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Abstract 

In this paper, we present a review on the log-logistic distribution and some of its recent generalizations. We cite more 

than twenty distributions obtained by different generating families of univariate continuous distributions or 

compounding methods on the log-logistic distribution. We reviewed some log-logistic mathematical properties, 

including the eight different functions used to define lifetime distributions. These results were used to obtain the 

properties of some log-logistic generalizations from linear representations. A real-life data application is presented to 

compare some of the surveyed distributions. 

Keywords: log-logistic distribution, log-logistic generalizations, generalized classes of distributions, construction of 

new families, censored data, survival analysis 

1. Introduction  

The log-logistic distribution, also known as Fisk distribution in economics, is one of the important continuous 

probability distributions with a heavy tail defined by one scale (or one rate) and one shape parameters. The log-logistic 

distribution is a distribution with a non-negative random variable whose logarithm has the very popular logistic 

distribution. It was initially introduced to model population growth by (Verhulst, 1838). It is often applied to model 

random lifetimes, and hence has applications in time-to-event analysis. So; if the original data of variable is 

𝑥1, 𝑥2, 𝑥3, …, etc., then 𝑙𝑜𝑔 (𝑥1), 𝑙𝑜𝑔(𝑥2), 𝑙𝑜𝑔(𝑥3), …, etc. follow logistic distribution. A logarithmic transformation 

on the logistic. The LL distribution is similar in shape to the 2-parameter log-normal distribution but it is more suitable 

for use in the time-to-event data analysis since it has heavier tails than the 2-parameter log-normal. The good thing for 

log-logistic distribution is that it has greater mathematical tractability when dealing with incomplete (or censored) data 

and also its cumulative distribution can be written in closed form. Log-logistic distribution is particularly applicable to 

model heavy tailed data in business, medicine, economics, income, wealth, and social sciences. It can also be found in 

modeling non-monotone (i.e., unimodal) hazard functions.  

The log-logistic distribution has various important properties compared to many other parametric distributions used in 

the field of survival and reliability analysis: (i) it is cumulative distribution function (cdf) has an explicit closed-from 

expression, which is very useful for analyzing time-to-event data with incomplete information (e.g. censoring and 

truncation); (ii) it has a similar shape of pdf and hazard function as the log-normal distribution but has heavier-tails and 

the tail properties are what the inference is based on; (iii) it has a non-monotonic hazard function: the hazard function is 

unimodal when shape parameter is greater than 1 and is decreasing monotonically when shape parameter is less than or 

equal to 1; this is what makes to be different from the Weibull distribution; (iv) it has the potential for analysis of 

time-to-event data whose rate increases initially and decreases later; (v) it is also used to analyse the skewed data; (vi) 

the LL distribution can be adopted as the basis of an accelerated failure time (AFT) model by allowing the scale 

parameter α to differ between groups (Reath et al. 2018), (vii) it  has also closed under the proportional odds model; 

and the last but not the least (viii) The generalization of the LL distribution has an attractive feature of being a member 

to both AFT and Proportional hazard (PH) models. These important properties are what makes that the log-logistic 

distribution can be viewed as a simple while useful parametric model which can be widely used in many different 

disciplines, including demography for modeling population growth (Verhulst, 1838); economics for the distribution of 

wealth or income inequality (Fisk, 1961); engineering for reliability analysis (Ashkar & Mahdi, 2003); and hydrology 

for modelling stream flow rates and precipitation (Rowinski et al. 2002) and many other fields.  
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Some other authors who discussed and studied the properties and applications of LL distribution are (Kleiber and Kotz, 

2003) studied the application of LL distribution in economics. Collatt (2003) discussed the application of LL 

distribution in health science for modeling the time following for heart transplantation, Tahir et al (2014) discussed it is 

useful for modeling censored data usually common in survival and reliability experiments. Other authors who studied 

the applications of LL distribution are (Prentice, 1976) (Prentice and Kalbfleisch, 1979); (Bennett, 1983); (Singh and 

