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Abstract

We establish an Edgeworth expansion for the distribution of the Whittle maximum likelihood estimator of the parameter
of a time series generated by a linear regression model with Gaussian, stationary, and long-memory residuals. This is done
by imposing an extra condition on coefficients of the regression model in addition to the standard conditions imposed on
the the spectral density function and the parameter values and making use of the results of Andrews et al. (2005), who
provided an Edgeworth expansion for the residual component.
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1. Introduction

We consider a linear regression model {Yt = Xtβ + εt, t ≥ 1} where β is a p vector of deterministic but unknown real
numbers, {Xt ∈ Rp, t ≥ 1} are non-stochastic regressors, and the error terms {εt, t ≥ 1} are stationary, Gaussian, and
strongly dependent discrete time series. The process {εt, t ≥ 1} is assumed to have mean zero and and spectral density
fθ(λ) for λ ∈ (−π, π), where θ = (θ1, θ2, . . . , θr)′ ∈ Θ ⊆ Rr and fθ(λ) = O(|λ|−2d−δ) as |λ| → 0,∀δ > 0, 0 < d < 0.5, and θ1
is assumed to be the long-memory parameter d of the process.

Let Y = (Y1,Y2, . . . ,Yn)′ be an observed sample of size n and

E = (ε1, ε2, . . . , εn)′ .

Then clearly the covariance matrix of Y is the same as the covariance matrix of E. Let µ = (µ1, µ2, . . . , µn) be the true mean
of Y. Then, the least square estimate (LSE) β̂ =

(
β̂1, β̂2, . . . , β̂p

)
of β is given by β̂ = V−1 ∑n

t=1 YtXt, where V =
∑n

t=1(XtX′t )
is a p × p matrix. Thus, an estimator of µ is µ̂ = (µ̂1, . . . , µ̂n), where µ̂t = X′t β̂, t = 1, 2, ..., n. Let X denote the design
matrix given by X = (xi j) for i = 1, ..., n and j = 1, ..., p of our regression model. We shall assume the rank of X is p.
Then the matrix V is symmetric and positive definite.
The n × n (Toeplitz) covariance matrix of fθ(λ) is denoted by Tn( fθ) and has ( j, k) element defined by:

Tn( fθ) j,k =

∫ π

−π

exp(i( j − k)λ) fθ(λ)dλ (1.1)

The log-likelihood function is

Ln(θ, µ) = −
n
2

ln(2π) −
1
2

ln(det(Tn( fθ))) −
1
2

(Y − µ)′T−1
n ( fθ)(Y − µ). (1.2)

Based on the fact that 1
n ln(det(Tn( fθ)))→ 1

2π

∫ π

−π
ln( fθ(λ))dλ as n→ ∞ and Tn((2π)−2 f −1

θ ) approximates T−1
n ( fθ) as n→ ∞

(Beran, 1994), Ln(θ, µ) can be approximated by the Whittle log-likelihood function, Wn(θ, µ), as

Wn(θ, µ) = −
n
2

ln(2π) −
n

4π

∫ π

−π

ln( fθ(λ))dλ −
1
2

(Y − µ)′Tn((2π)−2 f −1
θ )(Y − µ). (1.3)

We refer to Wn(θ, µ̂), where µ̂ is replaced for µ in (1.3) above, as the plug-in Whittle log-likelihood (PWLL) function. Let

Qn = XV−1X′ (1.4)

and let Mn = In − Qn, where In is the n × n identity matrix. It is easy to verify the following: a) Mn and Qn are both
symmetric. b) Y′Mn = (Y − µ̂)′. c) If U = Y − µ, then MnY = MnU.
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Making use of the above properties, the PWLL function can now be written as

