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Abstract 

Probability sample encounters the problems of increasing cost and nonresponse. The cost has rapidly been increasing in 

executing a large probability sample survey, and, for some surveys, response rate can be below the 10 percent level. 

Therefore, statisticians seek some alternative methods. One of them is to use a large nonprobability sample (𝑺𝟏) 

supplemented by a small probability sample (𝑆2). Both samples are taken from the same population and they include 

common covariates, and a third sample (𝑆3) is created by combining these two samples; 𝑆1 can be biased and 𝑆2 may 

have large sample variance. These two problems are reduced by survey weights and combining the two samples. 

Although 𝑆2 is a small sample, it provides good properties of unbiasedness in estimation and of survey weights. With 

these known weights, we obtain adjusted sample weights (ASW), and create a sample model from a finite population 

model. We fit the sample model to obtain its parameters and generate values from the population model. Similarly, we 

repeat these processes for other two samples, 𝑆1 and 𝑆3 and for different statistical methods. We show reduced biases 

of the finite population means and reduced variances.as the combined sample size becomes large. We analyze sample 

data to show the reduction of these two errors.  

Keywords: adjusted sample weight, bootstrap, Bayesian method, least squares estimation (LS), doubly robust     

1. Introduction 

Probability sampling has been the main tool for sample surveys since the 1900s. It provides unbiased and consistent 

estimates. Public and private survey organizations such as Gallop, US Census Bureau, National Center for Health 

Statistics (NCHS), National Institute of Health, and the Bureau of Labor Statistics have been using probability samples 

to produce official statistics of the US population such as public opinion, personal income, health status, economic 

indicators, unemployment rates, and other essential official statistics for the United States Government and other 

researchers.  

However, more survey organizations are abandoning probability sampling because of high cost and increasing 

nonresponses (Beaumont, 2020). Nonprobability sampling is emerging as an attractive to probability sampling for its 

low cost and convenience. But we must pay for the low cost and convenience because there could be large bias.   

A small probability sample is used to reduce such bias of nonprobability sample. Both samples, taken from the same 

population, have the common covariates. Bias is increased and variance is decreased in the combined sample over the 

probability sample, and the reverse (bias decreased and variance increased) is true with respect to the nonprobability 

sample. A small probability sample contributes valuable information of sample weights and unbiased mean. This mean 

is used to find the bias of nonprobability and combined samples. The known weights are also used to impute unknown 

weights of 𝑊1.(Appendix A). Others often use these covariates in logistic function to obtain sample weights under 

certain assumptions (Chen et al. 2020). Instead, we use covariates matching that does not require such unreasonable 

assumptions. These known (or imputed) survey weights or original sample weights (OSW) are then used to obtain 

ASWs. We use these ASWs to reduce bias and variance in estimation by combining two samples. 

For the National Health and Nutrition Examination Survey, NCHS collects a probability sample to investigate the health 

status of the US population. To present an example, we use a part of this NCHS sample to derive three samples: A rather 

large sample 𝑆1 by dropping the survey weights, a small sample 𝑆2, and a third sample 𝑆3 is created combining 

𝑆1 and 𝑆2.i.e. 𝑆3 = (𝑆1 ∪ 𝑆2). These three samples are separately used to investigate the bias and variance on these 

samples in estimating finite population mean of body mass index (BMI) of US population. Many government agencies, 

including the NCHS can benefit enormously from this research to save the cost of large surveys.  
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We have roughly 1500 observations for 𝑆1 and 300 for 𝑆2 , i.e., 𝑆1  is about 5 times for 

𝑆2. The number of combined sample 𝑆3 is 1800. We assume that a probability sample provides unbiased estimate. The 

reduction of bias is significant when ASWs are applied to probability or nonprobability sample. For example, the 

unweighted BMI mean of probability sample 𝑆2 is 26.94 and its ASW weighted mean is 25.98; reduced bias is about 

0.96 (=26.94-25.98), about 3.56%. If only nonprobability sample is used, the unweighted BMI mean is 27.89 and the 

ASW weighted mean is 27.16, reduced bias is 0.73 (=27.89-27.16) (2.6%). Comparing unweighted mean 27.16 of 

nonprobability sample to ASW weighted mean 25.98 of probability sample, the reduced bias is 1.18 (=27.16-25.98) 

(4.34%). This implies that the bias of nonprobability sample is reduced by the help of ASW, it is the same for ASWs 

with the probability sample. The variance of a small probability sample is reduced by the help of large nonprobability 

sample by combining the two samples, the variance of nonprobability sample or probability sample is reduced as shown 

in Tables (3, 4, and 5) in Section 4.  

We also use different methods for the estimation, non-Bayesian (least square, and bootstrap) and Bayesian methods to 

estimate the finite population mean. Within the Bayesian approach, we provide a simple model that has closed form 

answers if the non-sample covariates are known. Within the non-Bayesian approach, we use least square (LS), and 

bootstrap method, and bootstrap is used to calculate the variance of LS estimation mainly because the LS variance is too 

small when OSW is big. The Bayesian and LS methods are separately applied to the three samples, 𝑆1, 𝑆2 and 𝑆3. No 

matter which method we use, the result shows similar or same results of reducing bias by applying ASW and reducing 

variance by combining two samples.  

Meng (2018) defined the difference between sample mean 𝑦̅𝑛 =  
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
 , and unknown true population mean 𝑌̅𝑁, 

𝑌̅𝑁 =
∑ 𝑦𝑖

𝑁
𝑖=1

𝑁
 as the error of the sample: i.e., 

𝑦̅𝑛 − 𝑌̅𝑁 =: 𝜌𝑟𝑦 (
1− 𝑓

𝑓
) √𝜎2. 

This error estimate is the product of three terms. The first is data quality, i.e., correlation 𝜌𝑟𝑦 between response 

indicator 𝑟=1, 0 and study variable y, data quality is increased by controlling 𝜌𝑟𝑦 at the level of 
1

√𝑁
. The second is data 

quantity,√
(𝑁−𝑛)

𝑛
=√

(1−𝑓)

𝑓
, where the sample fraction 𝑓 = 

𝑛

𝑁
, N is the population size. When losing the control, the 

impact of N is no longer cancelled by 𝜌𝑟𝑦, i.e., error estimation increases with √𝑁 relative to 
1

√𝑛
. Bigger N makes the 

matter worse for nonprobability sample. He calls this large sample paradox. The bigness of big data for population 

inference should be measured by the relative size f = n/N, not the absolute value n. The third is problem difficulty, √𝜎2, 

the standard deviation of study variable y’s. When combining data for population inference, those relatively tiny but 

higher quality ones, i.e., probability samples, should be given far more weights than suggested by their sizes. Rao (2020) 

reviewed individual terms of the difference between the sample mean and the finite population mean. 

Big sample data from the finite population provides small variance. For example, take independently distributed random 

variables, 𝑦1,….,𝑦𝑛~(0, 𝜎2). Then 𝑦̅~(0,
𝜎2

𝑛
) with unspecified distribution. For large n, 

𝜎2

𝑛
≈ 0, this is a common large 

sample problem for statistical inference. Choi and Nandram (2021) showed how to use the random grouping method to 

get around this problem.  

Any sample, probability or nonprobability, can be tested by 𝜌𝑟𝑦; Here, 𝜌𝑟𝑦= 0 means the sample is biased. We 

investigate 𝜌𝑟𝑦 for 𝑆1. Assume that a finite population of N individuals with finite population mean, 𝑌̅𝑁 of the 

response variables y=(𝑦1, . . . 𝑦𝑁). Let R=(𝑟1,…, 𝑟𝑁) denote the sample indicators, and 𝑅̅=
∑ 𝑅𝑖

𝑁
𝑖=1

,𝑁
 , then the correlation 

between y and R is  
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𝜌𝑟𝑦=
∑ (𝑦𝑖− 𝑌̅𝑁 𝑁

𝑖=1 ) (𝑟𝑖−𝑅̅)

√∑ (𝑁
𝑖=1 𝑦𝑖−𝑌̅𝑁)2 √∑  (𝑟𝑖−𝑅̅)2𝑁

𝑖=1

. 

Arrange it so that 𝑟1,…,𝑟𝑛 are ones corresponding to the sample, 𝑦1, . . . 𝑦𝑛, for sampled individuals, and 𝑟𝑛+1,…, 𝑟𝑁 are 

zeros corresponding to non-sampled individuals, 𝑦𝑛+1,… , 𝑦𝑁. 

Now,         

∑ (𝑦𝑖 − 𝑌̅𝑁
𝑁
𝑖=1 )(𝑟𝑖 − 𝑅̅)= n (𝑦̅𝑛-𝑌̅𝑁), 

∑ (𝑁
𝑖=1 𝑦𝑖 − 𝑌̅𝑁)2 = 𝑁𝜎𝑦

2 and ∑ (𝑟𝑖 − 𝑅̅)2𝑁
𝑖=1 =  

𝑛

𝑁
(𝑁 − 𝑛). 