George, 1988); (Nandram, 1989); (Diekmann, 1992); (Bacon, 1993); (Little et al. 1994); (BRÜEDERL and Diekmann, 

1995); (Gupta et al. 1999) among others. The LL distribution has been widely used in different fields such as actuarial 

science, economics, survival analysis, reliability analysis, hydrology and engineering. In some cases, the log-logistic 

distribution is verified to be a good alternative to the log-normal distribution for modeling censored data in survival and 

reliability analysis due to its mathematical simplicity and it is characterizing increasing hazard rate function. However 

due to the symmetry of the log-logistic model, it may be poor when the hazard rate is heavily tailed or skewed. 

Therefore, there is an increasing trend in generalization of the baseline LL distribution by adding an extra shape 

parameter to the parent (or baseline) distribution or by using other generalization techniques. In the statistical literature, 

proposing new probability distributions is rich and growing rapidly and various are the papers extending the LL 

distribution designed to serve as statistical models for a wide range of real lifetime applications with does not follow 

any of the existing probability distributions.  

The remainder of the paper is organized as follows. Section 2 reviews the LL distribution, and the two common 

parametrization methods for LL distribution and some mathematical properties of the LL distribution are discussed. 

Section 3 discussed the extensions of the LL distribution. Section 4 methods for generating new families of continuous 

probability distributions and we cite telegraphically twenty distributions obtained by different generated families and 

compounding methods on the log-logistic distribution.  Section 5 presents the estimation of the parameters. A real-life 

data application is presented in section 6. Section 7 we discussed the censored data and the G- families of the 

distributions. concluding remarks and the summary of the work is presented in section 8. Finally, Section 9 we highlight 

some future works after the survey. 

2. Log-logistic Distribution  

There are several different parametrizations of the distribution in use. In this study we focused on the two common ones; 

scale parametrization and rate parametrization. There are several functions related to continuous probability 

distributions. In this study, we focused on those functions which are related to lifetime distributions as a random 

variable. The most common ones are; cumulative distribution function (cdf), probability density function (pdf), survival 

(reliability function), hazard (failure) rate function (HR), cumulative hazard rate (CHR) function, cumulative hazard 

rate average function (HRA), and the conditional survival function (CSF). The good thing for these functions is that 

they completely describe the distribution of lifetime, and if you know any of these functions, it is easy to determine the 

others. 

For a random variable X has a log-logistic distribution having shape parameter 𝛽 > 0, and scale parameter 𝛼 >
0, denoted by X ~LL (𝛼, 𝛽). The cdf, pdf, survivor function, hazard (failure) rate function, cumulative hazard rate 

function, reversed hazard rate function, the hazard rate average function, and the conditional survival functions are 

given by respectively: 

𝐹(𝑥;  𝛼, 𝛽) =  
1

1 + (
𝑥
𝛼
)
−𝛽
= 

(
𝑥
𝛼
)
𝛽

1 + (
𝑥
𝛼
)
𝛽
 =   =  

𝑥𝛽

𝛼𝛽 + 𝑥𝛽
                                                      (1) 

𝑓(𝑥;  𝛼, 𝛽) =  
(
𝛽
𝛼
) (
𝑥
𝛼
)
𝛽−1

(1 + (
𝑥
𝛼
)
𝛽

)
2                                                                                    (2) 

𝑠(𝑥;  𝛼, 𝛽) = 1 − 𝐹(𝑥;  𝛼, 𝛽) =  
(
𝑥
𝛼
)
−𝛽

1 + (
𝑥
𝛼
)
−𝛽
=

1

1 + (
𝑥
𝛼
)
𝛽
                                                   (3) 

ℎ(𝑥;  𝛼, 𝛽) =
𝑓(𝑥;  𝛼, 𝛽)

𝑆(𝑥;  𝛼, 𝛽)
=  

𝑓(𝑥;  𝛼, 𝛽)