Wn(θ, µ̂) = −
n
2

ln(2π) −
n

4π

∫ π

−π

ln(( fθ)(λ)) −
1
2

Y′MnTn((2π)−2 f −1
θ )MnY

= −
n
2

ln(2π) −
n

4π

∫ π

−π

ln( fθ(λ)) + f −1
θ (λ)In(λ)dλ,

(1.5)

where In(λ) = | 1
2nπ

∑n
j=1 ei jλ(Y j − µ̂ j)|2. By definition, the Whittle Maximum Likelihood estimators (WMLE), θ̂n, of the

true parameter θ solves the equation: ∫ π

π

∂

∂θr
(log fθ(λ) + f −1

θ (λ)In(λ))dλ = 0 (1.6)

for r = 1, ..., dθ, where dθ = dim(θ). Andrews et al. (2005) have established a valid Edgeworth expansion for the PWMLE
of error component {εt, t ≥ 1} of our mofel. We shall make use of the results of Andrews et al. (2005) and acquire an
Edgeworth expansion of the PWMLE of our linear regression processes by imposing an extra condition on the regression
coefficients.

The remaining sections are organized as follows. Section 2 presents the background assumptions and some preliminary
concepts. Section 3 states and proves the main results of the paper.

2. Assumptions and Preliminaries

2.1 Assumptions

Assumptions A1 through A8 are provided in this section and A9 will be stated in section 2.2.
A1. The parameter space Θ is a subset of Rr with non-empty interior, where r is the dimension of the true parameter.
A2. For some integer s ≥ 3, g(θ) =

∫ π

−π
ln fθ(λ)dλ and h(θ) =

∫ π

−π
f −1
θ (λ)In(λ)dλ can be differentiated s + 1 times under the

integral sign.
A3. fθ(λ) is continuous at all (λ, θ) for which λ , 0, f −1

θ (λ) is continuous at all (λ, θ), and ∀δ > 0, ∃c1(θ, δ) < ∞ such that

| fθ(λ)| ≤ c1(θ, δ)|λ|−2d−δ

for all λ in the neighborhood Nδ of the origin, where θ = (d, θ1, ..., θr) and d ∈ (0, 0.5).
A4. For all ( j1, ..., jk) with k ≤ s + 1 and ji ∈ {1, ..., dr}, (∂k/(∂θ j1...∂θ jk)) f −1

θ (λ) is continuous at all (λ, θ) and ∀δ > 0,
∃c2(θ, δ) < ∞ such that ∣∣∣∣∣∣ ∂k f −1

θ (λ)
∂θ j1...∂θ jk

∣∣∣∣∣∣ ≤ c2(θ, δ)|λ|2d−δ,∀λ ∈ Nδ

.
A5. (∂/∂λ) fθ(λ) is continuous at all (λ, θ) for which λ , 0 and ∀δ > 0, ∃c4(θ, δ) < ∞ such that∣∣∣∣∣∂ fθ(λ)

∂λ

∣∣∣∣∣ ≤ c4(θ, δ)λ|2d−1−δ,∀λ ∈ Nδ

.
A6. For all ( j1, ..., jk) with k ≤ s + 1 and ji ∈ {1, ..., dr}, (∂k+1/(∂λ∂θ j1...∂θ jk)) f −1

θ (λ) is continuous at all (λ, θ) for which
λ , 0 and ∀δ > 0, ∃c5(θ, δ) < ∞ such that∣∣∣∣∣∣ ∂k+1 f −1

θ (λ)
∂λ∂θ j1...∂θ jk

∣∣∣∣∣∣ ≤ c4(θ, δ)|λ|2d−1−δ,∀λ ∈ Nδ

.
A7. For any compact subset Θc of the parameter space there exists a constant C(Θc, δ) < ∞ such that the constants ci(θ, δ)
for i = 1, ..., 4 are bounded by C(Θc, δ), ∀θ ∈ Θc and ∀δ > 0.
A8. The design matrix X is chosen in such a way that for the matrix

Qn = (qi j), i, j = 1, ..., n, (2.1)

defined by (1.4) above, ∃N < ∞ such that |qi j| ≤
N
√

n for 1 ≤ i, j ≤ n.