Therefore, 

𝜌𝑟𝑦=
 n (𝑦̅𝑛−𝑌̅𝑁)

√𝑁𝜎𝑦 
2  

𝑛

𝑁
(𝑁−𝑛) 

 = 
 (𝑦̅𝑛−𝑌̅𝑁)

𝜎𝑦
√

𝑓

1−𝑓
 . 

We can now use our probability sample  𝑆2: 𝑦1, . . . 𝑦𝑛2
, and its known OSWs 𝑊2 =:(𝑊1, . . . 𝑊𝑛2)

) to estimate unknown 

population mean 𝑌̅𝑁, variance 𝜎𝑦
2, and population size N: 

𝑌̂̅𝑁=
∑ 𝑊𝑖 𝑦𝑖

𝑛2
𝑖=1

∑ 𝑊𝑖
𝑛2
𝑖=1

, 𝜎̂𝑦
2=

∑ 𝑊𝑖(𝑦𝑖−𝑦̂̅)2𝑛2
𝑖=1

∑ 𝑊𝑖
𝑛2
𝑖=1

, 𝑁̂=∑ 𝑊𝑖
𝑛2
𝑖=1 . 

Thus, 𝜌̂𝑟𝑦 = 
𝑦̅𝑛− 𝑌̂̅𝑁 

𝜎̂𝑦
√

𝑓̂

1−𝑓̂
,=  

𝑦̅𝑛− 𝑌̂̅𝑁 

𝜎̂𝑦
 √

(𝑁̂−𝑛2)

𝑛2
,  where 𝑓 =

𝑛2

𝑁̂
.. Note defect size, 𝜌̂𝑟𝑦 partly depends on √

𝑁̂

𝑛2
, i.e., the 

larger 𝑁̂ is in relation to 𝑛2, the bigger the defect becomes. Meng (2018) called it a large data paradox, but it is not 

true in general. For example, common sense tells us that input of more information (bigger N) in developing 

self-driving cars, makes safer cars. Medical imagining, which is a pillar in diagnostic health, involves a high volume of 

data collection i.e. large N, and processing; these data are not biased but they can be unstructured. For our 𝑆1 data, 

𝜌̂𝑟𝑦=0.006, which means that it has a large selection bias or defect (Meng, 2018) especially if the sample size is large; in 

our case, it is just about 1500. 

Survey organizations are trying to move away from probability sampling to reduce high cost (Sakshaug et al. 2019 and 

Wisniowski et al. 2020). Instead, they use nonprobability sample (for example, web samples) which is less costly and 

easily available, but possibly brings in biases into the sample. To reduce this bias of nonprobability sample, they take a 

small probability sample from the same population. Then propose a Bayesian model to combine these samples in a way 

that exploits one sample’s strengths to overcome the other sample’s weakness. 

Chen et al. (2020) developed a model for nonprobability sample with a small probability sample under the assumption 

of ignorable response, i.e., selection probability 𝜋𝑖 = p(𝑅𝑖 =1 |𝑥𝑖 , 𝑦𝑖) = p(𝑅𝑖=1 | 𝑥𝑖). This assumption (Rubin 1976) is 

also used in nonresponse study (Nandram and Choi 2002a, 2002b, Nandram and Choi 2006, Nandram and Choi 2010).  

Potthoff et al. (1992) obtained adjusted survey weights (ASW) corresponding to the original weights. The original 

weights 𝑊𝑖 = 1/𝜋𝑖,i=1,…,n, where 𝜋𝑖 is the known selection probability of the ith unit from a population, and N 

=∑ 𝑊𝑖
𝑛
𝑖=1 , is the finite population size. With these original weights they calculate the adjusted weights that are used to 

obtain more reasonable variance; as the original sample weights give too small variance. Nandram (2007) used 

surrogate sampling to sample the entire population after an adjusted sample model is fit to the data. 

Our main contribution in this paper is to integrate a non-probability sample and a probability sample to make inference 

about a finite population mean using a very simple and easy to understand method. Specifically, we have made six 

important contributions. 

  (a) Obtain the survey weights for the non-probability sample using record linkage instead of the less robust logistic 

regression; see Chen et al. (2020).  

   (b) Use both Bayesian and non-Bayesian methods to predict the finite population mean. Non-Bayesian methods are 

based on least squares and double robust estimators. 

   (c) Use bootstrap to obtain the distributions, including expectation and variance, of the least square and double 

robust estimators. We note that this step is not needed in the Bayesian method. 

   (d) For the simple situation we discussed, we showed that there is little difference among the different estimators. 
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However, the Bayesian method will become more useful in more complicated applications, and analytical 

approximations (e.g., Taylor's series expansion) can be avoided. 

   (e) We also estimate the correlation between the participation variable and the study variable for the non-probability 

sample. This is done by supplementing the non-probability sample with the probability sample. In Meng (2018), this 

correlation is non-identifiable and it cannot be estimated; this leads to a poor representation in Meng (2018) but he did 

not have a probability sample. 

   (f) Like Chen et al. (2020), we showed how to use inverse probability weighting when the population size and the 

nonsample covariates are unknown. This is done even for the Bayesian method, much beyond Chen et al. (2020). 

This paper is divided into five sections including the introduction. In Section 2, first we derive the ASWs and estimate 

the population means with 𝑆2,and separately done with 𝑆1 and 𝑆3 following the same process. In Section 3, we 

introduce two methods, non-Bayesian and Bayesian. In the non-Bayesian approach, we primarily use the LS method. To 

obtain the distribution of these estimators, we use the bootstrap method, which provides reasonable variance estimation. 

Section 4 illustrates our methods by analyzing BMI data of NCHS. Finally, the Section 5 has a brief conclusion.  

2. ASW and Finite Population Mean 

Consider population U with study variable Y =(𝑌1, … . 𝑌𝑁). Two samples are taken from U. One is a large sample 𝑆1 of 

𝒚𝟏 =(𝑦11, … . 𝑦1𝑛1
)′. The other is a relatively smaller sample 𝑆2 of 𝒚𝟐 =(𝑦21, … . 𝑦2𝑛2

)′. .A third sample 𝑆3 is created 

by combining the two, 𝒚𝟑 =(𝑦11, … . 𝑦1𝑛1,𝑦21, … . 𝑦2𝑛2
)’. 

Table 1. Three Types of samples: 𝑺𝟏, 𝑺𝟐 and  𝑺𝟑 = (𝑺𝟏 ∪ 𝑺𝟐) 

 𝑆1 𝑆2 𝑆3 

𝒙𝟏 𝑾𝟏 𝒚𝟏  , 𝒙𝟐 𝑾𝟐 𝒚𝟐  𝒙𝟑 𝑾𝟑 𝒚𝟑 

𝑥11 𝑊11 𝑦11 𝑥21 𝑊21 𝑦21 𝑥31 𝑊31 𝑦31 

. . . . . .    

. . . . . .    

. . . 𝑥2𝑛2
 𝑊2𝑛2

    𝑦2𝑛2
.    

𝑥1𝑛1
 𝑊1𝑛1

 𝑦1𝑛1
       

      𝑥3𝑛3
 𝑊3𝑛3

 𝑦3𝑛3
 

In Table 1, 𝑆1  does not have the original sample weights (OSWs) 𝑊1 =(𝑊11, … , 𝑊1𝑛1
),  while the probability 

sample  𝑆2 has no missing values with the known OSWs 𝑊2 =( 𝑊21, … , 𝑊2𝑛2
).  We change the subscripts 

(11,…,1𝑛1,21,...,2𝑛2) to (31,…,3𝑛3). From here on, bold face symbolizes a matrix or vector. Let the respective 

covariates be 𝑥1 = (𝑥11, 𝑥12, … , 𝑥1𝑛1
)′ ,  𝑥2 = (𝑥21, 𝑥22, … . 𝑥2𝑛2

)′,  and 𝑥3 = ( 𝑥31, 𝑥32, … . 𝑥3𝑛3
)′.  Note that each 

component (e.g., 𝑥11) of the vectors is a column vector and 𝑥1 is an 𝑛1x p matrix, where p is the number of common 

covariates, including an intercept, e.g., age, race, sex, their contents  are generally different. For example, age is 

common in three samples, but the ages of two persons may be different, e.g., one age is 20 years and other 60 years, etc 

Missing values may arise from different situations, e.g., cell in a table, sensitive information such as persons’ income in 

a survey, small area missing in probability sample, and nonresponses in survey questions. To estimate missing values, 

one may use ratio estimation (Cochran, 1977) , covariate matching, nearest neighbor method, regression method (Chen 

et al. 2020), mean estimation for missing cell in a table or other imputation method. The choice of a method depends on 

each specific situation and a researcher’s preference.  