1 − 𝐹(𝑥;  𝛼, 𝛽)
  =  

(
𝛽
𝛼
) (
𝑥
𝛼
)
𝛽−1

1 + (
𝑥
𝛼
)
𝛽
,                                              (4) 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 10, No. 3; 2021 

95 

𝐻(𝑥) =  −𝑙𝑜𝑔𝑅(𝑥) =  ∫ ℎ(𝑥)𝑑𝑥,                                                                                 (5) 
𝑥

0

 

𝑟(𝑥;  𝛼, 𝛽) =
𝑓(𝑥;  𝛼, 𝛽)

𝐹(𝑥;  𝛼, 𝛽)
==

[
 
 
 (
𝛽
𝛼
) (
𝑥
𝛼
)
𝛽−1

(1 + (
𝑥
𝛼
)
𝛽

)
2

]
 
 
 

[
(
𝑥
𝛼
)
𝛽

1 + (
𝑥
𝛼
)
𝛽 ]

  =
(
𝛽
𝛼
) (
𝑥
𝛼
)
−1

1 + (
𝑥
𝛼
)
𝛽
                                            (6) 

𝐻𝑅𝐴(𝑥) =  
𝐻(𝑥)

𝑥
=
∫ ℎ(𝑥)𝑑𝑥.
𝑥

0

𝑥
, 𝑥 > 0,                                                                                 (7) 

𝐶𝑆𝐹 =  𝑃(𝑋 > 𝑥 + 𝑡|𝑋 > 𝑡) = 𝑅(𝑥|𝑡) =
𝑅(𝑥 + 𝑡)

𝑅(𝑥)
, 𝑡 > 0, 𝑥 > 0  𝑅(. ) > 0,                 (8) 

Where 𝐹(𝑥;  𝛼, 𝛽)is the CDF of x analogous to H(x) in HRA(x). 

2.1 Alternative Parametrization  

An alternative parametrization is given by applying the rate parameter which is commonly used in some families like 

the exponential distribution (is the reciprocal of the scale parameter α) 𝜌 =
1

𝛼
 

Therefore, without loss of generality the cumulative density function, probability density function, survivor function 

and hazard function of the LL distribution are, respectively  

𝐹(𝑥) =  
1

1 + (𝜌𝑥)−𝛽
,                                                                                      (9) 

𝑓(𝑥) =  
𝛽𝜌(𝜌𝑥)𝛽−1

(1 + (𝜌𝑥)𝛽)2
,                                                                                 (10) 

  𝑆(𝑥) =  
1

1 + (𝜌𝑥)𝛽
,                                                                                       (11) 

ℎ(𝑥) =  
𝛽𝜌(𝜌𝑥)𝛽−1

1 + (𝜌𝑥)𝛽
,                                                                                      (12) 

Where𝜌 > 0  and 𝛽 > 0 are the unknown parameters, 𝑥 > 0 is the support of the distribution, and 𝛽 > 0. 𝜌 is the 

rate parameter and 𝛽 is the shape parameter, that shows as that log-logistic distribution is monotone decreasing when 

𝛽 ≤ 1, and is unimodal when 𝛽 >1. If T has a LL distribution, then Y = log T has a logistic distribution. 

2.2 Mean Residual Life Function 

The mean residual life (MRL) function has been widely used in survival and reliability analysis because of its easy 

interpretability and large area of application. The MRL function computes the expected remaining survival time of a 

subject given that a component has survived or not failed until time t.  