Most of these assumptions are standard background assumptions in asymptotic theory and have appeared in the literature
including Andrews et al. (2005), Lieberman et al. (2003), and Dahlhaus (1989) among others and are needed to control
the behavior of the spectral density function. This paper includes Assumption A8 which puts a restriction on the matrix
X. It is this assumption that enables us to extend the results of Andrews et al. (2005) and Lieberman et al. (2003) (both
do not have design matrix as our present model does) to our linear regression model. We use this assumption to establish
that the r-th cumulants κr(θ) of the WLLDs (see (3.1) below) in the Edgeworth expansion are bounded by O(n).
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2.2 The Whittle Log-likelihood Derivatives

Let ν = (r1, r2, ..., rq)′ denote a q-vector of positive integers each less than or equal to r = dim(θ). We write the real valued
q-th order partial derivative of the PWLL function indexed by ν as

Wn,ν = DνWn(θ, µ̂) =
∂q

∂θr1 . . . ∂θrq

Wn(θ, µ̂) = Fn,ν(θ) + Y ′MnBn,ν(θ)MnY (2.2)

where

Fn,ν(θ) = −
n

4π

∫ π

−π

Dν ln( fθ(λ))dλ (2.3)

and

Bn,ν(θ) = −
1
2

DνTn((2π)−2 f −1
θ ). (2.4)

Let

Zn(θ) = (Wn,ν(1)(θ), . . . ,Wn,ν(r)(θ)), (2.5)

where each vector ν( j) is of the same form as ν defined in (2.2)-(2.4) above for some q ≤ r = dim(Zn(θ)) for j = 1, 2, ..., r
and let

Wn(θ) = n−1/2(Zn(θ) − EθZn(θ)). (2.6)

Without loss of generality we may assume that EθZn(θ) = 0. Let

Dn(θ) = E[Wn(θ)Wn(θ)′] (2.7)

and let D(θ) = limn→∞ Dn(θ).
Because Wn(θ) is a vector of centeral quadratic forms in Gaussian variables plus a vector of nonrandom quantities (An-
derson, 1984)) we have

Dn(θ)i, j = tr(Bn,νi Tn( fθ)Bn,ν j Tn( fθ)) (2.8).

We now add one more assumption:

A9. Dn(θ) and D(θ) are positive definite.

2.3 Cumulants and Edgeworth Expansion

The jth cumulant, κ j, of a random variable X with a characteristic function χ(t) = E(eitX), is defined as the coefficient of
1
j! (it)

j in a power series expansion of log χ(t) =
∑

j≥1
1
j!κ j(it) j. It can be shown that κ1 = E(X), κ2 = E(X2) − (EX)2, κ3 =

E(X − EX)3, κ4 = E(X − EX)4 − 3(E(X2) − (EX)2)2, and so on.
Now, let θ̂ be an estimate of the parameter θ0, constructed from a sample of size n. Under certain conditions n1/2(θ̂ − θ0)
is asymptotically normally distributed with zero mean and variance σ2 and for many situations of practical interest the
distribution function of n1/2(θ̂ − θ0) is expanded as a power series in n−1/2 as follows:

P(
n1/2(θ̂ − θ0)

σ
≤ x) = Φ(x) + n−1/2π1(x)φ(x) + ... + n− j/2π j(x)φ(x) + ..., (2.9)

where φ and Φ are the Standard Normal density and distribution function, respectively, and π j is a polynomial in terms of
cumulants and is of degree 3 j − 1. The expansion on the right hand side of (2.9) is termed as an Edgeworth expansion of
the distribution function on the right. For example, if X1, X2, ..., Xn are independent and identically distributed with mean
µ = θ0 and finite variance σ2 and if θ̂ represent the sample mean, then π1 and π2 are of degrees 2 and 5, respectively, and
are given by

π1(x) = − 1
6κ3(x2 − 1), and

π2(x) = − 1
24κ4(x3 − 3x) − 1

72κ
2
3(x5 − 10x3 + 15x).