There may be common sample units belonging to both samples 𝑆1 and 𝑆2 as they are coming from the same 

population U. The size of nonprobability sample 𝑆1  is much bigger than that of probability sample 𝑆2, 𝑛2 ≪ 𝑛1. We 

assume that these two samples are mutually exclusive and independent.  

The purpose of this paper is to estimate the finite population mean 𝑌̂𝑁 = ∑
𝑌𝑖

𝑁

𝑁
𝑖=1 , from these three samples as accurately 

as possible and reducing bias and variance if possible. In this paper, we created the two samples, 𝑆1 and 𝑆2 from the 

NCHS data. 

Some researchers use logit function under ignorable assumption (Little and Rubin, 2002, Chen et al. 2020, Rubin,1976). 

Under this assumption, Chen et al. (2020) obtain propensity scores 𝜋1𝑖 =
𝑒  𝒙𝒊𝟏

′  𝛽

1+𝑒
𝒙1𝑖

′  𝛽
 for the nonprobility sample; than 
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unknown weights are 𝑊1𝑖 =
1

𝜋1𝑖
 . 

Weights are used to reduce the bias introduced by sampling designs (Potthoff et al. 1992) and prediction is done using 

surrogate sampling (e.g., Nandram 2007) via inverse probability weighting (e.g., Chen et a. 2020). Assume that the 

original weights are known and fixed; we also assume that the imputed weights are fixed (not random) and known.  

2.1 ASWs With Probability Sample 𝑺𝟐 

The study variable 𝑦2𝑖 is observed and the sample weights are known for sample S2. Note that, although both samples 

have the common covariates, age, race and sex, their contents are different. Hence, when they match, the matching 

should be done by content matching.  

The OSWs 𝑾2 of the sample 𝑆2 are already known. We use these weights 𝑾2 to reduce possible bias arising from 

this sampling design. Let 𝑆2 be the sample taken from the population U with response variables, 𝒚 = (𝑦1, … . 𝑦𝑛2
). 

The selection probabilities 𝜋=(𝜋1, … . 𝜋𝑛2
) are known, hence, OSWs, 𝑾𝟐=(𝑊21, … . 𝑊2𝑛2

), 𝑊2𝑖= 1/𝜋2𝑖, i=1,…,𝑛2 are 

known. We assume that these weights are fixed, not random. We need to rescale the OSWs because they make the 

variance too small; see Potthoff et al. (1992). 

We drop the subscript 2 of 𝑆2 for general application. The model 𝒚 = 𝜷𝒙 + 𝜺, 𝜺~(0, 𝜎2𝐼), for any probability sample 

of size n. 

Each 𝑦𝑖 is adjusted by its corresponding known OSWs to obtain the sample mean. 

𝑦̅ = 
∑ 𝑊𝑖 𝑦𝑖

𝑛
𝑖=1

∑ 𝑊𝑖
𝑛
𝑖=1

, 

Estimator of the finite population mean and 

var(𝑦̅)= 
∑ 𝑊𝑖

2  𝜎2  𝑛
𝑖=1

(∑ 𝑊𝑖
𝑛
𝑖=1 )

2 =  

𝜎2 

(∑ 𝑊𝑖)𝑛
𝑖=1

2

∑ 𝑊𝑖
2    𝑛

𝑖=1

=  
𝜎2 

𝑛̂
 , where 

 var(𝑦𝑖 ) = 𝜎2 . 

We call 𝑛̂ =
(∑ 𝑊𝑖)𝑛

𝑖=1
2

∑ 𝑊𝑖
2𝑛

𝑖=1
 effective sample size (ESS). 1≤ 𝑛̂ ≤ 𝑛. Finally, we define the adjusted sample weights (ASWs) 

as  

𝑤𝑖 = 𝑛̂ 
𝑊𝑖

∑ 𝑊𝑖
𝑛
𝑖=1

, i = 1…,𝑛.. 

Note from here on upper case W for OSWs and lower-case w for ASWs   

For the BMI data in Section 4, the effective sample size 𝑛̂ = 123 for the example of 𝑆2 , and the actual sample size 𝑛2= 

304, out of the population N = 2,360,624. 

Theorem 1 

Suppose, from a population Y=(𝑌1, … , 𝑌𝑁), we take a probability sample y= (𝑦1,……,, 𝑦𝑛). Y|𝜷, 𝒙 ~ 𝑁(𝒙𝜷, 𝜎2𝐼). We 

assume OSWs 𝑾=(𝑊1, … . 𝑊𝑛) are known and fixed, and the ASWs 𝒘=(𝑤1, 𝑤2, … . 𝑤𝑛) are given, then we can have 

the model,                                           

𝑦𝑖~𝑁 (𝒙𝑖
′𝜷,

𝜎2

𝑤𝑖
), for i =1, … , n. 

Appendix C shows the proof.  

Theorem 1 states that there is actually an increase in variance over W, i.e., the variance with ASW is 
𝜎2

𝑤
, while the 

variance with OSW is 
𝜎2

𝑊
 which is much smaller than the first. The variance is much too small over the OSW with 

large W while ASWs provide more reasonable variance with smaller w. 

From the sample model, 𝑦𝑖~𝑁 (𝒙𝒊
′𝜷,

𝜎2

𝑤𝑖
), we can estimate the  parameters 𝜷 and 𝜎2 by LS method (Appendix B) . 

First, we can draw the 𝑦𝒊, i=1, …, n, sample from this model, this is called surrogate sampling (Nandram 2007). 
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However, we do not know the non-sampled covariates, especially for big data, and this creates an important practical 

issue. Therefore, we obtain the estimate of population mean model, 

𝑌̅𝑁|𝜷, 𝜎2, 𝒚~𝑁 (𝒙̅′𝜷,
σ2

N
). 

We can then generate samples from this distribution when 𝜷, 𝜎2 become known. 

Here average covariate 𝒙̅ is estimated by inverse probability weighting, 
∑ 𝑊𝑖 𝑥𝑖

𝑛
𝑖=1

∑ 𝑊𝑖
𝑛
𝑖=1

 and N=∑ 𝑊𝑖
𝑛
𝑖=1  with OSWs and y is 

generated data from the model for 𝑦𝑖. 

Finally, we present an issue on unbiasedness. We have two samples, one is 𝑆1 and the other 𝑆2 from the finite 

population with true unknown mean 𝑌̅𝑁. Note that the 𝑆1 is a convenient sample, whose weights are unknown. We have 

two sample based estimators of unknown population mean 𝑌̅𝑁 are: one is from 𝑆1 and the other from 𝑆2: 

𝑦̅1 = 
1

𝑛1
∑ 𝑦1𝑖

𝑛1
𝑖=1  and 𝑦̅2= 

∑ 𝑾𝟐𝒊𝒚𝟐𝒊
𝒏𝟐
𝒊=𝟏

∑ 𝑊2𝑖
𝑛2
𝑖=1

, 

where 𝑊2𝑖 are the OSWs of the probability sample. Under probability sampling design D, 𝑦̅2 is unbiased because it is 

a Horvitz-Thompson estimator, but 𝑦̅1 is biased precisely because it is not probability sample (it does not have the 

sampling weights). The bias of 𝑦̅1 is 𝑦̅1- 𝑌̅𝑁 where  

𝑦̅1- 𝑌̅𝑁 = 𝑦̅1 - 𝑦̅2 – (𝑌̅𝑁  −  𝑦̅2). 

But (𝑌̅𝑁  −  𝑦̅2) ≈ 0 because 𝐸𝐷(𝑌̅𝑁 − 𝑦̅2) = 0, expectation is taken over the probability sampling design D. Then, the 

bias is 𝑌̅𝑁 − 𝑦̅2 ≈ 𝑦̅1 - 𝑦̅2,the difference between the two sample estimators. 

The ESS and ASWs of 𝑆1 and 𝑆3 can be obtained in a similar manner as shown in (2.2) and (2.3), respectively. 

2.2 ASW With Nonprobability Sample 𝑺𝟏 

For probability sample 𝑆2, the selection probabilities 𝝅𝟐 (hence the weights) are known. When the contents of 

covariates (i.e., age, sex, race) of units in probability sample 𝑆2 match with those of sample 𝑆1.The missing OSWs 

𝑾𝟏 for 𝑆1 are filled with those of the known OSWs 𝑾𝟐 of 𝑆2 by covariate matching via Mahalanobis distances 

(Appendix A).   

