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Abstract 

The aim of the study is to analyze the pattern of gross domestic product (GDP) according to human development index 

(HDI) for 184 countries of the world. GDP per capita indicates only economic prosperity but not the overall 

development of the citizens of a country. This research tries to find out the beneath relationship of the financial state and 

human development of countries using the data of 2018. For demonstrating this analysis several parametric and 

non-parametric regression methods subject to shape restriction have been used. The study targets to shed light on 

comparative performance of shape constrained regression with cone projection, polynomial regression, LOESS, isotonic 

regression with pooled adjacent violators algorithm, kernel regression, smoothing spline and generalized additive model 

in convex situation.  

Keywords: non-linear regression, polynomial regression, shape constrained regression, GAM 

1. Introduction 

Gross domestic product (GDP) is the market value of all final goods and services produced within a country in a 

specific time period. It is a globally used indicator of the economic size and growth of a country. GDP per capita is 

another indicator of economic prosperity per person which is calculated mainly by overall GDP by the country’s total 

population. GDP per capita does not only determine the national wealth of the country but it is also closely related with 

the living standard of the citizen of that country. Economically developed countries tend to have a higher GDP per 

capita with smaller population and better civic facilities including mass education accessibility, medical facilities, social 

security etc. than the less developed countries. Human development index (HDI) is a tool annunciated yearly by United 

Nations Development Program (UNDP), which evaluates the actual development of the citizen of a country not only 

their monetary wellbeing.  HDI actually assesses three aspects such as living healthy life, education attainability and 

an admissible standard of livelihood for capturing a crude picture of genuine development of subjects living in a 

particular region. Statistically, HDI is the geometric mean of normalized indices of three (health, social and economic) 

attributes, of which the first attribute is characterized by life expectancy, the second one is arithmetic mean of expected 

years of schooling for children of school entering age and average years of schooling for at least 25 years aged people 

and the last one is determined by a logarithmic transformation of Gross national income (GNI) per capita.  

 

Figure 1. Graphical representation of calculating HDI (UNDP, Human Development Index) 

According to the cutoff points referred in Human Development Report 2019,  32.6 percent of 184 countries show very 

high human development (HDI>= 0.8), 28.8 percent show high human development (0.7-0.8), 19.6 percent show 

medium development (0.55 -0.7) and 19.6 percent of those countries show low human development (HDI<0.55).  

In this study this is tried to observe the relationship between the country’s economic growth with the overall prosperity 

of its citizen’s life. For serving this purpose, different statistical regression models (both parametric and non-parametric) 

have been studied. In section 2 theoretical background of the methods are reviewed along with their practical 

performance in section 3. Comparison among the models has been presented in section 4. 
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2. Materials and Methods 

2.1 Data Source  

To study the impact of human development index in gross domestic product per capita over the time period 2018, the 

country specific data values of these variables are employed in this research. The secondary data of nominal GDP per 

capita (in us dollar) of 184 countries have been taken from International monetary fund (IMF). Luxemburg shows 

highest per capita in 2018 and Burundi possesses the minimum GDP per capita, only 306.9 US dollar per year. Another 

key variable is human development index (HDI). This values of HDI is taken from United Nations Development 

Programme (UNDP)’s official database for the corresponding countries for specific year 2018. Statistical software R 

(version 4.0.2) is used for computational purpose. 

2.2 Parametric and Nonparametric Approaches 

2.2.1 Polynomial Regression 

In presence of one predictor, holding both normality and linearity assumption, the relationship between the response and 

predictor can be explained by simple linear regression model such as,  

𝑌𝑖 = 𝛽
0

+ 𝛽
1
𝑋𝑖 + 𝜀𝑖 ,            𝐸(𝜀𝑖|𝑋𝑖) = 0,       𝑖 = 1,2,3, … , 𝑛 

But when the linearity assumption violates i.e., the response and predictor does not have a linear relationship, then a 

nonlinear regression model can be imposed for better fit. The non-linear regression model can be written as, 

𝑌𝑖 = 𝑓(𝑋𝑖) +  𝜀𝑖  ,                         𝑖 = 1,2,3, … , 𝑛 

Here, the function 𝑓(𝑋𝑖) can take any form and shape. If the function is replaced by a polynomial function of order p, 

then it is called polynomial regression model and the regression parameters can be obtained by least square method 

(Gergonne, 1815). 

