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Abstract 

Here in this paper, we investigate the performance of a diagnostic test based on a mixture Gaussian Copula which 

incorporates a Markov Chain. Suppose that in the context of an infectious disease, there are three states; Susceptible 

 S , Infected  I , or Recovered  R . We compare the performance of this approach with the ROC (Receiver 

Operating Characteristic) Curve which is usually used in diagnostic studies.  

Keywords: diagnostic test, Markova chain, mixture-Gaussian copula, infectious disease 

1. Introduction 

In biometry especially in epidemiological modeling SIR (Susceptible, Infected, and Recovered) model has been in use 

for a long time. Each compartment S  (Susceptible), I  (Infected), and R  (Recovered) have their rates such the rate 

of susceptibility  s t , rate of infection  i t , and the rate of recovery  r t are modeled by using differential equations. 

This requires a good understanding of differential equations and partial differential equations. In addition, this approach 

at times requires iterative numerical methods to obtain the solutions. On the other hand, Copula models do not require 

the differential equations or the iterative numerical methods. These are probabilistic models and are fairly easy to 

manage compared to other existing mathematical models such as SIR model. The Copula based methods originated as a 

result of the pioneering work done by Sklar (1959). The Copulas use the dependence structure and the direction of the 

association for modeling. There are several copulas and each differ based on their properties. The Copula models fall 

under one of two major categories; Archimedean Copulas and non-Archimedean family of Copulas. In addition, there 

are copulas for the discrete type variables and the continuous type variables. These Copulas have applications in 

Actuarial Science, Biometry, Economics, Finance, Engineering etc. In Actuarial Science, Bowers et al (1997), Cox and 

Oakes (1984), David and Moeschberger (1978), Carriere (1994) used the Copulas to construct the competing risk 

models. Marshall and Olkin (1988) used the Copulas to construct the machine frailty models. Zheng and Klein (1995) 

considered the use of Copula models in the context of survival models. In Epidemiology, especially in the case of 

malaria, Demongeot et al (2013) used an Archimedean Copula known as the Gumbel Copula to study the interaction 

among the SIR compartments by using the rate of susceptibility, rate of infection, and the rate of recovery which were 

based on the Ross-Macdonald model. These are mainly differential equations. They used the Gumbel Copula model to 

derive the conditional distribution for the interaction from one compartment to another compartment. Moreover, the 

Copulas have applications in Quantile Regression too. For the literature review on the copulas, the interested readers are 

referred to Nelson (2006).  

Here in this paper, the focus is on studying the suitability of a diagnostic test in the context of an epidemic disease 

which uses the Copula model. Nanthakumar (2013) used a mixture Gaussian Copula model to study the suitability of 

diagnostic tests in the context of a two state Markov Chain. Before that, Pundir (2011), Krazanowski and Hand (2009), 

Gonen (2007), Pepe (2003), Zhou et al (2002), Shultz (1995) and others have investigated the use of Receiver Operating 

Characteristic Curve (ROC Curve) to study the suitability of diagnostic tests based on single and multiple variables.      

This paper extends the earlier results obtained by Nanthakumar (2013) to a three compartment situation. The objective 

here is to evaluate the diagnostic ability of the pre-treatment measurement  1V  taken at time 1t  and the 

post-treatment measurement  2V taken at time 2t  . In this regard, we will use the probability that  2 1P V V based on 

a mixture-Gaussian Copula to evaluate the diagnostic ability. We compare the performance of this approach with the 

ROC (Receiver Operating Characteristic) curve which is usually used in diagnostic studies. This paper is divided into 

many sections. We present the methodology in section 2, application and numerical results in section 3, and the 
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discussion and conclusion in section 4.  

2. Methodology 

We believe that these three compartments (states) follow a transition pattern according to the following transition 

probability matrix,  

1 0

0 1

0 0 1

b b

c c

 
 

 
 
 

 

Note that, 

 2 | 1b P state is S at timet state was S at timet    

and  

 2 | 1c P state is I at timet state was I at timet    

Moreover, note that at time 1t  , the state space  , ,S I R has the probability distribution;    ,P S P I   , and 

  1P R      . 