Let the response variable 𝑅𝑖  = 𝐼(𝑖 𝜖  𝑆1), the indicator variable. The response variable 𝑅𝑖 = 1 if the unit i 𝜖 𝑆1 and 0 

otherwise. Assume 𝑃𝐷(𝑅𝑖= 1 |𝑥𝑖 , 𝑦𝑖) = 𝑃𝐷(𝑅𝑖= 1 |𝑥𝑖) of missing at random (Rubin 1976, Little and Rubin 2002, Chen et 

al 2020) regardless the design D of the sampling of 𝑆1. Under this assumption of missing at random, the propensity 

score can be obtained by the logistic function  𝜋𝑖=
𝒆𝒙𝒊

′𝜷

1−𝑒
𝑥𝑖

′𝜷
, i=1, …,𝑛1. Hence, the weights of nonprobability sample 𝑆1 

is 𝑊𝑖=
1

𝜋𝑖
, i=1, …,𝑛1. However, this propensity score makes too much unreasonable assumptions on logistic function, 

and hardly reflects the true situation. Thus, in this paper, we do not use logistic function to obtain its unknown OSWs of 

𝑆1. The main reason that Mahalanobis distances does not require such unnecessary assumptions.   

Assume the imputed OSWs 𝑊1 are also fixed, not random, as done with the probability sample 𝑆2.. In actual sample 

in Section 4,  size 𝑛1= 1,563 for 𝑆1, its ESS 𝑛̂1 =
(∑ 𝑊𝑖)

𝑛1
𝑖=1

2

∑ 𝑊𝑖
2𝑛1

𝑖=1

 = 722, and the population size N=2,370,624. ASWs are 

𝑤1𝑖 = 𝑛̂1 
𝑊𝑖

∑ 𝑊𝑖
𝑛1
𝑖=1

, i = 1, …,𝑛1, 1≤ 𝑛̂1 ≤ 𝑛1.  

For 𝑆1, the weight-adjusted model takes the same form for 𝑦1𝑖~ 𝑁 (𝑥𝑖
′𝛽,

𝜎2

𝑤1𝑖
) and 𝑌̅𝑁 | 𝛽, 𝜎2, 𝑦~ 𝑁 (𝑥̅1

′ 𝛽,
σ2

N
), as those 

of 𝑆2, where adjusted covariates 𝑥̅1 is estimated by inverse probability weighting 
∑ 𝑊𝑖 𝑥𝑖

𝑛1
𝑖=1

∑ 𝑊𝑖
𝑛1
𝑖=1

 and N=∑ 𝑊1𝑖
𝑛1
𝑖=1  and 𝑊1𝑖 
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are imputed; ASWs 𝑤1𝑖 are used only in estimation, not in prediction. 

2.3 ASW With Combined Sample 𝑺𝟑  

We assumed that 𝑆1 and 𝑆2 are independent, and 𝒚𝟏~𝑁(𝒙𝟏
′ 𝜷, 𝜎2𝑊1

−1) and 𝒚𝟐~𝑁(𝒙𝟐
′ 𝜷, 𝜎2𝑊2

−1). Combining these 

two samples  𝑛3=𝑛1+𝑛2. 𝒚𝟑  is  𝑛3 x1 vector, 𝒚𝟑 = (𝒚1′,𝒚𝟐’)’, and 𝒙𝟑= (𝒙𝟏,𝒙𝟐)..  

𝒚𝟑  = 𝒙𝟑
′ 𝜷 + 𝜺, 𝜺~𝑵(𝟎, 𝝈𝟐𝑾𝟑

−𝟏). 

𝑊3= (𝑊1,𝑊2), 𝑊2 =(𝑊21, … , 𝑊2𝑛2
) is known OSW for 𝑺𝟐  and 𝑊1 = (𝑊11 … , 𝑊1𝑛1

)  imputed OSW  for 𝑺𝟏 and 

the combined OSW 𝑊3= (𝑊31, …, 𝑊3𝑛3
) for 𝑺𝟑. Following the same process for 𝑆2. the sample variance for 𝒚𝟑  is 

𝜎2 

𝑛̂3
 

The ESS 𝑛̂3 =
(∑  𝑊3𝑖)

𝑛3
𝑖=1

2

∑  𝑊3𝑖
2𝑛3

𝑖=1

 , and ASWs  𝑤3𝑖 = 𝑛̂3 
𝑊3𝑖

∑ 𝑊3𝑖
𝑛3
𝑖=1

, i = 1,…,𝑛3, for the combined sample. Bias adjusted sample 

model for the combined sample 𝑆3 is  

𝑦𝟑𝒊~ 𝑁 (𝒙𝒊
′𝜷,

𝜎2

𝑤3𝑖
), i = 1,…,𝑛3, by Theorem 1. 

We estimate the parameters 𝜷 and 𝜎2  by LS method from this model. The finite population mean with the combined 

sample  𝑆3 is  

𝑌̅𝑁 | 𝜷, 𝜎2, 𝒚𝟑~𝑁 (𝒙̅3
′ 𝜷,

𝜎2

𝑁
) 

where adjusted covariates 𝒙̅𝟑 is estimated by 
∑ 𝑊𝑖 𝒙𝒊

𝑛3
𝑖=1

∑ 𝑊𝑖
𝑛3
𝑖=1

.  

3. Estimation of Finite population Mean Using Different Methods  

We use two different approaches for the estimation of the finite population mean, Bayesian and non-Bayesian. The 

Bayesian approach is a completely closed form 95% highest posterior density interval (HPDI) for the finite population 

mean. We also present a sampling-based method, which is slightly more convenient. The non-Bayesian approach is 

basically LS. It also includes doubly robust method (DR), (e.g., Chen et al. 2020). When the variance from LS is too 

small for large N, we use the bootstrap to calculate reasonable variance and to obtain distributions. Each method uses 

data sets 𝑆1, 𝑆2, and 𝑆3, separately for the estimation. DR method uses different estimation by combining 𝑆1 and 𝑆2, 

not 𝑆3.The Bayesian and non-Bayesian methods are presented in Section 3.1 and 3.2, respectively. 

3.1 Bayesian Approach 

To fit a general model, we drop the subscriptions for sample numbers, suppose a random sample 𝑦1,……,𝑦𝑛 is taken from 

the population 𝑦1, … , 𝑦𝑁|𝛽, 𝜎2~f(y|𝛽, 𝜎2, 𝑥), and 𝛽 p x 1 vector with the adjusted weights. We assume f(y|𝛽, 𝜎2, 𝑥) is 

normal function, then 

𝑦𝑖|𝛽, 𝜎2~𝑁(𝑥𝑖
′𝛽,

𝜎2

𝑤𝑖
), i=1,…,n, 

and a priori, 

𝜋(𝜷, 𝜎2)  ∝   
𝟏

𝝈𝟐. 

This is Jeffreys’ improper prior, and it is well-known that the joint posterior density is in closed form and proper.  The 

finite population mean is 

𝑌̅𝑁 |𝜷, 𝜎2~𝑁(𝑿̅′𝜷,
𝜎2

𝑁
), 𝑋̅ =  

∑ 𝑥𝑖
𝑁
𝑖=1 ,

𝑁
. 

Let x is n x p matrix of covariates and 𝐖= diag(w1,…,wn) is n x n diagonal matrix, and y is the n x 1 vector of response 

variables. Then, letting 

𝛽̂ = (𝑥′ 𝑊 𝑥)−1(𝑥′ 𝑊 𝑦), and 𝑆2=
∑ 𝑤𝑖(𝑦𝑖−𝑥𝑖

′ 𝛽̂𝑛
𝑖=1  )

𝑛−𝑝
, 
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It is easy to show  that  

𝒀̅−𝑿̅′𝜷̂

𝑺̅∗
 | y ~ 𝑡𝑛−𝑝, 

has a Student’s t density on n-p degrees of freedom, where 𝑺̅∗ = 𝑺√
𝟏

𝑵
+ 𝑿̅′(∑ 𝒘𝒊𝒙𝒊𝒙𝒊 

′ 𝒏
𝒊=𝟏 )−𝟏𝑿̅. 

It follows that E(𝑌̅𝑁|𝒚)=𝑿̅′𝜷̂, 

Var(𝑌̅𝑁|𝒚)=
𝑛−𝑝

𝑛−𝑝−2
𝑺∗𝟐

, n > p+2. 

Two-sided 95% highest posterior density interval for 𝑌̅𝑁 is 𝑿̅′𝜷̂ ±  𝑺𝑫( 𝑌̅𝑁|𝒚) 𝑡(𝑛−𝑝),0.025, where 𝑡(𝑛−𝑝),0.025, is the 

97.5 percentage point of t-distribution. This is nice, but the non-sampled covariates are all known, and it is convenient 

to use a sampling based method to make posterior inference about 𝑌̅𝑁. We can use inverse probability weighting, where 

 𝑋̅ = 
∑ 𝑊𝑖𝑥𝑖

𝑁
𝑖=1

𝑁
 and N=∑ 𝑊𝑖

𝑛
𝑖=1  

Note that 𝒘𝟏,𝒘𝟐,and 𝒘𝟑 are the ASWs for the sample 𝑆1, 𝑆2, and 𝑆3, respectively. To fit the model for the individual 

data 𝑆1, 𝑆2, or 𝑆3, we follow the above steps by adding sample subscript 1, 2 or 3. The model is the same for the 

individual data 𝑆1, 𝑆2, or 𝑆3; so we present only 𝑆2. 