𝑌𝑖 = 𝛽
0

+ 𝛽
1
𝑋𝑖 + 𝛽

2
𝑋𝑖

2 + 𝛽
3
𝑋𝑖

3 + ⋯ + 𝛽
𝑝
𝑋𝑖

𝑝
+ 𝜀𝑖             

2.2.2 Local Regression and Loess Approach  

Local regression is a different approach for fitting flexible non-linear functions involving the fit of a specific point only 

by its neighborhood observations. The basic concept of local regression comes from the graphical approach of Lowess 

(Loess). It fits weighted least square by minimizing ∑ 𝑤(𝑦
𝑖

− 𝛽
0

− 𝛽
1
𝑥𝑖)

2𝑛
𝑖=1  at 𝑋 = 𝑥0 using weight 𝑤(𝑥) and k 

nearest neighbor algorithm with an appropriate choice of smoothing span f. Greater value of f tends to result in more 

global and smoother fit. Usually quadratic function is used to fit locally with the tri-cube weight function w(x) as 

following, 

𝑤(𝑥) = (1 − |𝑑|3)3 

where d is the numeric distance from fitted value and given sample value and 0 ≤ 𝑑 ≤ 1. 

2.2.3 Shape Restricted Regression 

This is a semi parametric model estimation criteria where a constrained regression function and a vector of parameters 

are estimated using a single cone projection. The shape restricted regression model is used by Liao and Meyer (2014) is 

as follows, 

𝑌𝑖 = 𝑓(𝑋𝑖) + 𝛼𝑍𝑖 + 𝜀,          𝑖 = 1,2, … . . , 𝑛 

In a matrix form, it can be written as, 𝑌 = 𝜃 + 𝛼𝑍 + 𝜀, where 𝜃 is the vector of parameter and 𝑍 is the covariate 

matrix. For k covariate, Z is full column rank 𝑛 × 𝑘 matrix and for no covariate case, it contains only a column of ones. 

This model provides a good picture of predictor X non-parametrically using a flexible assumption of the shape of 𝑓(𝑋𝑖) 

with the presence of parametrically modelled covariate. The model accedes eight shapes of the function i.e., increasing, 

decreasing, convex, concave, increasing convex and increasing concave. Estimation of 𝜃 and 𝛼 is executed from a 

single polyhedral cone rather than using back fitting algorithm introduced by Cheng (2009).  

2.2.4 Isotonic Regression and PAVA 

When the predictor holds the assumption of non-decreasing (𝑥𝑖 ≤  𝑥𝑖+1) pattern, hence the function g(x) is a monotonic 

(isotonic) function. The isotonic regression is really helpful because of its flexibility to any functional form. Isotonic 

regression uses weighted least square subject to non-decreasing constraint. The most commonly used algorithm to get 

this regression is pooled adjacent violators algorithm (PAVA). If 𝑥1 < 𝑥2 < 𝑥3 … < 𝑥𝑛 , the PAVA algorithm works 

with starting with initial value 𝑦
1
, moving to right until any pair (𝑦

𝑖
, 𝑦

𝑖+1
) violates monotonicity constraint 𝑦

𝑖
≤ 𝑦

𝑖+1
. 
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If any 𝑦
𝑖

> 𝑦
𝑖+1

, then they will be replaced by 𝑦̅
𝑖

=
𝑦𝑖+ 𝑦𝑖+1 

2
. Then 𝑦

𝑖−1
> 𝑦̅

𝑖
 condition will be checked. If the 

condition is violated, then the process goes back to previous step and performs for the rest values. Otherwise, the 

adjacent three values are pooled and replace them with 𝑦̅
𝑖

=
 𝑦𝑖−1+𝑦

𝑖
+ 𝑦𝑖+1 

3
. This step is repeated until the monotonicity 

constraint prevails (Barlow et al., 1972). 

2.2.5 Kernel Regression for Single Parameter 

Nonparametric regression can be modelled as, 

𝑌𝑖 =   𝑚(𝑋
𝑖
) +  𝜎(𝑋

𝑖
). 𝜀𝑖  , 𝑖 = 1,2, … , 𝑛 . 

While performing monotonic regression, this function 𝑚(𝑋
𝑖
) is estimated through any unconstrained non-parametric 

method such as Nadaraya-Watson estimate or local linear estimate. Then inverse of the monotonic function ( 𝑚̂𝐼) can 

be obtained by the following formula, 

𝑚̂𝐼
−1

=
1

𝑁. ℎ𝑑
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𝑁
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Here, 𝐾𝑑 is a function which measures the probability to find specific distant neighbors from certain values. Kernel 

regression is used here to estimate density. The kernel 𝐾𝑑 uses the bandwidth ℎ𝑑. Many options are available to 

choose an admissible bandwidth of a kernel density estimator such as Sheather and Jones (1991) approach, unbiased 

and biased cross validation approach etc. 