Note that since  and  are the state space probabilities for compartments 1  and 2 respectively in a three 

compartment model with 1   . 

A random sample of n subjects who received treatment for this infectious disease were observed. Let 1V be a 

health-related pre-treatment measurement (like temperature) taken at time =1 from a subject observed at random from 

this sample where the infectious disease is either prevalent or about to become prevalent. Note that, this subject could 

have come from any of the three compartments; S (Susceptible), I (Infected), or R (Recovered). Let us suppose at 

time = 1, for those who are susceptible to this disease  S , the distribution is  2

11 11,N   ; for those who are infected by 

this disease  I , the distribution is  2

12 12,N   ; for those who have already recovered from this disease  R , the 

distribution is  2

13 13,N   .   

Similarly, let 2V be a health-related post-treatment measurement taken at a different time (say time =2)  for the second 

time from the same subject where the infectious disease is prevalent or about to become prevalent. Moreover, let us 

suppose at time = 2, for those who are susceptible, the distribution is  2

21 21,N   ; for those who are infected, the 

distribution is  2

22 22,N   ; for those who have recovered, the distribution is  2

23 23,N   .   

We are using the probability  2 1p P V V  to evaluate the diagnostic ability of the measurements.  But computing 

this probability involves the joint distribution of  1 2,V V  . This is where we need the Copula. Here, we use a mixture 

Gaussian Copula which captures the transition among the states and at the same time gives a fairly approximate 

estimate of this probability  2 1 .p P V V   

As noted earlier, let 1V  be the measurement taken at time = 1 (say for example temperature) and 2V  be the 

measurement taken at time = 2.  

         

   

1 1 1 1 1 1

1 1

| | inf inf

| cov cov

P V v P V v susceptible P susceptible P V v ected P ected

P V v re erd P re ered

    

 
  (1) 

This leads to the result that the pre-treatment measurement 1V  taken at time 1t   follow a mixture normal 

distribution as indicated below, 

            2 2 2

1 11 11 12 12 13 13~ , , 1 ,V N N N                              (2) 

Similarly, under the assumption that the transition takes place according to the first-order Markov Chain described 

earlier, the post-treatment measurement 2V taken at time 2t   follow a different mixture normal distribution  

              2 2 2

2 21 21 22 22 23 23~ , 1 , 1 ,V b N b c N c N                       (3) 

As we can see, the marginal distributions are each three component mixture of normal distributions. It appears 

reasonable to model the joint distribution of 1 2,V V as a nine-component mixture of bivariate Gaussian Copulas.   

2.1 Mixture of Bivariate Gaussian Copulas 

Here, we define the nine-component mixture Gaussian Copulas. 
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Let    1 2 1 1 2 2, ,F v v P V v V v   be the joint cumulative distribution function. 

Then,  
 2

1 2

1 2

1 2

,
,

F v v
f v v

v v




 
is the joint density function. We will model this joint density function as follows.    

 
 

2 2

1 11 2 21 1 11 2 21

2
11 21 11 21

1
2

2 1
1

1 2
2

11 21

,
2 1

v v v v

p
f v v e

   


   

  

            
        

         


 

                        

2 2

1 12 2 22 1 12 2 22

2
12 22 12 22

1
2

2 1
2

2

12 222 1

v v v v

p
e

   


   

  

            
        

         



 

                         

2 2

1 13 2 23 1 13 2 23

2
13 23 13 23

1
2

2 1
3

2

13 232 1

v v v v

p
e

   


   

  

            
        

         



 

                        

2 2

1 11 2 22 1 11 2 22

2
11 22 11 22

1
2

2 1
4

2

11 222 1

v v v v

p
e

   


   

  

            
        

         



                    

                       
 