Suppose that 𝐹(0)  =  0 and µ ≡  𝐸(𝑋)  =  ∫ 𝑆(𝑥)𝑑𝑥
∞

0
 <  ∞. Then the MRL function for continuous X is computed 

by  

𝑚(𝑡|𝜃) = 𝐸(𝑇 − 𝑡|𝑇 > 𝑡) =  
∫ (𝑥 − 𝑡)𝑓(𝑥|𝜃)𝑑𝑥
∞

𝑡

𝑆(𝑡|𝜃)
=  
∫ 𝑆(𝑥|𝜃)𝑑𝑥
∞

𝑡

𝑆(𝑡|𝜃)
                                 (13)  

Where 𝜃 represents the parameter vector of (𝛼, 𝛽) and 𝑆(. ) is the survival (reliability) function. and 𝑚(𝑡|𝜃) ≡ 0, 
whenever 𝑆(𝑡|𝜃) = 0. 

For continuous distributions with finite mean, the survival function is defined through the MRL function: 

𝑆(𝑡|𝜃) =
𝑚(0)

𝑚(𝑡|𝜃)
𝑒𝑥𝑝 − [∫

1

𝑚(𝑥|𝜃)
𝑑𝑥

𝑡

0

]                                                                           (14) 

Consider the reliability or survival function of the LL distribution with scale and shape parameters. The mean of the LL 

distribution is only finite when the shape parameter is greater than 1, thus the mean residual life function is only defined 
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when 𝛽 >  1. The mrl for the LL distribution is easily obtained by 

∫ 𝑆(𝑥|𝜃) =  ∫
1

1 + (𝑝𝑥)𝑘
𝑑𝑥 =

1

𝑝𝑘
 ∫ 𝑧

1
𝑘
−1
(1 − 𝑧)−1/𝑘𝑑𝑧 =

1

𝑝𝑘
 [𝐵 (

1

𝑘
, 1 −

1

𝑘
) − 𝐵𝐴(𝑡) (

1

𝑘
, 1 −

1

𝑘
)]

1

𝐴(𝑡)

∞

𝑡

∞

𝑡

,  

Where 

𝐴(𝑡) =
(𝑝𝑡)𝑘

{1 + (𝑝𝑡)𝑘}
 

And 

𝐵(𝑝, 𝑞) =  ∫ 𝑦𝑝−1(1 − 𝑦)𝑞−1𝑑𝑦.
𝑥

0

 

Hence the MRL function is given by 

𝑚(𝑡|𝜃) =  
1

𝑝𝑘
 [𝐵 (

1

𝑘
, 1 −

1

𝑘
) − 𝐵𝐴(𝑡) (

1

𝑘
, 1 −

1

𝑘
)] {1 + (𝑝𝑡)𝑘},   𝑘 > 1.                       (15) 

The hazard rate function can also be defined by the MRL function  

ℎ(𝑡|𝜃) =
1 +𝑚′(𝑡|𝜃)

𝑚(𝑡|𝜃)
                                                                           (16) 

The critical point 𝑡∗ of the hazard rate is given by 

𝑡∗  =  
(𝑘 − 1)

1
𝑘

𝑝
, 

The hazard rate increases to its maximum at the point 𝑡∗ and then steadily decreases. The mean residual life function 

has the reverse shape of the hazard rate function. This fact was proved by (Gupta and Akman, 1995). 

2.3 The Quantile Functions 

The quantile functions play a central role in statistical and data analysis. Generally, a probability distribution can be 

defined either in terms of the distribution function or by the quantile function (Midhu et al. 2013).  

The quantile function (inverse CDF) of LL distribution is; 

𝑋𝑞= 𝐹
−1(𝑝;  𝛼, 𝛽) =  𝛼 (

𝑝

1 − 𝑝
)
1/𝛽

, 𝑝 ∈ [0,1),                                                          (17) 

It follows that the  

Lower quartile is 

𝑋𝑞1 = 3−1/𝛽𝛼,                                                                                       (18) 

Medium is 

𝑀𝑒𝑑𝑖𝑢𝑚 =  𝑋𝑞2 = 𝛼,                                                                            (19) 

Upper quartile is 

𝑋𝑞3 = 31/𝛽𝛼,                                                                                           (20) 

2.4 Moments and the Moment Generating Function  

Many important properties and features of a probability distribution can be obtained through its moments, such as mean, 

variance, kurtosis, and skewness. The essential moment functions, such as the moment generating function, rth moment, 

rth central moment, are presented. 

