International Journal of Statistics and Probability; Vol. 10, No. 4; July 2021
ISSN 1927-7032  E-ISSN 1927-7040
Published by Canadian Center of Science and Education

A Weighted Poisson Distribution for Underdispersed Count Data

Chedly Gélin Louzayadio'#, Rodnellin Onésime Malouata®* & Michel Diafouka Koukouatikissa®*
! Faculty of Economic Sciences, Marien Ngouabi University, BP 69, Brazzaville, Congo
2 Higher Institute of Management, Marien Ngouabi University, BP 69, Brazzaville, Congo
3 Normal School Higher, Marien Ngouabi University, BP 69, Brazzaville, Congo

4 Laboratory of statistics and analysis of data (Labsad), Faculty of Sciences and Technics, Marien Ngouabi University,
BP 69, Brazzaville, Congo

Correspondence: Chedly Gélin Louzayadio, Faculty of Economic Sciences, Marien Ngouabi University, BP 69, Brazzav-
ille, Congo. E-mail: gelinlouz@ gmail.com

Received: March 1, 2021  Accepted: June 24, 2021  Online Published: June 28, 2021
doi:10.5539/ijsp.v10ndp157 URL: https://doi.org/10.5539/ijsp.v10ndp157

Abstract

In this paper, we present a new weighted Poisson distribution for modeling underdispersed count data. Weighted Poisson
distribution occurs naturally in contexts where the probability that a particular observation of Poisson variable enters the
sample gets multiplied by some non-negative weight function. Suppose a realization y of ¥ a Poisson random variable
enters the investigator’s record with probability proportional to w(y): Clearly, the recorded y is not an observation on Y,
but on the random variable Y, which is said to be the weighted version of Y. This distribution has three parameters
and belongs to the exponential family, it includes and generalizes the Poisson distribution by weighting. It is a discrete
distribution that is more flexible than other weighted Poisson distributions that have been proposed for modeling underdis-
persed count data, for example, the extended Poisson distribution (Dimitrov and Kolev, 2000). We present some moment
properties and we estimate its parameters. One classical example is considered to compare the fits of this new distribution
with the extended Poisson distribution.

Keywords: dispersion index, exponential family, Nelder-mead’s algorithm, weighted Poisson distribution
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1. Introduction

The Poisson distribution is considered the standard distribution for the analysis of count data. However, it is equidispersed
meaning that the mean is equal to the variance. Equivalently, the dispersion index (the ratio of variance to the mean), a
measure of aggregation or repulsion, is always equal to one. In practice, the requirement that the index of dispersion
should equal one is sometimes too restrictive. The data are often overdispersed, i.e. the dispersion index is greater than 1.
For this purpose, a wade variety of distributions has been proposed to model the data. We can quote the negative binomial
distribution, used since Greenwood and Yule in 1920, the weighted Poisson distribution proposed by Castillo and Pérez-
Casany in 1998, the generalization of the Poisson distribution proposed by Consul in 1989, etc. More information on this
topic is in Haight (1967), Johnson et al. (2005), Kendall and Stuart (1979).

The opposite phenomenon is underdispersion, where the index of dispersion is smaller than one. This phenomenon
occurs less frequently, and the choice of distributions is much narrower (Ridout and Besbeas, 2004). Nevertheless, there
are some situations in which underdispersion is well documented, (see, for example in Morgan, 1975 and 1982, Daley and
Maindonald, 1989). However, to model the data, the distribution chosen does not always offer a better fit. It is, therefore,
necessary to find another distribution that better describes the data. For example, data from Kendall in 1961 follow several
distributions underdispersed in particular the extended Poisson distribution proposed by Dimitrov and Kolev in 2000.