2.2.6 Regression Spline With Basis Function 

Regression spline is a technique which fits lower order polynomial regression models into k distinct regions of predictor. 

It is a very popular regression technique because of its flexibility than higher order polynomials and step functions. It is 

often called piecewise cubic polynomial regression as it fits third order polynomial model of the form 

𝑌𝑖 = 𝛽
0

+ 𝛽
1
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2
𝑋𝑖

2 + 𝛽
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3 + 𝜀𝑖             

for every knots. For k knots, the number of associated spline coefficients is (k+p+1) as there are k+1 polynomials with p 

degree of polynomials having p*k constraints. Let the basis functions can be represented with 𝑏1, 𝑏2, … . , 𝑏𝑘+3 and the 

model becomes  

𝑌𝑖 = 𝛽
0

+ 𝛽
1
𝑏1(𝑋

𝑖 
) + 𝛽

2
𝑏2(𝑋

𝑖 
) + ⋯ + 𝛽

𝑘+3
𝑏𝑘+3(𝑋

𝑖 
) + 𝜀𝑖 .          

It is needed to choose the appropriate basis function for a specific application among different spline basis such as, 

truncated power basis, B-spline, cardinal spline, penalized spline etc. (Knott, 2000). 

2.2.7 Smoothing Spline 

Smoothing spline aims to find a function which minimizes the loss function incorporating a nonnegative tuning 

parameter 𝜆 that actually accounts for the roughness of smoothing spline ranging 0 to ∞. The loss function used here is  

∑{𝑌𝑖 − 𝑔(𝑋𝑖)

𝑛

𝑖=1

}2 + 𝜆 ∫ 𝑔′′(𝑡)2𝑑𝑡    ,   𝜆 ≥ 0 

where 𝑔′′(𝑡) measures the amount by which the slope of a function is changing at t (Green and Silverman, 1994). 

Unlike cubic splines, the main problem of smoothing spline is to fix an appropriate value of 𝜆 to balance between bias 

and variance of smoothing spline rather than knots. LOOCV (Leave One Out Cross Validation) method can be 

employed here to find a possible solution using the following formula, 

𝑅𝑆𝑆𝑐𝑣(𝜆) = ∑{𝑌
𝑖

− 𝑔̂
𝜆

(−𝑖)

𝑛

𝑖=1

(𝑋
𝑖
)}2

 

2.2.8 Generalized Additive Model (GAM) 

Generalized Additive Model (GAM) is a technique to extend a linear model by imposing linear or non-linear functions 

for each variable for smoothing purpose prevailing additivity. So if there are multiple predictors 𝑋1, 𝑋2, … , 𝑋𝑝 and the 

response is Y, then the GAM model can be written as, 
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𝑌𝑖 = 𝛽
0

+ ∑ 𝑓
𝑗
(𝑋𝑖𝑗) + 𝜀𝑖

𝑝

𝑗=1

 , 𝑖 = 1, 2,3 … , 𝑛 

where 𝜀𝑖 is iid random variable with mean 0 and variance 𝜎2 (Hastie & Tibshirani, 1990). As GAM provides a linear 

equation, the impact of every single predictor variable in response can be identified individually. GAM with a natural 

spline is a simpler way to fit if an appropriate set of basis function can be chosen. On the contrary, GAM with 

smoothing spline includes a tuning parameter to deal with the roughness of the fitted curve which makes the 

computation little bit more complex. As least square estimates cannot be obtained here, backfitting method can obtain 

an admissible result. 

3. Practical Performance 

We use a dataset of GDP and HDI of 184 countries to demonstrate the methodology for several types of constrained 

regression models. In this study, it is aimed to fit a nonlinear regression model of GDP with shape constraint, assuming 

GDP as response variable and HDI as predictor. A scatterplot (fig 1) is drawn to present the worldwide scenario of GDP 

along with HDI according to continents. 