Theorem 4.3.2: If 𝑇 ~ 𝐿𝐿 (𝛼, 𝛽),  then the moment generating function, 1st moment, 2nd moment, and rth moments are 

given, respectively by  

𝑀𝑋(𝑡) =  ∑
(𝑡𝛼)𝑛

𝑛!

∞

𝑛=0

. 𝑩 (
𝛽 + 𝑛

𝛽
,
𝛽 − 𝑛

𝛽
 )                                                                    (21) 
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𝑀′
𝑋(𝑡) =  ∑

𝑛𝑡𝑛−1

𝛼𝑛. 𝑛!

∞

𝑛=0

. 𝑩 (
𝛽 + 𝑛

𝛽
,
𝛽 − 𝑛

𝛽
 )                                                             (22) 

𝑀′′
𝑋(𝑡) =  ∑

𝑛(𝑛 − 1)𝑡𝑛−2. 𝛼𝑛

𝑛!

∞

𝑛=0

. 𝑩 (
𝛽 + 𝑛

𝛽
,
𝛽 − 𝑛

𝛽
 )                                                     (23) 

𝑀𝑟
𝑋(𝑡) = 𝛼𝑟. 𝑩 (

𝛽 + 𝑟

𝛽
,
𝛽 − 𝑟

𝛽
 )                                                                                 (24) 

Where 𝐵 is the type-II beta function.  

Proof: We have that the Moment Generating Function mgf of 𝑇 according to (Casella and Berger, 2002) is  

𝑀𝑋(𝑡) = ∫ 𝑒𝜌𝑡𝑓(𝑥)𝑑𝑡 =  ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥 = 
∞

0

∞

−∞

∫ 𝑒𝑡𝑥

𝛽
𝛼
 (
𝑥
𝛼
)
𝛽−1

(1 + (
𝑥
𝛼
)
𝛽

)
2 𝑑𝑥 

∞

0

 

By using MacLaurin series the equation becomes: 

𝑀𝑋(𝑡) = ∫ (1 + 𝑡𝑥 +
(𝑡𝑥)2

2!
 +  

(𝑡𝑥)3

3!
+ ⋯)

𝛽

𝛼
(
𝑥

𝛼
)
𝛽

(
𝑥

𝛼
)
−1

(1 + (
𝑥

𝛼
)
𝛽

)
−2

𝑑𝑥

∞

0

 

𝑀𝑋(𝑡) = ∫
𝛽

𝛼
(
𝑥

𝛼
)
𝛽

(
𝑥

𝛼
)
−1

(1 + (
𝑥

𝛼
)
𝛽

)
−2

𝑑𝑥

∞

0

+∫ 𝑡𝑥
𝛽

𝛼

(𝑡𝑥)2

2!
(
𝑥

𝛼
)
𝛽

(
𝑡

𝛼
)
−1

(1 + (
𝑥

𝛼
)
𝛽

)
−2

𝑑𝑥

∞

0

+∫
(𝑡𝑥)2

2!

𝛽

𝛼
(
𝑥

𝛼
)
𝛽

(
𝑥

𝛼
)
−1

(1 + (
𝑥

𝛼
)
𝛽

)
−2

𝑑𝑥 +∫
(𝑡𝑥)3

3!