The main goal of this paper is to propose another underdispersed distribution that better describes Kendall’s data and to
compare it with the extended Poisson distribution. The distribution proposed here is a weighted Poisson distribution with
three parameters, 6 > 0, y > % and € > 1; we note it WPD(6, vy, £). The weighted Poisson distribution is an alternative to
the Poisson distribution when overdispersion or underdispersion is present (Patil and Rao, 1978, Patil 2002). It allows us
to take into account, among others, the phenomenon of dispersion; we can refer, for example, to Gupta & Ong in 2005,
Shmueli in 2005, Louzayadio et al. in 2013, Louzayadio in 2015, Mizere et al. in 2006, 2013 and their references. A more
general procedure to obtain the weighted Poisson distribution is to multiply the Poisson distribution by the ratio of weight
function to the normalizing constant; (Kokonendji et al., 2008) and their references as well as Balakrishnan & Kozubowski
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in 2008. The weight function that usually appears in the scientific and statistical literature is w(y) = y, which provides the
size-biased version of the random variable. The size-biased version of order k, which corresponds to the weight w(y) = y*
and w(y) = (y + a), where k is a real positive number and « is a positive displacement parameter, have also been widely
used (see, Castillo & Pérez-Casany, 1998). The weight function proposed in this paper is w, £(y) = 1 + Y2 + 2y — 1/€).

This article is organized as follows: Section 2 reviews and presents some definitions and properties of weighted Poisson
distributions. In Section 3, we introduce the new weighted Poisson distribution WPD (6, v, £) and we discuss some of its
important features and properties such as its mass function, its cumulative distribution function, its moment generating
function, its moments, its index of dispersion, and its entropy. In Section 4, we compare the stochastic order relationship
between two random variables WPD (6, y, £). In section 5, we estimate parameters of WPD(6, vy, £). Finally, in Section 6,
we compare the weighted Poisson distribution WPD(6, vy, £) and the extended Poisson distribution EPD (6, 5) using real
data.

2. Preliminaries

In this section, we recall and propose some definitions and properties of weighted Poisson distributions.

Definition 1 (Castillo and Pérez-Casany, 1998) The distribution of Castillo and Pérez-Casany is defined by
o+a) &

2*"3(j+a)r9—jy_! , yeN,a>0,r>0 and ¢=(a,r). (D)
J= J!

P (v 0,9) =

It is a weighted Poisson distribution of weight function
w(y, ) = +a)
and normalizing constant

+00 0]
Eglw(Y,9)] = ) (j+a) e
=0 J:
finite.

Definition 2 (Dimitrov and Kolev, 2000) Let Y be a 5-transformation of a Poisson random variable X with mean 6 > 0.
We call extended Poisson distribution denoted by EPD(6, B), the distribution of the random variable Y defined by

(1-¢)/B  y=0

= = -0 gy .
P(Y =y) e’ (@_1) b=l ;¥0>0, g €]0, 1[. )
By!

0
We can write this probability mass function (pmf) in the following way

60(y)
& 1—¢?
P =y) = e (éy - 1),6’*‘ - : (3)
y‘ 6 (ﬁ ) -0
—y—1]e
0
where
1 s y=0
%0() = { 0 else
is the indicator function in Q.
It is a weighted Poisson distribution of weight function
So(y)
1-e
D
N [[Anp
0
and normalizing constant
Eglw(Y, )] = B.
The weighted version Y of Y is characterized by:
: -1 -1 +1
EY") =1+ ’8—6 and V(Y") = ﬁ—292 + ﬁ—H.
B B B
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If 8 > 6 with 8 €]0, 1[, the EPD(6, §) is underdispersed because, its index of dispersion Iy« (6) < 1.

Kokonend;ji et al. in 2008 found several links between weight function and overdispersion or underdispersion. More
specifically, they proved that the log-convexity (log-concavity) of the mean weight function is a necessary and sufficient
condition for a weighted version of a Poisson variable to be overdispersed (underdispersed). We present their results in
the following two proposals:

Proposition 1 Let Y be a Poisson random variable with mean 6 > 0 and let
w(y) =w(y;¢), y €N,

be a weight function not depending on 6. Then, the mean weight function 8 — Eg[w(Y)] is log-convex (or log-concave) if
and only if the weighted version Y" of Y is overdispersed ( or underdispersed). On the other side, the following proposition
allows us to prove that the index of dispersion of WPD (6, y, &) (see section 3) is smaller than one.