22

2 23 2 231 11 1 11

2
11 23 11 23

1
2

2 1
5

2

11 232 1

v vv v

p
e

  


   

  

           
        

         


          

                        

2 2

1 12 2 21 1 12 2 21

2
12 21 12 21

1
2

2 1
6

2

12 212 1

v v v v

p
e

   


   

  

            
        

         



                            

                        

22

2 23 2 231 12 1 12

2
12 23 12 23

1
2

2 1
7

2

12 232 1

v vv v

p
e

  


   

  

           
        

         



 

                        

2 2

1 13 1 132 21 2 21

2
13 21 13 21

1
2

2 1
8

2

13 212 1

v vv v

p
e

  


   

  

           
        

         



 

                       

2 2

1 13 1 132 22 2 22

2
13 22 13 22

1
2

2 1
9

2

13 222 1

v vv v

p
e

  


   

  

           
        

         



                      (4) 

Remark: The Copulas are supposed to yield the marginal distributions when the data is collapsed. Therefore, collapsing 

the data and then equating the marginal distributions yield the following equations. 

1 4 5p p p                                            (5) 

        2 6 7p p p                                           (6) 

        3 8 9 1p p p                                         (7) 

        1 6 8p p p b                                        (8) 

   2 4 9 1p p p b c                                      (9) 
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        3 5 7 1p p p c                                       (10) 

Also note that 

9

1

1i
i

p


 .                                       (11) 

Moreover, the sum of equations      5 , 6 , 7  11 . 

Also, the sum of equations      8 , 9 , 10  11 . 

This means only four of these equations are independent although there are nine parameters. Since there are more 

number of parameters than the number of independent equations, we need to set five of these parameters at fixed values 

in such a way that we have a feasible solution to this system of equations.  

Luckily in this case, the transition from state I  (Infected) at time 1t   to state S  (Susceptible) at time 2t   is 

not theoretically feasible. Similarly, the transition from state R  (Recovery) at time 1t   to state S  (Susceptible) at 

time 2t   is assumed to be not theoretically feasible. Likewise, the transition from state R  (Recovery) at time 

1t   to state I  (Infected) at time 2t   is not theoretically possible. 

So, we will set the corresponding parameters 6 8 90, 0, 0p p p   or to values closer to 0 in addition to fixing two 

other parameters.   

Note that 2 1V V is an indication of improvement as a result of this treatment in this diagnostic study. So, the interest 

is in computing the probability  2 1P V V . 

Note that based on this copula density, 

      
9

2 1 2 1
1

0 |i
i

P V V p P V V group i


      

3. Application 

3.1 Numerical Example 

As we know there are infectious diseases like Cholera, Malaria, SARS, COVID-19 that have the potential to affect the 

human population from time to time. There are mainly three possible states when it comes to these infectious diseases; 

susceptible ( S ), infected ( I ), and recovered ( R ). Suppose that an infectious disease is prevalent in a region and due 

to that people are advised to take a preventive medicine (treatment). In order to ensure the effectiveness of this 

treatment, two measurements (a pre-treatment measurement 1V was taken at time 1t  . Then again, a post-treatment 

measurement 2V was taken at time 2t   from the same individual. Here, we assume that the state to state transition is 

taking place according to a Markov Chain as described earlier.  

Here we assume the estimates of  2 1P V V or analogously   2 1P V V can provide a true measure of the health status if 

the measurements  1 2,V V are taken carefully. Let us suppose that the transition is taking place according to the transition 

probability matrix given by 

0.75 0.25 0

0 0.9 0.1

0 0 1

 
 
 
 
 

 

Also, we are making the assumption that all the component distributions are normally distributed with the means and 

standard deviations given as follows. 
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Table 1. 