𝛽

𝛼
(
𝑥

𝛼
)
𝛽

(
𝑥

𝛼
)
−1

(1 + (
𝑥

𝛼
)
𝛽

)
−2

𝑑𝑥 +

∞

0

∞

0

 

By substituting 𝑦 = (
𝑥

𝛼
)
𝛽

, we find 𝑥 = 𝑦
1

𝛽𝛼 with 𝑑𝑥 =  
𝛼

𝛽
𝑦
1

𝛽
−1
𝑑𝑦. This means that if boundary of 𝑥 = 0 then 

boundary of 𝑦 = 0 and for 𝑥 = ∞, then 𝑦 = ∞. Then, the moment generating function it can be written as follows: 

𝑀𝑋(𝑡) = ∫
1

(1 + 𝑦)2
𝑑𝑦 + 𝑡𝛼∫

𝑦
1
𝛽

(1 + 𝑦)2
𝑑𝑦 + (𝑡𝛼)2

∞

0

∫
𝑦
2
𝛽

(1 + 𝑦)2
𝑑𝑦

∞

0

+ (𝑡𝛼)3  ∫
𝑦
3
𝛽

(1 + 𝑦)2
𝑑𝑦

∞

0

∞

0

 

By applying Beta Function: 

𝑀𝑋(𝑡)  = 𝑩(1,1)   + 𝑡𝛼𝑩 (
𝛽 + 1

𝛽
,
𝛽 − 1

𝛽
 )   +

(𝑡𝛼)2

2!
𝑩 (

𝛽 + 1

𝛽
,
𝛽 − 1

𝛽
 ) + 

(𝑡𝛼)3

3!
(
𝛽 + 1

𝛽
,
𝛽 − 1

𝛽
 )  + ⋯  

Therefore, the mgt of LL distribution is: 

𝑀𝑋(𝑡) =  ∑
(𝑡𝛼)𝑛

𝑛!

∞

𝑛=0

. 𝑩 (
𝛽 + 𝑛

𝛽
,
𝛽 − 𝑛

𝛽
 )                                                                ∎  

By differentiating the mgt that we have before then the 1st and 2nd moments of LL distribution are retrieved as follows: 

1st moment of LL distribution: 

 𝑀′
𝑋(𝑡) =

𝑑

𝑑𝑡
𝑀𝑋(𝑡)                                                                                                  

𝑀′
𝑋(𝑡) =

𝑑

𝑑𝑡
∑

(𝑡𝛼)𝑛

𝑛!

∞

𝑛=0

. 𝑩 (
𝛽 + 𝑛

𝛽
,
𝛽 − 𝑛

𝛽
 )                                                             

𝑀′
𝑋(𝑡) =  ∑

𝑛𝑡𝑛−1. 𝛼𝑛

𝑛!

∞

𝑛=0

. 𝑩 (
𝛽 + 𝑛

𝛽
,
𝛽 − 𝑛

𝛽
 )                                                           ∎ 

𝑀′
𝑋(𝑡 = 0) =  𝛼. 𝑩 (

𝛽 + 1

𝛽
,
𝛽 − 1

𝛽
 ) 
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2nd moment of LL distribution: 

 𝑀′′
𝑋(𝑡) =

𝑑2

𝑑𝑡2
𝑀𝑋(𝑡)                                                                                                                     

𝑀′′
𝑋(𝑡) =

𝑑2

𝑑𝑡2
∑

(𝑡𝛼)𝑛

𝑛!

∞

𝑛=0

. 𝑩 (
𝛽 + 𝑛

𝛽
,
𝛽 − 𝑛

𝛽
 )                                                                    

𝑀′′
𝑋(𝑡) =∑

𝑛(𝑛 − 1)𝑡𝑛−2. 𝛼𝑛

𝑛!

∞

𝑛=0

. 𝑩 (
𝛽 + 𝑛

𝛽
,
𝛽 − 𝑛

𝛽
 )                                                  ∎ 

𝑀′′
𝑋(𝑡 = 0) =  𝛼2. 𝑩 (

𝛽 + 2

𝛽
,
𝛽 − 2

𝛽
 ) 

Similarly, the 𝑟𝑡ℎ moment in general, is  

 𝑀𝑟
𝑋(𝑡) =

𝑑𝑟

𝑑𝑡𝑟
𝑀𝑋(𝑡)                                                                                                                                        

𝑀𝑟
𝑋(𝑡) =

𝑑𝑟

𝑑𝑡𝑟
∑

(𝑡𝛼)𝑛

𝑛!