Proposition 2 Let Y be a Poisson random variable with mean 6 > 0 and let

w() = w(y;¢), yeN,

be a weight function not depending on the Poisson mean parameter 6. Then,

, d?
Varg(Y") = Eo(Y") + ezﬁ In[Eg(w(Y; ))]. )

3. Another Weighted Poisson Distribution and Base Properties

Let Y be a standard Poisson random variable with probability mass function (pmf)
6"
p(y,0) = —'e_e, veN, 6>0;
y:

where 6 is the canonical parameter. We consider for y > % and & > 1, the weight function
Wye() = 1+507 +2y - 1/6),
the probability mass function (pmf) of the weighted version Y"»¢ of Y given by:

Wy,ef()’)
Eg[wy ¢(Y)]

is a weighted Poisson distribution, denoted by WPD (6, v, ¢) where, Eg[w, :(Y)] is the normalizing constant.

pwﬁ(y’ 0) = p(y’ 9), yE€ N (5)
Let us remark that, we can write (5) in the following way

exp (y Inf +In [W%g(y)])
VIK(6,7,6)

Py, 0) = ; (6)

where
K(0,7.€) = [1+y (6 +30- 1/¢)] ".

From (6) we see that the WPD (6, v, £) is an element of the natural exponential family on N. In the figure 1 shown with
the software R we show the appearance of the new weighted Poisson distribution.

The cumulative distribution function (cdf) of a random variable Y"*7¢ following a WPD (6, y, £) distribution is given by

, t
wa%‘g = EQ[W%g(Y)] - eyEg [mw%f(Y + l)] ,

where t € N.
Through the following propositions, we give the characteristics of WPD(6, vy, &).

Proposition 3 Let Y'"¢ be a WPD(0, y, &) random variable. The moments generating function of Yv¢, Myvy¢ (1), is given
by
explO(e' — 1)]

1+’y(92+39—g)

Mywye(t) = (1 + 6> ye* + 30ye’ — g) (N
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Figure 1. Probability mass functions (6) for 6 = 0.1, 0.5, 2, 5,y =03 and £ = 1.5
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explO(e' — 1)]

1
1+7(92+39——)
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(1 + 6*ye* + 30ye’ — ?) )

Proposition 4 [If Y"¢ is a WPD(6, vy, £) random variables, then we have

03+592+(3+1—1)0
y ¢

1
1+ 92+39——)
7( ¢

[l

d
E(r) = 2b) =y
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and

2 2 2 2
704+6703+(1272+y?—y—§y+3)92+10(7—%)0+y——31+37—2g+1

IR
12
1 6 +30-—
”( ’ f)]

Proof. In fact, the WPD(6, y, &) is an element of the natural exponential family, because

1
1 & 39——)]—9};
+y( + :

1
1 +y(e2‘u + 3¢t — —)
¢

Var(Y"%) =y ®)

1
1 +7(y2+2y— —)
pE(y, 0) = ' exp {y In6 —In
y!

with canonical parameter and cumulant function respectively

=1In6 and b(u) =1In + ek,

(Jgrgensen, 1997). So, the mean is

eH 4 502 +(3+ ¢ !)
Y

b}

d
E(Y™#) = d—b(ﬂ) =Y 1
H 1+’y(€2ﬂ+3€”—g)

by replacing e* with 6 we have the result. Taking the derivative of the mean E(Y"7¢) with respect to 6, we obtain the
variance.
Proposition 5 Let Y"v¢ be a WPD(0,y, &) random variable. The entropy of P*¢ noted H(P"7¢), is given by

Edlwye(N)In(r] [9 (1 L 2043- 1/5)} _ Eglwye(Y) InGwy (V)]
Eglw, £(Y)] Eglw, £(Y)] Eg[w, £(Y)]

H(P"¢) = In(Eqlwy£(Y)]) + +6. (10

Proof.