 
Susceptible  S  Infected  I  Recovery  R  

Pre-treatment  1V  Mean= 11 98.2    

Std = 11 0.8    

Mean = 12 103.5    

Std = 12 0.9    

Mean = 13 98.6    

Std = 13 0.4    

Post-treatment  2V  Mean = 21 98.4    

Std = 21 0.5    

Mean = 22 99.9    

Std = 22 0.7    

Mean = 23 98.5    

Std = 23 0.3    

 

In addition, we are making one additional assumption that the correlation that could exist between 1V  and 2V  is a 

constant within the categories where it is believed to exist. Let us say that 0.3  . 

It is to be noted that at time 1t  , 70% of the population was susceptible, 20% infected, and the remaining 10% were 

already immune to the disease. At time 2t  , the percentages are as follows due to the transition explained by the 

Markov Chain, 

   

0.75 0.25 0

0.7 0.2 0.1 0 0.9 0.1 0.525 0.355 0.12

0 0 1

 
 

 
 
 

 

This means that at time 2t  , 52.5% of the population was still susceptible, 35.5% were infected, and 12% were either 

immune or fully recovered. 

Based on the above percentages, the mixing proportions can be estimated as follows. 

                               1 4 5 0.7p p p                                      (12) 

                               2 6 7 0.2p p p                                       (13) 

                               3 8 9 0.1p p p                                       (14) 

                              1 6 8 0.525p p p                                     (15) 

                              2 4 9 0.355p p p                                     (16) 

                              
3 5 7 0.12p p p                                     (17) 

Also note that 

9

1

1i

i

p


  

This means that there is redundancy and that there are only four independent equations in nine variables. This creates a 

situation that are infinitely many solutions. We will accept the solutions that are between 0 and 1 as these are 

probabilities (or mixing proportions) for the mixture Gaussian Copula. 

Moreover, as we can see from the following equations, the solutions to the mixing proportions impact the estimates of 

the overall covariance, overall variance, and the overall probability for effectiveness of the treatment. 
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   
9

1 2 1 2

1

, ( , ) |i

i

Cov V V p Cov V V Group i


                            (18) 

    
9

1 1

1

|i

i

Var V p Var V Group i


                               (19) 

    
9

2 2

1

|i

i

Var V p Var V Group i


                                  (20) 

   2 1 2 1 0P V V P V V     

                        
9

2 1

1

0 |i

i

p P V V Group i


                                  (21) 

We will proceed with the calculations as follows, 

 
   2 1 21 11 21 11

2 1 1
2 2 2 2

21 11 21 11 21 11 21 11

0
0

2 2

V V
P V V p P

   

       

     
    
     

 

                               +    2 1 22 12 22 12

2
2 2 2 2

22 12 22 12 22 12 22 12

0

2 2

V V
p P

   

       

     
 
     

  

                               +    2 1 23 13 23 13

3
2 2 2 2

23 13 23 13 23 13 23 13

0

2 2

V V
p P

   

       

     
 
     

 

                               +    2 1 22 11 22 11

4
2 2 2 2

22 11 22 11 22 11 22 11

0

2 2

V V
p P

   

       

     
 
     

 

                               +    2 1 23 11 23 11

5
2 2 2 2

23 11 23 11 23 11 23 11

0

2 2

V V
p P

   

       

     
 
     

  

                               +    2 1 21 12 21 12

6
2 2 2 2

21 12 21 12 21 12 21 12

0

2 2

V V
p P

   

       

     
 
     

 

                               +    2 1 23 12 23 12

7
2 2 2 2

23 12 23 12 23 12 23 12

0

2 2

V V
p P

   

       

     
 
     

 

                               +    2 1 21 13 21 13

8
2 2 2 2

21 13 21 13 21 13 21 13

0

2 2

V V
p P

   

       

     
 
     

 

                               +    2 1 22 13 22 13

9
2 2 2 2

22 13 22 13 22 13 22 13

0

2 2

V V
p P

   

       

     
 
     

                     (22) 

 

Next, we will evaluate the probability  2 1P V V  by using the solutions for the mixing proportions as given in the 

next table.  
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Table 2. 