 

(a) 

 

(b) 

Figure 2. (a) Scatterplot of GDP with respect to HDI of 184 countries according to continents, (b) Illustration of simple 

linear regression model individually for four classes of human development index 

Figure 2(a) clearly shows an upward convex relationship between GDP and HDI. As log transformation does not result 

in a linear pattern, it is wise to fit a nonlinear regression model with a shape restriction of convexity rather than a linear 

one. Countries are classified into four classes such as very highly developed (0.8 and above), highly developed (0.7 to 

0.8), medium developed (0.55 to 0.7) and poorly developed (0.55 or less) according to their human development index 

which was introduced in Human Development Report 2014. Demonstration of linear regression models for each of the 

classes (figure 2(b)) result in poor fitting (𝑅2 = 0.58, 0.18, 0.000008 and 0.18) for each class and also for overall data 

(𝑅2 = 0.2). Such situation can be handled in various parametric and nonparametric way where linearity assumption is 

disregarded. 

3.1 Polynomial Regression 

Polynomial regression is parametric way to deal with intrinsically nonlinear data where least square estimation is used 

to predict parameters. As larger degree overfits the data, it is crucial to find the optimal choice of order of polynomial 

function. Polynomials of several orders have been fitted for this data where the dependent variable is GDP and the 

predictor is HDI. F test statistic (𝐹 = 7.92, 𝑝 𝑣𝑎𝑙𝑢𝑒 = 0.0054) suggests polynomial of 4th order fits better than any 

other order. So the non-linear effect of the GDP data can be modelled through a polynomial of degree 4 given by,  
𝑌𝑖 = 𝛽
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Figure 3. Fitting of polynomial regression of order 4 with 95% confidence band 

This model leads to Multiple 𝑅2= 0.8033 (adjusted 𝑅2=0.7987) and shows the significance of 𝛽
1
, 𝛽

2
, 𝛽

3
and 𝛽

4
 

coefficients. Though polynomial regression model is often inflexible to interpret, it has several enviable properties to 

figure out curvilinear relationship of the response and predictor parametrically.  

3.2 Local Regression  

For the GDP data, Loess is applied for two tuning parameter f. From figure 4 it is observed that, for f=0.8 the fitted line 

does not capture the total intrinsic pattern as higher value of f lead to use more of the data as training observations. 

 

Figure 4. Local piecewise polynomial regression illustrated for two smoothing parameters (red line represents f=0.3 and 

green line represents f=0.8) 

For this study, the admissible choice of smoothing span is 0.6 as the residual standard error is lower for this bandwidth. 
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This is a non-parametric approach employing moving polynomial although parametric weighted least square is used to 

fit the estimate in every point of x. Figure 5 shows the Loess fit of GDP data for f= 0.6 with 95% confidence band. 

 

Figure 5. Fitting of local regression for f=0.6 with 95% confidence band 

3.3 Shape Restricted Regression 

Shape restricted regression is a semi parametric technique where the response is modelled non-parametrically with 

predictor with a clear assumption of its shape as well as modelled parametrically with one or more covariates. As our 

GDP data exhibits an increasing convexity, using this assumption we get the following (figure 6) estimates.  

 

Figure 6. Fitting of convex regression with presence of no covariate (x=HDI, y=GDP) 

As the regression is demonstrated for only one predictor with no categorical or scaled covariate, the parametric part of 
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this regression is absent. The hypothesis testing of 𝐻0: 𝐹𝑢𝑙𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 vs 𝐻1: 𝐿𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑑𝑒𝑙 is an exact 

one sided test which is illustrated with 𝐸01 =
𝑆𝑆𝐸0−𝑆𝑆𝐸1

𝑆𝑆𝐸0
. We get the value sum of squared residuals for the linear part, 

𝑆𝑆𝐸0 = 7.177 and sum of squared residuals for the shape constrained model 𝑆𝑆𝐸1=1.366. P value (<.001) of this test 

justifies the use of shape constraint of the model. 

3.4 Isotonic Regression and PAVA  

Isotonic regression is applied to fit monotonically increasing model which has actually piecewise linear form. Pooled 

adjacent violators algorithm is also used as it is a general approach to deal with convex function and ties to solve 

isotonic problem. Estimation of isotonic regression with active set algorithm is figured out in 7(a) whereas 7(b) shows 

the popular PAVA algorithm employing weighted median solver. 

 

(a) 

 

(b) 

Figure 7. (a) Isotonic regression with active set algorithm and (b) PAVA optimization using weighted median solver 

3.5 Kernel Regression  

 

Figure 8. Kernel smoothing with different bandwidth selectors 

For modeling the dependent variable GDP with one predictor HDI Kernel regression with three different optimal 
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bandwidth selection techniques have been employed (figure 8). BCV, SJ and NRD method has given almost similar 

result as they all use pairwise binned distance. 