H(P")

= > (P (y,0) P*(y,0)
y=0

—g({ln[l +y (77 + 2y = 1/€)] = In[1+ y (€% + 30 - 1/¢)] +ln(§)—9}

1+y(? +2y—1/&€) 6 9}
1+7(92+39—1/§)y‘ )

-6

M

In[1+y (% +2y - 1/6)] (1 + (52 +2y—1/f))}

y=0 { 1+y(6*+30-1/¢) .

o ([t +y (2 +30-1/6)] (1 4y (02 + 29— 1/8)) | @,
+y‘2° Ly (62 +30-1/£) e
_Z n| +7§ +2y - 1/¢)| Ine e

¥=0 1+7y(6%+30-1/&) 3

[ 1+y(y +2y—1/§) o,
+yz(; {1+7(92+39 1/€) H(Y)}—e ]+9

Eglwy¢(Y) In(Y1)] ( 20+3 -1 /g)
= InlE Y _ ol + ————=
n(Eqbrye(0]) + Eglw, £(¥)] T Bl ()]
 Eglwy () In(w (V)]
Eglwy £(Y)]

+0.
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Proposition 6 Ify = 1 and ¢ tends to infinity , then the WPD (0, y, &) random variable Y"v¢ converges in distribution to a
weighted Poisson distribution random variable Y of Castillo and Pérez-Casany proposed in 1998 for a = 1 and r = 2.

Proof.
min([y].§)

" L+k>+2k—1/665 _,
Fie0) = ) p" k)= ), 1+602+30-1/6k1°
k<y k=0
where [y] denotes the integer part of y. For & > [y],

[y]
Fie®) = ) p"(k.0).
k=0

When ¢ tends to infinity, F; £(y) tends to the weighted Poisson distribution introduced by Castillo and Pérez-Casany in
1998, for a = 1 and r = 2. Hence, the proposition.

Proposition 7 The WPD(6,y, &) random variables Y"7¢ is underdispersed.

Proof. Taking the logarithm of the normalizing constant we have

In Eg[W%g(Y)] =In|l+ ‘)/(92 + 36 — é)] .

Now, differentiating with respect to 8 we obtain

dIn Eg[w, £(Y)] 20+3

d6 - 1
1+’y(02+30—g)

and,
20 +60+27 =5 49
043

d2 lnEg[Wyyg(Y)] _ >

_— = - ) 3 <

1 6% +30-—
”( ’ f)]

de?

then, proposition 1 ensures the result.

Corolary 1 If Y"¢ is a WPD(8,y, ) random variables, then its index of dispersion, Iyw.(0) is such that:

2 2 2 2
764+6y03+(1272+y?—7— §y+3)02+ 10(7—%)6+;—2—3%+3y—2§+1
Ty (0) = 1 I <l (11)
63+592+(3+———)9 1+y(92+39——)}
Yy ¢ &

Proof. In fact,

V(Y"re)
Iy”‘y.f (9) = E‘(Y—Wﬂ’) .

The propositions 1, 2 and 4 ensures the result.
4. Stochastic Order Relations

In this section, we are going to compare the stochastic order relation between two WPD random variables. If the weight
function w is increasing, (Patil et al., 1986) proved that the weighted version Y* of a random variable Y stochastically
dominates the original random variable Y. Since the weight function w, ¢(y) of WPD (6, y, ) is increasing in then the
weighted version Y"¢ stochastically dominates the Poisson random variable Y.

This result allows us to establish the following proposition.

Proposition 8 Let w, ¢ be an increasing function. Fori =1, 2, let Y:V”’f’ be a WPD(6;,v;,&;) random variables. If 6) < 6,,
y1 =Y and & < & (ou &) = &) then, Y;y’f stochastically dominates YIV”E. If y1 <y, 61 = 0, and & = &, then, Y;yf
stochastically dominates Y;v OIFE <&, v1 =y and 0 = 0, (ou 6 < 6,) then, Y; ¢ stochastically dominates Yr v

Proof. Let us suppose that 8; < 6, y1 = y, and & < & (ou &) = &) then Ey, [W%E(Yl )] < Ey, [W%E(Yz)]. We have the
result, because the weight function w, £(.) is increasing (Saporta, 2006). Similarly, we prove the others cases.
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5. Estimation

In this section, we will estimate the parameters ¢, y and £ by using the maximum likelihood method. We denote by 0,
7, and &, the maximum likelihood estimators of the parameters 6, y and & respectively. Let (yq,y2,...,y,) be a random
sample of n size of WPD(6, v, €); then the log-likelihood function L(y, 6,7y, &) is

1 +y(y$ + 2y — é)] —nyIn(©) = nf - ) In(y!)

i=1

L(,0,7,6€) = >In
i=1

—nln

1
1+y(92+39—g)].