Details on more general cumulant and Edgeworth expansion can be found in Hall, (1993), and Barndorff-Nielsen et al.,
(1989).
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3. Edgeworth Expansion of the WLLD and WMLE

A key step in establishing an Edgeworth expansion for the distribution of the Whittle Log-likelihood Derivatives (WLLDs),
Wn(θ) (see 2.6), that holds uniformly over a compact subset Θc of the parameter space that satisfies Assumption A9 is
showing that the cumulants of Zn(θ) are uniformly O(n) in these sets. To this end we shall make use of mainly Assump-
tions A8 and A9 in making transition from our model to the case established by Andrews et al. (2005) and obtain an
Edgeworth expansion of Wn(θ).
Let κr(θ) denote the rth-order joint cumulant of Zn(θ). Let gθ,ν(λ) = (2π)−2Dν f −1

θ (λ). From the theory of quadratic forms
in normal variables (Searl, 1971), κr(θ) can be written as

κ1(θ) =
n

2π
Dν j

∫ π

−π

log( fθ(λ))dλ + tr
(
MnTn(gθ,ν j )MnTn( fθ)

)
κr(θ) = Crtr

 r∏
j=1

MnTn(gθ,ν j )MnTn( fθ)

 (3.1)

for r ≥ 2 ans some vectors {ν j : j = 1, 2, ..., r} of subscripts and some constant Cr < ∞.
Note that κr(θ) involves derivatives of f −1

θ (λ) and that Zn(θ) is a vector whose elements are partial derivatives to order
≤ s − 1 of Wn(θ, µ̂). For example, if ν j = (1, 2, 3), then the jth element of Zn(θ) becomes

Dν j Wn(θ, µ̂) =
∂3

∂θ1∂θ2∂θ3
Wn(θ, µ̂).

Now, given the vector Zn(θ) of partial derivatives, the rth order cumulant, κr(θ), is determined by r elements of Zn(θ) with
repeated elements allowed. Our goal is to first show that the cumulants are O(n) and use this bound in establishing the
Edgeworth expansion of the WLLDs. To that end, we substitute Mn = In − Qn, where Qn is as given in (1.4) and In is the
identity matrix, and rewrite κr(θ) for r ≥ 2 as

κr(θ) = Cr

∑
tr

 r∏
j=1

((−Qn)x j Tn(gθ,ν j )(−Qn)y j Tn( fθ))

 (3.2)

where x j, y j take on values zero or one and satisfy 0 ≤ Σr
j=1(x j +y j) ≤ 2r, the summation is over all possible configurations

of (x1, y1, ...., xr, yr), and (−Qn)0 = In. For the case where x j = y j = 0 for all j = 1, ..., r, κr(θ) = O(n) by the following
Lemma which is essentially a modified version of Theorem 1 of Lieberman et al. (2003).

Lemma 3.1. Suppose Assumptions A1-A9 hold in the parameter space Θ. Then, for all r ≥ 1,

lim
n→∞

sup
θ∈Θc

∣∣∣∣∣∣∣∣1n tr

 r∏
j=1

(Tn(gθ,ν j )Tn( fθ))

 − (2π)2r−1
∫ π

−π

 r∏
j=1

(gθ,ν j (λ) fθ(λ))

 dλ

∣∣∣∣∣∣∣∣ = 0

for any compact subset Θc of the parameter space Θ.

Next, we examine the case where at least one matrix Qn appears in (3.2). By Assumption A8 the design matrix is chosen
in such a way that every element qi j of the matrix Qn defined in (1.4) satisfies |qi j| ≤

N
√

n , i, j = 1, ..., n and some N ≤ ∞.

Therefore, |tr(Qn)| ≤ N
√

n |tr(Pn)| where Pn = 11’ and 1 = (1, ..., 1)′ is a vector of ones.

We shall make use of the following Lemma.

Lemma 3.2. Let Pn = 11’ where 1 = (1, ..., 1)′ is a vector of ones. For any two n × n matrices A and B, tr(PnAPnB) =

tr(PnA)tr(PnB).

Proof.