3.6 B-Spline and Smoothing Spline 

Countries are categorized into four distinct groups according to their HDI for classification. So imposing these quartile 

cutoff values (0.55, 0.7, 0.8) as knots we get the following model with six predictors and intercept. 

𝑌𝑖 = 𝛽
0

+ 𝛽
1
𝑏1(𝑋

𝑖 
) + 𝛽

2
𝑏2(𝑋

𝑖 
) + ⋯ + 𝛽

6
𝑏6(𝑋

𝑖 
)             

 

Figure 9. Cubic regression spline using basis function with three knots at 0.55, 0.7, 0.8 

Spline fitting to GDP data with three knots is displayed graphically in figure 9. The spline function is colored as green 

and 95% confidence bands are colored as red. It is evident that confidence bands in the boundary region appears 

narrower. This model results into adjusted 𝑅2 =0.7962 and multiple 𝑅2 =0.8029, which is a clear indication of better 

fit. 

 

Figure 10. Fitting of Smoothing spline by leave-one-out cross-validation (lOOCV), resulted in 6.56 df 

3.7 Generalized Additive Model (GAM) 

Generalized additive model (GAM) is a linear model in which the linear predictor depends linearly on unknown smooth 

https://en.wikipedia.org/wiki/Smooth_function


 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 10, No. 4; 2021 

60 

functions of some predictor variables. It is called additive model because smooth functions for separate variables are 

added together. For GDP data, three models are employed. The first model uses smoothing spline of predictor with 6 

degrees of freedom. Model 2 uses bs=cr, which implies cubic spline basis defined by a modest sized set of knots spread 

evenly through the covariate values. They are penalized by the conventional integrated square second derivative cubic 

spline penalty. Model 3 uses REML of maximum likelihood which may be used for smoothness selection, by viewing 

the smooth components as random effects. 

Formula:  

Model 1: GDP ~ s (HDI, 6) 

Model 2: GDP ~ s (HDI, bs = "cr") 

Model 3: GDP ~ s (HDI), method="REML” 

Table 1. Comparative performance of three GAM models 

 AIC Adjusted 𝑅2 Deviance 

Model 1 4046.095 0.4879 49.07% 

Model 2 3882.856 0.794 80.1% 

Model 3 3700 0.795 80.2% 

A comparison between these three GAM models has been illustrated in table 1. Model 2 and 3 gives almost similar 

result with an admissible value of adjusted 𝑅2. Model 2 is displayed in figure 11 with 95% confidence band. Model 3 

shows better estimate as it resulted in lower value of Akaike information criterion.  

 

Figure 11. Fitting of generalized additive model (GAM) for model 2 

4. Discussion 

A comparative performance of the above fitted non-linear models has been presented in table 2. The performance of the 

models has been evaluated by some quality measures such as root mean squared error (RMSE), mean absolute error 

(MAE) and mean absolute percentage error (MAPE). It is apparent from the table that among several parametric and 

non-parametric approaches, the regression model restricted to convex shape and general additive model (GAM) using 

maximum likelihood estimation for smoothing parameter gives better estimation as their error measurements are lower 

https://en.wikipedia.org/wiki/Smooth_function
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than others.  

Table 2. Comparative performance of fitted models 

Model RMSE MAE MAPE 

Polynomial regression (4) 5083.5 3351.1 19.48% 

Local regression (f=0.6) 5168.2 3418.7 21.07% 

Convex regression 4053.7 2481.6 11.41% 

Spline regression (BS) 5353.3 3809.1 24.80% 

Smoothing Spline 5298.1 3944.7 25.32% 

GAM3 4299.3 2911.9 18.75% 

5. Conclusion  

The study is intended to fit a model between two key variables human development index (HDI) and gross domestic 

product (GDP) of worldwide countries. It is evident from the data that the countries which has low human development 

index implying low life expectancy, less year of schooling and lower income, has also less GDP per capita. Most of the 

African countries and few Asian countries belong to this class. On the contrary, most of the European and North 

American countries show very high human development along with a good prospect in GDP. As the data exhibits 

convexity pattern, several non-linear methods have been conducted for modelling purpose. Among parametric 

techniques, polynomial with degree 4 gives a better fit. Among non-parametric techniques, general additive model 

(GAM) performed well for smoothing. For semi-parametric situation, shape constrained regression cone projection 

works well under increasing convexity with the presence of scaled or categorical covariates. 
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