  The sample from each sector we take for analysis in 2009 is 2000 individuals, while the sample in 

2011 is 500 individuals for each sector. 

The following tables will be calculated for the four years to Butler-McDonald measure (𝑀𝐵𝑀
𝑟 ) , generalized 

Butler-MacDonald Measure based on 𝛽𝑟  (𝑀𝑃𝑊𝑀1
𝑟 ), and generalized Butler-MacDonald measure based on 𝛽𝑠 (𝑀𝑃𝑊𝑀2

𝑟 ). 
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Table 1. Interdistributional income inequality between Cairo sector and North sector in 2009 

r 𝑴𝑩𝑴
𝒓  𝑴𝑷𝑾𝑴𝟏

𝒓  𝑴𝑷𝑾𝑴𝟐
𝒔  

1 -0.2009341 -0.1492824 -0.0516517 

2 -0.3358347 -6.318484e-06 -4.715487e-06 

3 -0.3745719 -1.438133e-10 -1.348346e-10 

4 -0.2716791 -1.756166e-15 -1.725486e-15 

5 -0.2373769 -1.530121e-20 -1.455514e-20 

Table 2. Interdistributional income inequality between Cairo sector and South sector in 2009 

r 𝑴𝑩𝑴
𝒓  𝑴𝑷𝑾𝑴𝟏

𝒓  𝑴𝑷𝑾𝑴𝟐
𝒔  

1 -0.4762717 -0.2953932 -0.1808785 

2 -0.5431033 -1.109482e-05 -8.483327e-06 

3 -0.4067344 -2.056898e-10 -1.900043e-10 

4 -0.1508454 -1.426814e-15 -1.431211e-15 

5 -0.0422706 -5.972053e-21 -6.133158e-21 

A number of points are noteworthy from the results of tables 1 and 2: 

1. At the first glance, in table 1, all signs are negative that means the inequality in North sector is higher than 

inequality in Cairo sector. In other words, the difference among incomes in North sector is higher than the difference 

among incomes in Cairo sector under the same economic conditions such inflation and policies. 

2. In table 1, the interdistributional income inequality has the range from -0.0516517 to -0.2009341, when r= 1. That 

means Butler-McDonald measure gives the highest interdistributional income inequality between Cairo sector and 

North sector, but the proposed 𝛽𝑠 measure gives the lowest interdistributional income inequality. 

3. In table 1, the values of Butler-McDonald measure still have a useful meaning when    𝑟𝑡ℎ increase, because 

these values can measure the interdistributional income inequality when r=2 to r=5. However, the values of the 

proposed 𝛽𝑟, and  𝛽𝑠 measures are approximately zero.  

4. In table 2, all signs are negative that means the inequality in South sector is higher than inequality in Cairo sector. 

In other words, the difference among incomes in South sector is higher than the difference among incomes in Cairo 

sector under the same economic conditions such inflation and policies. 

5. The results from table 2 bucks up the conclusion obtained from table 1.  

Table 3. Interdistributional income inequality between Cairo sector and North sector in 2011 

r 𝑴𝑩𝑴
𝒓  𝑴𝑷𝑾𝑴𝟏

𝒓  𝑴𝑷𝑾𝑴𝟐
𝒔  

1 -0.290286 -0.1982195 -0.09206645 

2 -0.3357666 -4.642237e-06 -3.390301e-06 

3 -0.2422896 -5.029476e-11 -5.147463e-11 

4 -0.1600472 -3.14515e-16 -3.323548e-16 

5 -0.1149761 -1.596027e-21 -1.565911e-21 

Table 4. Interdistributional income inequality between Cairo sector and South sector in 2011 

r 𝑴𝑩𝑴
𝒓  𝑴𝑷𝑾𝑴𝟏

𝒓  𝑴𝑷𝑾𝑴𝟐
𝒔  

1 -0.5809797 -0.3415718 -0.2394079 

2 -0.6865492 -1.000246e-05 -8.389739e-06 

3 -0.7954165 -2.125916e-10 -2.038938e-10 

4 -0.9986064 -3.54929e-15 -3.333598e-15 

5 -0.9998331 -4.556232e-20 -4.253245e-20 

A number of points are noteworthy from the results of tables 3 and 4: 

6. All signs in tables 3 and 4 are negative that means the income inequality of the North sector is higher than the 

income inequality of the Cairo sector. Also, the income inequality of the South sector is higher than the income 

inequality of Cairo sector under the same economic and political conditions. 

7. The interdistributional income inequality between Cairo sector and North sector raised from 2009 to 2011. We can 

explain this by showing the figures of all measures in 2009 and the figures in 2011. For example, when we compare 
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between table 1 and 3, when r equals 1, and by using Butler-McDonald measure the interdistributional income 

inequality increased from -0.2009341 in 2009 to -0.290286 in 2011, for   𝛽𝑟 measure the interdistributional income 

inequality rose from -0.1492824 in 2009 to -0.1982195 in 2011, and for  𝛽𝑠 measure the interdistributional income 

inequality rose from -0.0516517 to -0.09206645 

8. Also, the interdistributional income inequality between Cairo sector and South sector increased from 2009 to 2011. 

All values of all measures buck up this result for all values of 𝑟𝑡ℎ. 

6. Conclusion 

Many public policies impact poor people. Furthermore, some policies are specifically designed to target the poor in 

order to fight poverty. In policy work it is therefore important to be able to identify the poor, to simulate the impact of 

alternative policies on poverty, and to rank policy options according to some poverty impact indicators in order to select 

the most preferred option. 

Inequality measurement is an attempt to give meaning to comparisons of income distributions in terms of criteria which 

may be derived from ethical principles, appealing mathematical constructs or simple intuition. 

In this research, we review the concepts of poverty, inequality, and social welfare. In addition, we discuss axioms of 

poverty and inequality measures and we review several measures of poverty, inequality, and social welfare to know the 

disadvantages of these measures to avoid them in our proposed measures. 

In recent years the probability weighted method (PWM) plays an important role in parameter estimation of the 

distributions. The powerful of PWM is in its simplicity and efficient of the estimates in comparison with traditional 

method of moments and maximum likelihood method. However, Butler-McDonald (1989) and Ahmed (1998) 

introduced a measure of inequality which takes into consideration the shape of the distribution based on traditional 

non-central moments that is not efficient with respect to PWM. 

Therefore new measure of inequality that takes in consideration the shape of the distribution based on PWM is proposed. 

Two versions of this measure are defined and studied. We study these new measures under Pareto distribution because 

Pareto distribution is the nearest distribution to income distribution. Moreover, it is shown that the main advantage of 

the proposed measure it characterizes the income distribution among all distributions. 

A new measure of interdistributional inequality is proposed and two versions of this measure are defined and studied. 

Several cases of these two versions are derived and defined. We study these measures under Pareto distribution. 

A real data application is given that illustrates the benefits of the proposed measures. 
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