Specifically, we discuss how to fit the model for 𝑆2, 

𝒚2𝑖| 𝜷, 𝜎2~𝑁(𝒙2𝑖
′ 𝜷,

𝜎2

𝑤2𝑖
), i=1,,, , 𝑛2, 

𝜋(𝜷, 𝜎2) ∝
𝟏

𝝈𝟐. 

Let  𝛽̂ = (𝑥2
′ 𝑊2𝑥2)−1(𝑥2

′ 𝑊2𝑦2), and ∆=(𝑥2
′ 𝑊2𝑥2)−1. 

Then, 

𝜎2| 𝒚𝟐~Gam(
𝑛2−𝑝

2
, 

∑ 𝑊2𝑖 (𝑦2𝑖−𝑥2𝑖
′ 𝛽)̂2 (𝑦2𝑖−𝑥2𝑖

′ 𝛽)̂
𝑛2
𝑖=1

2
 ), 

𝛽|𝜎2, 𝒚𝟐 ~N(𝛽̂, 𝜎2∆), 

𝑌̅𝑁| 𝛽, 𝜎2, 𝒚2 ~𝑁(𝒙̅𝟐
′ 𝜷,

𝝈𝟐

𝑵
). 

We sample  𝜎2|𝑦2 𝑎𝑛𝑑, 𝛽|𝜎2,, 𝒚2, and finally 𝑌̅𝑁|𝛽, 𝜎2, 𝒚2. 

The finite population mean 𝑌̅𝑁|𝜷, 𝜎2~𝑁(𝒙̅𝟐
′ 𝜷,

𝜎2

𝑁
), 𝑥̅2 is calculated by inverse probability weighting 

∑ 𝑊𝑖 𝑥𝑖
𝑛2
𝑖=1

∑ 𝑊𝑖
𝑛2
𝑖=1

.  

For the simple model we consider here, there is virtually no practical difference between the non-Bayesian method (via 

the bootstrap) and the Bayesian method; the interpretations are different. However, for a more complicated model, a 

Bayesian method will be more attractive as it avoids analytical approximations.  

3.2 Non-Bayesian Approach 

Two methods will be introduced to estimate finite population mean: LS and DR estimator. When LS produces variance 

which is too small for inference, we use Bootstrap to get larger variance. Distributions are obtained by using the 

bootstrap. 

Least Square (LS) estimation 

LS uses linear model and minimizes variance for estimation. The linear model for all three data sets is the same. Below 

we show the model for combined data. Set a linear relationship of study variable 𝒚𝒌: to the predictor variable 𝒙𝒌 with 

the common parameter 𝜷𝒌 = (𝛽1, 𝛽2 , … 𝛽𝑝)′ for k = 1, 2, 3. So we are using one data of k=3 to show the LSE. Other 

data follow the same steps. Here, 

𝒚𝟑 = (𝒚𝟏 , 𝒚𝟐 ), 𝒙𝟑 = (𝒙𝟏 , 𝒙𝟐 ), original weights 𝑾𝟑 = (𝑾𝟏 ,𝑾𝟐 ), adjusted weights 𝒘𝟑 = (𝒘𝟏 ,𝒘𝟐 ), and 𝑛3  = 

𝑛1  + 𝑛2,                  
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𝒚𝟑 = 𝒙𝟑
′ 𝜷 + 𝜺 

𝜷 and 𝜀~(0, 𝜎2 𝑊3
−1) estimated by LSE: 

𝜷̂=(𝒙𝟑
′ 𝑾𝟑𝒙𝟑)−𝟏(𝒙𝟑

′ 𝑾𝟑𝒚𝟑), and 𝝈̂𝟐 =
 (𝒚𝟑 −𝒙𝟑 𝜷̂)′  𝑾𝟑  (𝒚𝟑 −𝒙𝟑 𝜷̂) ,

𝑛3 −𝑝
. 

Appendix B has a brief and clear presentation. 

Weight adjusted sample model is 𝑦𝟑𝒊~𝑁 (𝑥3𝑖
′ 𝜷,

𝝈𝟐

𝑤𝟑𝒊
). The population mean 𝑌̅𝑁 is distributed by 

𝑌̅𝑁|𝜷, 𝜎2, 𝒚 ~𝑁 (𝒙̅3
′ 𝜷,

𝜎2

𝑁
), 

Var(𝑌̅𝑁) = 𝒂3
′ var(𝛽̂)𝑎3, 𝒂3= ∑ 𝑊3𝑖

𝑛
𝑖=1 𝒙3𝑖, 

The variance is too small when N is large, as an alternative, we use bootstrap method to calculate variance as shown 

before in the bootstrap method. 

Doubly robust method (DR) 

DR estimator of population mean (Chen et al 2020) is given by 

𝑌̅𝐷𝑅1 =  
1

𝑁̂𝑆1
∑

(𝑦𝑖−𝒙𝒊
′𝜷)̂

𝜋𝑆1𝑖

𝑛1
𝑖=1 +

1

𝑁̂𝑆2
∑

𝒙𝒊
′𝜷)̂

𝜋𝑆2𝑖

𝑛2
𝑖=1 ,  

𝑁̂𝑆1=∑
1

𝜋𝑆1𝑖
𝑖∈𝑆1  and 𝑁̂𝑆2=∑

1

𝜋𝑆2𝑖
𝑖∈𝑆2  are the two estimates of finite population totals, using two samples, 𝑆1.and, 𝑆2, 

respectively. If 𝑁̂𝑆1=𝑁̂𝑆2=∑
1

𝜋𝑆2𝑖
𝑖∈𝑆2  = ∑ 𝑊2𝑖

𝑛2
𝑖=1 , DR estimator of the finite population mean is given by   

𝑌̅𝐷𝑅2=
∑ 𝑊1𝑖

𝑛1
𝑖=1 (𝑦1𝑖−𝒙𝟏𝒊

′ 𝜷̂) + ∑ 𝑊2𝑖𝒙𝟐𝒊
′𝑛2

𝑖=1 𝜷̂

∑ 𝑊2𝑖
𝑛2
𝑖=1

, 

where 𝜷̂ is the LS estimator obtained from the probability sample 𝑆2. From the numerical example on BMI, the 

estimated finite population mean is 𝑌̅𝐷𝑅2=27.075. Chen et al (2020) claim that the first equation 𝑌̅𝐷𝑅1is doubly robust 

estimator; it is not clear why it is doubly robust. But since they use the logistic function for propensity scores and LS 

estimation for 𝜷, they made several assumptions which may not be robust. Therefore, we used the matching method to 

estimate the propensity scores. Although we do not have a participation model, it is still useful to make comparisons 

with the DR estimators. 

Because we have the y values in 𝑆2 data, we replace 𝒙𝟐𝒊
′ 𝜷 with 𝐲, and we have  a third DR estimator,  

𝑌̅𝐷𝑅3=
∑ 𝑊1𝑖

𝑛1
𝑖=1 (𝑦1𝑖−𝒙𝟏𝒊

′ 𝜷̂) + ∑ 𝑊2𝑖 𝑦2𝑖
𝑛2
𝑖=1

∑ 𝑊2𝑖
𝑛2
𝑖=1

.   

Note that 𝑌̅𝐷𝑅3 does require LS estimation of 𝛽 from 𝑆1, not 𝑆2 . 

The inverse probability weighting estimators are sensitive to misspecified models for the propensity scores especially 

when they are very small; see Chen et al. (2020). If the participation model or the study variable model is correctly 

specified, this provides the double robustness property that is widely used in recent literature on missing data problems. 

We do not have a model for the participation variable because we use record linkage to fill in the propensity scores for 

the non-probability sample with the probability sample being the donor. So the double robust estimator is not really 

needed in our case, but we use it for comparison. 

Bootstrap used to calculate variance for LS and DR estimates 

We have seen that LS procedure gives very small, overly optimistic, estimates. This is mostly due to the large 

population size N. So, we have used the bootstrap method. We draw B=1,000 bootstrap samples from each of 𝑆1, 𝑆2, 

and  𝑆3, get 𝑥𝑠𝑘𝑏 , 𝒚𝑠𝑘𝑏, 𝑊𝑠𝑘 𝑏, 𝑤𝑆𝑘𝑏, b = 1,…,B, k = 1, 2, 3. 

Here we drop the subscript k of 𝑆𝑘, and 𝑛𝑘  for  sample indicator  as they are applicable in general. 