(PnA)(PnB) =


∑

i ai1 . . .
∑

i ain

. . . . . . . . .∑
i ai1 . . .

∑
i ain



∑

i bi1 . . .
∑

i bin

. . . . . . . . .∑
i bi1 . . .

∑
i bin


=


∑

i j ai jbi1 . . .
∑

i j ai jbin

. . . . . . . . .∑
i j ai jbi1 . . .

∑
i j ai jbin


(3.3)
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Thus,
tr[(PnA)(PnB)] =

∑
i j

ai jbi1 +
∑

i j

ai jbi2 + . . . +
∑

i j

ai jbin =
∑

i j

ai jbi j (3.4)

which equals to
tr(PnA)tr(PnB) = (

∑
i j

ai j)(
∑

i j

bi j) =
∑

i j

ai jbi j (3.5)

Because |tr(Qn)| ≤ N
√

n and using Assumptions A3, A4, and A8, for any two matrices A and B of the form Tn( fθ) or
Tn(gθ,ν j ) that appear in (3.2), we can find K < ∞ such that

tr(QnAQnB) ≤
(NK)2

n
|tr[(PnA)(PnB)]| =

(NK)2

n
|tr(PnA)tr(PnB)| (3.6).

Consequently, each of the summands in (3.2) for which at least one Qn appears can be written as summands which are
less than or equal to a constant multiple of one of the following sums for different values of p : 0 ≤ p ≤ r.

Un,p = tr

−P
p∏

j=1

(Tn(gθ,ν j )Tn( fθ))

 ,

U∗n,p = tr

−P
p∏

j=1

(Tn(gθ,ν j )Tn( fθ))Tn(gθ,νp+1 )

 , and

U+
n,p = tr

−P
p∏

j=1

(Tn( fθ)(Tn(gθ,ν j ))Tn( fθ)

 (3.7).

For example, if r = 2, and if we denote Tn( fθ) by Tn and Tn(gθ,ν j ) by Tn j, j = 1, 2, then a typical term (x1, y1, x2, y2) =

(1, 1, 1, 0) would look like:

tr((−Qn)Tn1(−Qn)Tn(−Qn)Tn2Tn) ≤
N3

n3/2 |tr((−Pn)Tn1(−Pn)Tn(−Pn)Tn2Tn)|

=
N3

n3/2 |tr((−1)1′Tn1(−1)1′Tn(−1)1′Tn2Tn)|

=
N3

n3/2 |tr((1′Tn11)(1′Tn1)(1′Tn2Tn1))|

=
N3

n3/2 |tr(1′Tn11)tr(1′Tn1)tr(1′Tn2Tn1)|

=
N3

n3/2 |tr(−PnTn1)tr(−PnTn)tr(−PnTn2Tn)|

which is of the form U∗n,0, U+
n,0, and Un,1.

We are now ready to give bounds on the cumulants κr(θ) defined in (3.1) which appear in the Edgeworth expansion of the
WLLD and WMLE.

Theorem 3.3. Suppose Assumptions A1-A9 hold. Then for all r ≥ 1, κr(θ) = O(n) uniformly over any compact subset Θc

of the parameter space.

Proof.

We have already seen that the summand on the rhs of (3.2) is O(n) for the case where x j = y j = 0, j = 1, ..., r. For the case
where at least one matrix Qn appears in (3.2), we have shown that the summands can be bounded by sums of the forms
Un,p, U∗n,p, and U+

n,p given in (3.7). Theorem 3 of Andrews et al. (2005) has shown that each of these summands are O(nδ)
for all δ > 0 and therefore Theorem 3.3 holds.

We now state the main Edgeworth expansion results of WLLD, Wn(θ), and WMLE, θ̂n, of the true parameter θ.