Taking the partial derivative of the log-likelihood function with respect to 6, y and ¢ and equaling to zero respectively, we
obtain the following equations:

oL ny 2y6 + 3y
—=—-—-n-n =0;
00 0 1
1+y(92+39——)
3
1 1
" 2 4+ 2y — = 6> +360 — —
oL Ry £
by 0" n =%
YA 1+7(yl.2+2yi——) l+y(92+39——)
& &
oL vy s 1 _ny 1 B
A £

1 1
1+y(yl.2+2y,~——) 1+7(92+39——)

& &
These equations are non-linear, we use the Nelder Mead algorithm (Nelder and Mead, 1965) implemented in the R
fitdistplus package to solve them simultaneously.

6. Application

In this section, we give an example of fitting practical data by the WPD (6, y, &). In this example, we compare the results
with the fits given by the weighted Poisson distribution WPD (6, v, £) and the extended Poisson distribution EPD (6, §).
The statistical data (see, table 1) are taken from Kendall (1961) and correspond to the observed data on the number
of outbreaks of strikes in 4-week periods, in a coal mining industry in the United Kingdom during 1948-1959. These
observations are modestly underdispersed because the ratio of the sample variance s> = 0.741894 to the sample mean
y = 0.99359 is smaller than one. The different observed and expected values are computed by the y? test of Pearson.

The column called P(¢) of Table 1 contains the corresponding expected frequencies calculated by using the Poisson dis-
tribution with parameter 8, whose estimate is 8 =y = 0.99359. The values of the Chi-square and the p-value respectively,
for the goodness of fit test for this distribution are y* = 10.492 and p-value = 0.015 respectively.The value of the khi-two
is too high, so the insufficiency of the Poisson distribution to the data is obvious. The reason for this is that the variance
in the sample is lower than the sample average, whereas it should be almost equal.

The column EPD (6,0) of table 1 contains the corresponding expected frequencies calculated by using the Extended
Poisson distribution. The maximum likelihood estimates of the 6 and 8 parameters are

Oy = 0.3417 and By = 0.9947.

The value of chi-square for EPD (6, 3), for instance, is XZ = 3.970 and the corresponding p-value is 0.265. Thus, we
cannot reject the idea that the data come from the Extended Poisson distribution at the usual significance level & = 0.05.

In this paper, we do not discuss the maximum likelihood estimates of the 8, y and & parameters of the WPD(6, vy, £€) and
their properties. The corresponding results are given here for comparison only. The maximum likelihood estimates of the
6, y and & parameters are obtained numerically because the log-likelihood function is non-linear. We based ourselves on
the optimization method of Nelder Mead’s algorithm. We obtained the following maximum likelihood estimates

Oy = 0.3567569, Yy = 07733672 et Eyy = 2.4390914.
The value of the chi-square for the goodness of the fit test for the WPD(6, y, £) with the above estimated parameters is
x> =2.398 and the p-value = 0.663. Thus, fit of the observed data by the WPD(6, v, £), even with parameters estimated by
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the optimization method of Nelder Mead’s algorithm, is acceptable, while the original Poisson model is not it. However,
a comparison of the expected values present in the columns EPD (6,8) and WPD (6, y, &) of table 1 shows that the
WPD(8, v, &) offers better goodness of fit to statistical data than the EPD(6, ).

Table 1. Model fits to the number of outbreaks of strikes (M.G. Kendall, 1961)

y Frequencies observed P(6) EPD(@6,8) WPD(,v, &)
0 46 57.758 45.393 46.343

1 76 57.388 72.769 72.702

2 24 28.510 31.371 29.667

3 9 9.442 5.730 6.308
>4 1 2.902 0.221 0.881

x? 10.492 3.970 2.398
p-value 0.015 0.265 0.663

7. Conclusion

In this article, we have proposed a new generalization by weighting of the Poisson distribution. Some important basic
properties and the problem of the estimation of its parameters have been studied. We have shown that this new weighted
Poisson distribution can be used to model the under dispersed count data, for example, data from Kendall (1961).
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