𝑎𝑏= ∑ 𝑊𝑖𝑏
𝑛
𝑖=1 𝑥𝑖𝑏,  b=1,…,B. Let 𝛽̂𝑏 denote the LS estimators.  

Then we compute the finite population mean as 
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𝑌̅𝑁𝑏 =  𝒂𝑏
′  𝜷̂𝑏, b = 1,…,B,. 

and bootstrap variance obtained. The bootstrap variances are shown in the tables for the LS and DR methods in Section 

4. Note that the formula for LS estimation gives too small variance as shown Table 3 while bootstrap estimators in Table 

4 give better representation for the variance of 𝑌̅𝑁𝑏. 

We bootstrap the data, both 𝑆1 and 𝑆2, 1000 times in the conventional way. That is, we sample the 𝑆1 data and 𝑆2 

data respectively with replacement to constitute a single sample. For each bootstrap sample, we compute the least 

square estimator and the double robust estimator. This gives us a sample of 1000 values of the estimators, and a kernel 

density estimator is obtained. The mean and variance of the estimator are obtained as summaries from these 1000 values 

and the 95\% confidence intervals are obtained by using the percentile method; further refinement can be done, of 

course. 

4. Data Analysis 

We now present detailed results from the BMI data using our estimators. We are assuming, when the weights of 𝑆2 are 

used, it provides unbiased estimate of the finite population mean. Therefore, we use the estimate from the 𝑆2 as a ‘gold’ 

standard for inference. However, because the 𝑆2 is relatively small, we expect it to provide an estimate with a 

relatively large standard error. There are two different methods, Bayesian and non-Bayesian. In the Bayesian approach, 

we provide posterior summaries and distributions (e.g., posterior mean, posterior standard deviation, posterior 

coefficient of variation, and 95% highest posterior density interval – HPDI). In the non-Bayesian approach, we use LS 

and DR estimates. The bootstrap is used to get distributions of the corresponding estimators and its variances. 

Analogous to the Bayesian approach, we have used LS estimate, its standard error, coefficient of variation and 95% 

confidence interval for the finite population mean. 

The relative standard error (CV) of an estimate is obtained by dividing the standard error of an estimate by the estimate 

itself, well known as coefficient of variation, and it is usually expressed as a percentage, CV100%= 
𝛔𝐱̅

𝐱̅
 x 100. (Choi, 

1977, Appendix). NCHS put an asterisk on the number when CV is greater than 30% to let the data users know the 

number is not reliable. Note that CV is often not accurate and one needs to be careful to use it for statistical inference. 

For example, for x ~ Binomial(n, p), an unbiased estimator of p is 𝑝̂ = 𝑥/𝑛;  so var(𝑝̂) = 
𝑝(1−𝑝)

𝑛
, E(𝑝̂) = p and CV(𝑝̂) = 

√𝑝(1−𝑝)

√𝑛  𝑝
 is very small as n becomes large (Choi and Nandram, 2021). The large sample causes problems not only here 

but other statistical tests (e.g., normal test and t-test) for hypothesis. In general, sample variance is also a function of n.   

We use the body mass index (BMI) data from the National Health and Nutrition Examination Survey III (NHANES III), 

conducted from 1988 to 1994 in two phases by National Center for Health Statistics. There were 30,818 people 

examined from the US population of about 300 million and overall response rate was 78%. BMI is person’s weight in 

kilograms divided by the square of height in meters. BMI is an inexpensive and easy screening method for health status. 

Table 2 below shows the weight status of a person.  

Table 2. Weight (wt) Category and Range of BMI Classes 

Category Under wt Healthy wt  Over wt obese I obese II  

Range BMI<18.5 18.5<BMI<25 25<BMI<30 30<BMI<35 BMI>35 

We only use a small portion of sampled people from the California counties. We have used 6 counties for the 𝑆1 and 2 

counties for the 𝑆2. The sample size of 𝑆1 is about 1500 and that of 𝑆2 is about 300; so 𝑆1 is five times the size of 

the 𝑆2 (i.e., the 𝑆2 is relatively small although it is expected to give unbiased estimate) . Our 𝑆1data, presented here,  

defect correlation 𝜌̂𝑟𝑦=0.006, which means that it has a large selection bias or defect (Meng, 2018). 

We have non-Bayesian methods, LS and DR estimators, and the Bayesian method. Each of these uses the three data sets, 

separately, 𝑆1, 𝑆2, and 𝑆3 for estimation. The bootstrap is used to get distributions for LS and DR estimators. As stated 

earlier, we obtain 𝑆1, 𝑆2 and 𝑆3 from NCHS BMI data. For bootstrapping or the Bayesian method, we generate 1,000 

population means of 𝑌̅𝑁. The distributions of these finite population means for the BMI data from 𝑆1, 𝑆2, and 𝑆3, are 

shown in in Tables 3, 4, 5 and Figure 1. 

4.1 LS Estimation  

The finite population mean of BMI is 27.175 for the nonprobability sample 𝑆1 , 25.985 for probability sample 𝑆2, and 
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26.982 for the combined data 𝑆3. It also shows the bias of the means of 𝑆1 and 𝑆3 are 1.190 (=27.175 -25.985) and 

0.997(=26.982-25.985), respectively. The sample size of 𝑆2 is the smallest 𝑛2=304 and that of 𝑆1 is 𝑛1 =1,563 while 

the combined sample size is 𝑛3=1,867. But the SDs remain the same, very small because all the three sample sizes are 

rather big, i.e., 304, 1,563, and 1,867, respectively. We used bootstrap, which is distribution free, to find the realistic 

variances in Table 4.  

Table 3. LS estimation of the finite population mean for  𝑆1, 𝑆2, and 𝑆3 (Mark * on CV greater than 30%) 

       𝑺𝟏 Estimate S.D. CV100% 95% C.I. 

𝛽0 mean 25.144 0.385 1.533 24.388  25.899 

𝛽1 age 0.036   0.008 21.585 0.021    0.052 

𝛽2 sex 0.710   0.386 54.319* . - 0.046    1.466 

𝛽3 race 0.558   0.261 46.793* 0.046    1.070 

Finite Pop Mean 27.175 0.002   0.008 27.171   27.180 

        𝑺𝟐     

𝛽0 mean 23.277   0.835 3.587 21.608  24.947 

𝛽1 age 0.056   0.016 28.581 0.025   0.087 

𝛽2 sex 2.264   1.645 72.683* -0’961   5.488 

𝛽3 race 0.052   0.609 1163.536* -1.141   1.246 

Finite Pop Mean 25.985   0.002   0.008 25.981  25.990 

𝑺𝟑     

𝛽0 mean 24.960   0.350 1.400 24.275  25.645 

𝛽1 age 0.037   0.007 18.888 0.023   0.051 

𝛽2 sex 0.930   0.372 40.019* 0.200   1.659 

𝛽3 race 0.452 0.240 53.038* - 0.018   0.922 

Finite Pop Mean 26.982   0.002   0.008 26.977  26.986 

Note that some of CVs* of the 𝛽′s are greater than 30%, for sex and race. But the contribution of sex and race to BMI 

are bigger, 0.710 and 0.558 than age contribution, 0.036 for 𝑆1. This trend remains the same for other two tables 4 and 

5. Note CV of race in the table of 𝑆2, is very large, 1154%, mainly because of the small 𝛽3 ( 0.052)  and large SD 

(0.609). Finally, we note that the SD of the finite population mean is extremely small and this is due to the large sample 

size that appears in the variance of the least square formula. 

4.2 Bootstrap and DR Estimation 

Table 4 gives us the bootstrap estimations of the finite population means and variances of 𝑌̅𝐵, B=1,000 for 𝑆1, 𝑆2, and 

𝑆3. For 𝑆1, 𝑆2, and 𝑆3 in the last row of Table 4 we add the bootstrap variance of LS estimation as the LS variances 

were too small. The SD of 𝑆1 and 𝑆3 are 0.141 and 0.127, respectively, while the SD of 𝑆2 is 0.298 which is almost 

twice bigger than those of 𝑆1 and 𝑆3.This reduction is largely due to the large sample sizes. As a DR estimator of the 

finite population mean and SD for our data, 𝑆3, we got BMI mean 𝑌̅𝐷𝑅2= 26.161 (SD =0.524) which is smaller than the 

𝑌̅𝐷𝑅3= 27.093 (SD =0.267) in Table 4 with much smaller variance. Note that this is different combination from the one 

used in the LS or Bayesian, and that 𝑌̅𝐷𝑅2, and 𝑌̅𝐷𝑅3 are defined in DR method in Section 3.2 

Table 4. Bootstrap estimation of the finite population mean for 𝑺𝟏, 𝑺𝟐, and 𝑺𝟑 (Mark * on CV greater than 30%) 

𝑺𝟏 Estimate SD CV100% 95% C.I. 