Theorem 3.4. Suppose Assumptions A1-A9 hold. For θ ∈ Θ, let Fn(u, θ) be the joint density of Wn(θ), r = dim(θ) and for
any integer τ ≥ 3 let F̃n

τ−2(u, θ) be its (τ − 2)-order Edgeworth expansion. Then
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a) Fn(u, θ) = F̃n
τ−2(u, θ) + o(n−(τ/2)+1)

b) Pθ(Wn(θ) ∈ C) =
∫

C F̃n
τ−2(u, θ)du + o(n(−τ/2)+1)

uniformly over u ∈ Rr, all Borel sets C and θ in any compact subset Θc of the parameter space Θ.

Proof:

(a) It suffices to verify that Assumptions 1-4 of Theorem 1 of Durbin (1980), which establishes the validity of an Edge-
worth expansion for the density of a sequence of random vectors, are satisfied. Durbin’s Assumption 1 is satisfied by
our Assumption A9. Durbin’s Assumption 4 requires that the joint cumulants of the WLLD are O(n) uniformly over a
compact subset of the parameter space and this is established by our Theorem 3.3.

Next, we verify Durbin’s Assumptions 2 and 3. Let φn(ω, θ) = Eθ[exp(iω′Zn(θ)] be the characteristic function of Zn(θ).
Durbin’s Assumption 2 states that for n large enough, |φn(ω, θ)| is integrable over Rr and∫

||ω||≥δ
√

n
|φn(ω/

√
n, θ)|dω = (o−(τ/2)+1). (3.8)

When this is translated to our case, since Zn(θ) = (Wn,ν(1)(θ), . . . ,Wn,ν(r)(θ)), using the explicit forms of Wn,ν( j) given in
(2.2) - (2.4) and from standard theory on quadratic forms in Gaussian variables (Searl, 1971), we obtain

φn(ω, θ) = Eθ exp

 i
√

n

r∑
j=1

(ω jFn,ν j + X′nB jXn)


= exp

 i
√

n

r∑
j=1

ω jFn,ν j

 det

In −
2i
√

n

r∑
j=1

ω jB jTn( fθ)

−1/2 (3.9)

where Fn,ν j is as given in (2.3) and B j = MnTn(gθ,ν j )Mn.

Let λ1, ..., λn be the eigenvalues of
∑r

j=1 ω jB jTn( fθ). Then

φn(ω, θ) =

∣∣∣∣∣∣∣∣exp

 i
√

n

r∑
j=1

ω jFn,ν j


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣det

In −
2i
√

n

r∑
j=1

ω jB jTn( fθ)

−1/2
∣∣∣∣∣∣∣∣

=

n∏
k=1

∣∣∣∣∣∣1 − 2i
√

n
λk

∣∣∣∣∣∣−1/2

=

n∏
k=1

(
1 +

4
n
λ2

k

)−1/4

=

1 +
4
n

n∑
k=1

λ2
k +

(
4
n

)2 ∑
k,k′

λ2
kλ

2
k′ + ... +

(
4
n

)n n∏
k=1

λ2
k

−1/4

.

(3.10)

The q-th term in (3.10) is given by

(
4
n

)q ∑
I1

λ2
k1
...λ2

kq
=

(
4
n

)q  n∑
k=1

λ2
k

q

−

(
4
n

)q ∑
I2

λ2
k1
...λ2

kq
(3.11)

where I1 denotes the set of indices with no two indices equal and I2 denotes the set of indices with at least two indices
equal. By (2.8) we have Dn(θ)i, j = tr(Bn,νi Tn( fθ)Bn,ν j Tn( fθ)) and therefore, the second term in (3.10) is given by

4
n

n∑
r=1

λ2
k =

4
n

tr

 n∑
j=1

ω jB jTn( fθ)

2

= ω′Dn(θ)ω. (3.12)

Thus, by (3.12) the q-th term in (3.11) is less than or equal to (ω′Dn(θ)ω)q which by Lemma 3.1 and Theorem 3.2 is less
than or equal to O(n||ω||2). Now let ξ be the smallest eigenvalue of D(θ) over θ ∈ Θc and let k ≥ 2(d + τ − 2) be a fixed
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integer. Then, for n large enough,∫
||ω||≥δ

√
n
|φn(ω/

√
n, θ)|dω ≤

∫
||ω||≥δ

√
n
(nξ||ω||2)−k/4dω

= (nξ)−k/4
∫
||ω||≥δ

√
n
||ω||−k/2dω.