1p  2p  3p  4p  5p  6p  7p  8p  9p  Copula 

Estimate of 

 2 1P V V   

0.525 0.200 0.100 0.155 0.020 0.000 0.000 0.000 0.000 0.48174 

0.435 0.120 0.020 0.205 0.060 0.040 0.040 0.050 0.030 0.44655 

0.435 0.120 0.040 0.215 0.050 0.050 0.030 0.040 0.020 0.44847 

0.520 0.095 0.000 0.160 0.020 0.005 0.100 0.000 0.100 0.42357 

0.445 0.095 0.045 0.230 0.025 0.055 0.050 0.025 0.030 0.43783 

0.470 0.110 0.065 0.225 0.005 0.040 0.050 0.015 0.020 0.44591 

0.485 0.130 0.070 0.205 0.010 0.030 0.040 0.010 0.020 0.45285 

0.495 0.140 0.070 0.195 0.010 0.020 0.040 0.010 0.020 0.45659 

0.490 0.130 0.075 0.205 0.005 0.030 0.040 0.005 0.020 0.45287 

0.480 0.140 0.065 0.195 0.025 0.030 0.030 0.015 0.020 0.45603 

0.525 0.200 0.000 0.055 0.120 0.000 0.000 0.000 0.100 0.45737 

0.335 0.065 0.030 0.290 0.075 0.120 0.015 0.070 0.000 0.43187 

0.415 0.090 0.040 0.215 0.070 0.100 0.010 0.010 0.050 0.42896 

0.415 0.085 0.065 0.245 0.040 0.100 0.015 0.010 0.025 0.43345 

0.415 0.070 0.060 0.255 0.030 0.100 0.030 0.010 0.030 0.42745 

0.425 0.100 0.100 0.255 0.020 0.100 0.000 0.000 0.000 0.44437 

0.425 0.090 0.100 0.265 0.010 0.100 0.010 0.000 0.000 0.44118 

0.345 0.100 0.000 0.255 0.100 0.080 0.020 0.100 0.000 0.44513 

0.445 0.095 0.045 0.230 0.025 0.055 0.050 0.025 0.030 0.43783 

0.420 0.095 0.015 0.180 0.100 0.100 0.005 0.005 0.080 0.42326 

 

 

Note that the empirical estimate of  2 1P V V is 0.477. As you can see from the above table (Table 2), the Copula based 

estimates are fairly close to the empirical estimate. Not only that, these estimates are also robust across the feasible 

solutions for the mixing proportions. It is clear that the solutions for the mixing proportions do not affect the Copula 

based estimate for  2 1P V V . This was the case in the previous study conducted by this author in the context of two 

component mixture.  

 

3.2 ROC Curve  

We can study the effectiveness of the diagnostic by using the ROC curve too. For this, we will use the area under the 

ROC (AUROC) for the evaluation. 

Let  1x P V         

 2y P V    

where is a threshold value chosen within the range of the pre-treatment and post-treatment measurements.  

In this analysis, we will draw the ROC curve ( y  versus x ) and evaluate the area under the curve. The area under the 

curve is a measure of the performance of the diagnosis test.   
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As you can see, the area under the ROC curve is about 0.5 and it is in agreement with the estimate given by the 

mixture-Gaussian Copula model.  

4. Conclusion and Discussion 

The purpose of this study was to see whether the mixture-Gaussian Copula model can be used in evaluating the 

diagnostic ability of the pre-treatment and post-treatment measurements 1 2,V V  when the joint distribution of these 

measurements is unknown. Here, we use a 9-component mixture Gaussian Copula to model the joint distribution of

1 2,V V . As seen from this study, this mixture-Gaussian Copula model is doing fairly well in evaluating the diagnostic 

ability of the pre-treatment and post-treatment measurements. This is supported by the empirical as well as ROC-curve 

based estimates of  2 1P V V which measures the diagnostic ability of this test.     
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