𝛽0 mean 25.172 0.663 2.634 23.972  26.579 

𝛽1 age 0.037 0.013 34.850* 0.014   0.065 

𝛽2 sex 0.788 0,867 110.036* -0.794   2.602 

𝛽3 race 0.585 0.493 84.370* -0.456   1.492 

σ2 variance 9.219 2.469 26.783 4.660  13.129 

Finite Pop Mean 27.264 0.284 1.041 26.752  27.852 

LS  27.175 0.141 0.518 26.899  27.451 

𝑺𝟐     

𝛽0 mean 23.308 0.823 3.532 21.769  24.959 

𝛽1 age 0.055 0.018 32.169* 0.020   0.090 

𝛽2 sex 2.233 1.559 69.807* -0.658   5.305 

𝛽3 race 0.086 0.727 841.517* -1.359   1.412 

𝜎2 variance 11.274 2.707 24.015 6.668  16.613 

Finite Pop Mean 25.995 0.390 1.501 25.334  26.865 
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LS   25.985 0.298 1.148 25.401  26.570 

𝑺𝟑     

𝛽0 mean 24.900 0.568 2.281 23.84-0  25.957 

𝛽1 age 0.039 0.011 28.713 0.019   0.062 

𝛽2 sex 1.096 0.831 75.829* -0.393   2.844 

𝛽3 race 0.431 0.420 97.549* - 0.317   1.287 

𝜎2 variance 9.832 2.229 22.668 5.937  13.675 

Finite Pop Mean 26.976 0.249 0.924 26.478  27.454 

LS   26.982 0.127 0.470 26.733  27.230 

𝑆1 & 𝑆2     

DR estimation 27.093 0.267 0.010 26.575   27.629 

We assume the probability sample provides unbiased estimates of mean. The mean is 25.995 from the probability 

sample 𝑆2 compared to the means 27.264 of nonprobability sample S1, and to 27.093 of the combined sample 𝑆3. Note 

that the bias of nonprobability sample is 1.269 (=27.264 – 25.995) and the bias of combined sample is 0.981 (=26.976 – 

25.995), about three standard deviations.  

On the other hand, the SD of 𝑆2 is 0.390 while those of 𝑆1 and 𝑆3 are much smaller at 0.284 and 0.249, respectively. 

Here SD reflects sample size. i.e., SD of S2 is 0.390, bigger than those, 0.284 and 0.249 of respective for 𝑆1 and 𝑆3. 

Some of the CV’s of the 𝛽’s are greater than 30%, especially race and sex although the race and sex contribute more to 

the BMI than age for all three samples. But CV is not a good estimator as described above. SD is better for statistical 

inference than CV.  

4.3 Bayesian Estimation 

Table 5 shows posterior summaries. The finite population means of BMI are all close: 26.974, 26.074, and 26.887 for 

𝑆1, 𝑆2 and 𝑆3 respectively with standard deviations of. 0.129, 0.305, and 0,130.  

Table 5. Posterior summaries of finite population mean for 𝑆1, 𝑆2, and 𝑆3 (Mark * on CV greater than 30%) 

𝑺𝟏 Estimate S.D. CV100% 95% C.I. 

𝛽0 mean 25.062 0.374   1.494  24.323  25.796 

𝛽1 age 0.033 0.007  21.163   0.019   0.047 

𝛽2 sex 0.832   0.337  40.527*   0.163   1.489 

𝛽3 race 0.774   0.259 33.452* 0.287   1.287 

𝜎2 variance 11.593   0.616 5.311  10.423  12.819 

Finit Pop Mean 26.974  0.129   0.480 26.725  27.234 

𝑺𝟐  .  . . 

𝛽0 mean 23.574 0.821 3.482 21.924  25.117 

𝛽1 age 0.045   0.015     33.402   0.015   0.073 

𝛽2 sex 1.927   0.975     50.617* -0.004   3.814 

𝛽3 race 0.635   0.608  .95.742*  -0.562   1.843 

𝜎2 variance 10.359   1.348   13.012   7.853  13.050  

Finit Pop Mean 26.074   0.305    1.171  25.482  26.676 

𝑺𝟑     

𝛽0 mean 25.311 0.348   1.374  24.652   26.006 

𝛽1 age 0.029   0.007   22.673   0.015     0.041 

𝛽2 sex 1.266   0.326   25.754   0.624     1.900 

𝛽3 race 0.333   0.240   71.993*  -0.147     0.803 

 𝜎2 variance  12.266 0.591*   4.820 11.156   13.449 

Finit Pop.Mean  26.887   0.130  0.483  26.630   27.140 

 

The SD of 𝑆2 is much bigger than those of 𝑆1 or 𝑆3 while the bias of the mean of 𝑆1 is 0.900 (=26.974-26.074) 

(3.45%) and that of 𝑆3 is 0.813 (=26.887-26.074) (3.12%) when compared to the mean BMI, 26.074, of 𝑆2.The CVs of 

𝛽′𝑠 for sex and race are 40.5* %, and 33.5%, respectively, for 𝑆1, the CVs are 50.61* %, and 95.74* % for 𝑆2, and 

CVs are 25% and 71.99* % for 𝑆3. This means they are unreliable estimates except one 25%. As seen in these tables, 
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the pattern is consistent regardless of the method used for the estimation of finite population mean. i.e., larger variance 

with 𝑆2, compared to other data sets, 𝑆1 or 𝑆3, and larger bias with 𝑆1 or 𝑆3 compared to that of 𝑆2. 

Figure 1 below includes seven density curves, A,B,C, and D,E,F,G. They are informative about the distributions of 

finite population mean by three data sets, 𝑆1, 𝑆2, 𝑆3, and three methods: Bayesian (ABC), bootstrap (DEF), and DR (G) 

that uses both data sets, not 𝑆3 , and bootstrap. Vertical axis is for the heights of the distribution of population means 

and horizonal line is scale of BMI. The seven curves depend on both methods as well as sample size. A,D use 𝑆1, A 

with Bayesian and D with Bootstrap. B,E use 𝑆2, B with Bayesian and E with Bootstrap, and C,F use combined sample 

of S3 = (S1U S2), C with Bayesian and F with Bootstrap. The G curve gives the bootstrap distribution of DR estimator.  

They show the bias of the means, i.e., B,E curves of probability sample 𝑆2, are assumed to have unbiased mean, which 

is used to find the size of bias of mean estimates from other two samples 𝑆1 and 𝑆3. The curves of B,E are shifted to 

the left side of other curves. This implies that the curves A,D of nonprobability sample, those of C,F of combined 

samples, and the double robust curve of G with combined sample, are biased to the right side of unbiased curves B,E. 

On the other hand, the bases of B,E of 𝑆2 are wider than those of others, 𝑆1 and 𝑆3, implying that variance of B,E are 

bigger than those of others due to smaller sample size. The two highest ones among the seven curves are C of 𝑆3 and A 

of 𝑆1. The shortest ones are B,E of 𝑆2 because of its smaller sample size. 

5. Conclusion 

Original sample weights are available in probability sample, but they are missing for nonprobability sample. We used 

these known weights to impute the unknown weights of nonprobability sample. Others use logistic model to find the 

propensity score to get unknown weights. But we use covariate matching via Mahalanobis distances to avoid 

unnecessary parametric assumptions. 

We show a way to reduce possible bias arising from not using a sample design via ASWs obtained from the OSWs 

(known or imputed). The combined data help to reduce the variance compared to that of 𝑆2 or 𝑆1 alone. Therefore, it 

is another benefit of our methods, a potentially useful for data integration.      

The finite population mean is estimated by two different methods using both the non-Bayesian and Bayesian approaches. 

In the non-Bayesian approach, we use least squares estimators and the DR estimator. Bootstrap is used to calculate 

variance for the LS and DR estimators, especially when variance is too small for large N. We also obtain the distribution 

of the finite population mean using the bootstrap in the non-Bayesian approach. With the two methods, non-Bayesian 

and Bayesian, each method separately uses three different data sets, 𝑆1, 𝑆2, and 𝑆3 to find the finite population mean. 

The DR estimator combines 𝑆1 and 𝑆2 in a different way, not the combined sample S3 and Bootstrap method, as the 

result shown in the last row of Table 2. 

Each data set gives an estimate of the finite population mean. The estimates are close within normal range between 26 

to 27 regardless of the data types and methods used. The tables and Figure 1 show the significant bias of the means 

from 𝑆1 and 𝑆3 compared to that of 𝑆2. The variances of finite population mean from 𝑆1 and 𝑆3 are smaller than 

that of 𝑆2. These results show consistent pattern, reduced bias and variance regardless the method used.  

The estimates of regression coefficients 𝛽 of sex and race have unreliable CVs except age although they contributed 

more to the BMI estimation. Since CV is not a good measurement of reliability, one needs to be careful to use CV for 

statistical inference. 