Now, since d ∈ (0, 0.5) and τ ≥ 3, we have k/2 ≥ 1, and therefore, the integral on the rhs above converges and consequently
Durbin’s Assumption 2 follows. Durbin’s slightly modified Assumption 3 states that the rth derivative
∂r log φn(ω,θ)

∂ωr exists for ω in a neighbourhood of the origin and the limit of

1
n
∂r log φn(ω, θ)

∂ωr (3.13)

as n→ ∞ and ||ω|| → 0 exists where r is some specified positive integer.

From (3.9) we have

φn(ω, θ) = i
r∑

j=1

ω jFn,ν j −
1
2

log det

In −
2i
√

n

r∑
j=1

ω jB jTn( fθ)

 . (3.14)

The limit and existence of derivatives of any order of the first term of (3.14) is straight forward. From the proof of
Assumption 2 above, the second term is the log of a polynomial function of ω and is therefore infinitely differentiable in
ω provided that the determinant is not zero.

The existence of limit as n → ∞ is established using Lemma 3.1 and Theorem 3.2 and this verifies Durbin’s Assumption
3.

Part (b) of the theorem is a consequence of corollary 3.3 of Skovgaard (1986) which drives the Edgeworth expansion of a
distribution function from the corresponding density function.�

We are now ready to state the Edgeworth expansion result for the Whittle Maximum Likelihood Estimator (WMLE). Let

G̃n(ω, θ) = φ(ω)

1 +

s∑
r=3

n−(1/2)r+1Pnrθ(ω)

 , (3.15)

be the (s− 2)th− order formal Edgeworth expansion of the density of n1/2(θ̂n − θ) for θ in the parameter space Θ, where φ
denotes the multivariate normal density with mean zero and covariance matrix Σ(θ) and Pnrθ are Edgeworth polynomials
whose coefficients depend on the cumulants of the WLLDs given in (3.1).

The following Edgeworth expansion result of the WMLE of our current linear regression model is analogous to a number
of similar results including Bhattacharya et al. (1978), Andrews et al. (2005), and Lieberman et. al (2003) among others
under different contexts but suitably adjusted to their cases.

Theorem 3.5. Suppose Assumptions A1-A9 hold in a parameter space Θ and let Θc denote a compact set in Θ. Then,

(a) there exists a sequence of estimators {θ̂n : n ≥ 1} and a constant α0 = α0(Θc) such that

inf
θ∈Θc

Pθ(||θ̂n − θ|| < α0n−1/2(log n)1/2) = 1 − o(n−s/2+1), (3.16)

where θ̂n is a solution to (3.15),

(b) any sequence of estimators {θ̂n : n ≥ 1} that satisfies (3.16) admits the Edgeworth Expansion

Pθ(
√

n(θ̂n − θ) ∈ C) =

∫
C

G̃n(ω, θ)dω + o(n−s/2+1) (3.17)

uniformly over θ ∈ Θc and over every class B of Borel sets that satisfies the condition

sup
θ∈Θc

sup
C∈B

∫
(∂C)ε

φ(ω)dω = O(ε) (3.18)

as ε→ 0 where (∂C)ε denotes the ε-neighborhood of the boundary of C.
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Proof.

The proof of the theorem essentially relies on making a passage from Theorem 3.4 (b) to the current result. Theorem 4 of
Lieberman et al (2003) extends the argument of Theorems 2 and 3 of Bhattacharya et al. (1978) to the long memory error
component and Andrews et al. (2005) establish the same result for WMLE case (without the linear regression component).
The essential difficulties that our linear regression component pose in making transition to the above established results
are settled in Theorems 3.1 - 3.4 above and therefore the proofs of Lieberman et al. (2003) and that of Andrews et al.
(2005) go through.
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