We can extend our method to include a second probability sample which does not have the study variable. We can now 

use record linkage to fill in the missing weights in the nonprobability sample and the missing study variable in the 

probability sample. Therefore, there can be four data sets to do data integration. Our methods can be applied much the 

same way. Chen et al. (2020) used two data sets, non-probability sample without survey weights and probability sample 

without study variable. To obtain survey weights in the nonprobability sample, they used logit function. It is also 

possible to have a nonprobability sample without both the survey weights and the study variable. The study variable 

from the probability sample, if available, can be used to impute missing variables using record linkage. 

It is more sensible to use the probability sample, supplemented by the nonprobability sample, to obtain the finite 

population mean. However, because the nonprobability sample is expected to be biased, together with its relatively large 

size, it will shrink the probability sample away from its expected unbiased position. Therefore, a method is much 

needed to partially penalize the nonprobability sample. This is one of areas in nonprobability sampling and data 

integration with a probability sample that is of enormous current practical interest. We have been working on this topic.  

Truth is simple, but hard to find, and this is also true in statistics. This paper is trying to find a true finite population 

mean with nonprobability sample supplemented by a small probability sample. We hope that our efforts are a small step 

forward to find the truth.   
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Figure 1. Comparison of bootstrap distributions (DEF), the posterior distributions (ABC) and DR (G) of the finite 

population mean 

Appendix A. Imputation of OSWs for 𝑆1 

Data fusion (Castanedo, 2013) is widely used in practice to fill the missing data. There are many ways to perform 

statistical data fusion; see Kedem, Oliveira and Sverchkov (2017). Data fusion, combination or integration is very 

important in today’s world. For example, to build self-driving cars, the more information (large N), the safer cars can be. 

Here one can use all sources of information for safer self-driving cars.  

Mahalanobis distance (Stuart 2010) can be used to impute unknown weights of nonprobability sample with  known 

weights of a probability sample.  

We show how to impute the unknown survey weights in nonprobability sample using covariates matching or record 

linkage via Mahalanobis distance. We simply consider the two samples, 𝑆1 with covariates, 𝑥1𝑖, i = 1, . . . , 𝑛1 only, 

and 𝑆2 with covariates 𝒙𝟐𝒊, i = 1, . . . , 𝑛2 and survey weights, 𝑊2𝑖, i = 1, . . . , 𝑛2, where ∑ 𝑊2𝑖 
𝑛2
𝑖=1 = 𝑁. Define the 

p × p matrix,  

S =
∑ (𝑥𝟐𝒊−𝒙̅2)(𝒙𝟐𝒊

𝑛2
𝑖=1 −𝒙̅𝟐)′

(𝑛2−1)
, 

where 𝒙̅2 = ∑
𝑥2𝑖

𝑛2
.

𝑛2
𝑖=1  We use the following steps. 

a. Compute the Mahalanobis distances (e.g., Stuart 2010). Define 𝐷𝑖𝑗 ,  

𝐷𝑖𝑗 = (𝒙𝒋𝒊 − 𝑥2𝑗)′𝑆−1(𝒙𝒋𝒊 − 𝒙𝟐𝒋), i = 1, . . . ,𝑛1, j = 1, . . . ,𝑛2. 

1. For each i, find the smallest value 𝐷𝑖𝑗, j = 1,. . . ,𝑛2. Because of discreteness, it is possible that there are more than 

one unit with the smallest distance.  

2. Randomly sample one of the units in 2. Suppose this value is k. Then, the weight assigned to unit i is 𝑊2𝑘, which 

we denote by 𝑊1𝑖
∗ = 𝑊2𝑘. Repeat this step for all units in the 𝑆1.  

3. Now, calibrate the 𝑊1𝑖
∗  using a raking procedure,  

𝑊1𝑖 = 𝑁
𝑊1𝑖

∗

∑ 𝑊1𝑖
∗𝑛1

𝑖=1

,i=1,…,𝑛1. 

These are surrogates for the original weights.  
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4. Finally, compute the ASWs.   

Appendix B. Least square estimation of the parameters 

Although this is not completely necessary, for convenience, we present the least square estimators. Let  

𝒙𝟏
′ = (𝒙𝟏𝟏 ,  𝒙𝟏𝟐,…,𝒙 𝟏𝒏𝟏

)’, 𝒙𝟐
′ = (𝒙𝟐𝟏 ,  𝒙𝟐𝟐 …,  𝒙𝟐𝒏𝟐

)’, each 𝒙𝒌 is 𝑛𝑘 x p matrix, k =1, 2 and  𝒚𝟏  = (𝑦11  , 

𝑦12, …, 𝑦1𝑛1
)’, 𝒚𝟐 = (𝑦21 , 𝑦22, …, 𝑦2𝑛2

)′, each  𝒚𝒌 is 𝑛𝑘x1 vector, k =1, 2. Also let 𝜷𝒑 = (𝛽1, 𝛽2, … , 𝛽𝑝 )′ p x1 

vector of regression coefficients, and   

𝒘𝟏 = (

𝑤11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑤1𝒏𝟏

), 𝒘𝟐 = (

𝑤21 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑤2𝒏𝟐

), 

two diagonal matrices of dimensions 𝑛1 and  𝑛2. 

Assume 𝑦𝑘~ 𝑥𝑘 𝛽𝑝 + 𝜀𝑘, 𝜀𝑘~𝜎2𝑊𝑘
−1, k=1, 2 and the 𝑦𝑘 are independent. Consider the 𝑆1 sample; the answers are 

similar for 𝑆2, and combined sample 𝑆3.   

We have  

𝑦1=𝑥1𝛽𝑝+𝜀,   𝜀~(0, 𝜎2𝑊1
−1). 

Then, the least squares estimators are  

𝛽̂ = (𝑥1
′ 𝑤1𝑥1)−1(𝑥1

′ 𝑤1𝑦1) 

and an estimator of 𝜎2
 is 

𝜎̂2 = 
(𝒚𝟏 –𝑥1𝜷)

′
𝒘𝟏(𝒚𝟏 –𝑥1𝜷)

(𝒏𝟏 −𝒑)
. 

Similar formulas are used for the ps and the combined sample. 

Appendix C. Proof of theorem 1 

Now we drop the subscript of sample number since our discussion is applicable in general. Here lower case 𝑤𝑖 are the 

adjusted sample weights and upper case 𝑊𝑖 are the original weights.  

Suppose the population 𝑦1,, … , 𝑦𝑁|𝜽 ~ f(y|𝜽). Take an independent sample.𝑦1,……,, 𝑦𝑛|𝜽 ~ f(y|𝜽), 𝜽 is parameter 

and f(.) is general function linking 𝜽 to y. Then, the log-likelihood for the entire population is ∑ log f(yi|𝛉)N
i=1 , and the 

Horvitz-Thompson estimator of the log-likelihood is given by 

∑ Wi log f(yi|θ)n
i=1 . 

Exponentiating, we have pseudo-likelihood, ∏  f(yi|𝛉)Wi n
i=1 . 

We make the two adjustments to this pseudo-likelihood. First, to reflect the correct variability we replace the original 

weights 𝑊𝑖 by the adjusted sample weights 𝑤𝑖, so we get ∏  f(yi|𝛉)wi n
i=1 . This first step can be presented more 

rigorously, but this is not necessary. Second, following a full Bayesian approach, we need to normalize this density to 

get  

∏
( 𝑓(𝑦𝑖|𝜽))𝑤𝑖 

∫  (𝑓(𝑦𝑖|𝜽))𝑤𝑖 𝑑𝑦𝑖

𝑛

𝑖=1
. 

It is worth noting that this pseudo density is a new formulation as it includes the normalization constant, thereby 

providing a proper density. This is different from what is presented in the literature, and it should make a difference 

when normality does not hold. 

For example, suppose we have an independent sample 𝑦1,…,, 𝑦𝑛|𝜇, 𝜎2 from Normal(𝜇, 𝜎2) taken with unequal 

selection probabilities. Then the joint probability density becomes 

∏
1

√2𝜋
𝜎2

𝑤𝑖

𝑛
𝑖=1 𝑒

−
𝑤𝑖

2𝜎2(𝑦𝑖−𝜇)2

. 

That is, the sample model with above adjusted weights 𝑤𝑖 is given by    

𝑦𝑖~ 𝑁 (𝒙𝑖
′ 𝜷,

𝜎2

𝑤𝑖
). 
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Note that if we have used the original weights, 𝑊𝑖 , the variance would have been much too small. The original survey 

weight for the i-th unit is how many units it represents in the entire population, including itself, but the data do not exist 

for all these units. 

Note that normalization constant does not make a significant difference in this example with normality from the 

standard survey literature, but it will be important in other examples (e.g., Binomial data), and this is under 

investigation. 
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