∞

𝑛=0
. 𝑩 (

𝛽 + 𝑛

𝛽
,
𝛽 − 𝑛

𝛽
 )                                                                                        

𝑀𝑟
𝑋(𝑡) =∑

𝑛(𝑛 − 1)(𝑛 − 2)… (𝑛 − (𝑟 − 1))(𝑛 − 𝑟)𝑡𝑛−𝑟𝛼𝑛

𝑛!

∞

𝑛=0
. 𝑩 (

𝛽 + 𝑛

𝛽
,
𝛽 − 𝑛

𝛽
 )              

𝑀𝑟
𝑋(𝑡) = 𝛼

𝑟 . 𝑩 (
𝛽 + 𝑟

𝛽
,
𝛽 − 𝑟

𝛽
 )                                                                                                                 ∎  

In addition, the mean, variance, skewness and the kurtosis of the log-logistic distribution are given, respectively by 

The mean of the LL distribution is 

𝜇 =  𝐸(𝑇) = 𝛼.𝑩 (
𝛽 + 1

𝛽
,
𝛽 − 1

𝛽
 )                                                                   (25) 

The Variance of the LL distribution is  

𝜎2 =  𝑉(𝑇) =  𝐸(𝑇2) − (𝐸(𝑇))2        

= 𝛼2. 𝑩 (
𝛽 + 2

𝛽
,
𝛽 − 2

𝛽
 ) − (𝛼. 𝑩 (

𝛽 + 1

𝛽
,
𝛽 − 1

𝛽
 ))

2

                                              (26) 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠[𝑋] =

[𝑩(
𝛽 + 3
𝛽

,
𝛽 − 3
𝛽

 ) − 3𝑩(
𝛽 + 2
𝛽

,
𝛽 − 2
𝛽

 )𝑩 (
𝛽 + 1
𝛽

,
𝛽 − 1
𝛽

 ) + 2(𝑩(
𝛽 + 1
𝛽

,
𝛽 − 1
𝛽

 ))

𝟑

]

(𝑩(
𝛽 + 2
𝛽

,
𝛽 − 2
𝛽

 ) − (𝑩(
𝛽 + 1
𝛽

,
𝛽 − 1
𝛽

 ))

2

)

𝟑
𝟐

     (27)  

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠[𝑋] = =
[
 
 
 
 𝑩 (

𝛽 + 4
𝛽

,
𝛽 − 4
𝛽

 ) −  4𝑩(
𝛽 + 1
𝛽

,
𝛽 − 1
𝛽

 )𝑩 (
𝛽 + 3
𝛽

,
𝛽 − 3
𝛽

 ) − 3(𝑩(
𝛽 + 2
𝛽

,
𝛽 − 2
𝛽

 ))

𝟐

+12𝑩(
𝛽 + 2
𝛽

,
𝛽 − 2
𝛽

 ) (𝑩(
𝛽 + 1
𝛽

,
𝛽 − 1
𝛽

 ))

𝟐

− 6(𝑩(
𝛽 + 1
𝛽

,
𝛽 − 1
𝛽

 ))

𝟒

]
 
 
 
 

(𝑩(
𝛽 + 2
𝛽

,
𝛽 − 2
𝛽

 ) − (𝛼. 𝑩 (
𝛽 + 1
𝛽

,
𝛽 − 1
𝛽

 ))

2

)

𝟐       (28) 

2.5 Characteristic Function 

Proposition 4.4.5: The characteristic function of the LL distribution 𝜑𝑋(𝑡) is given by  

𝜑𝑋(𝑡) = 𝐸(𝑒
𝑖𝑡𝑥) =  ∫ 𝑒𝑖𝑡𝑥𝑓(𝑥)𝑑𝑥 

∞

0

                                                                             (29) 
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As can be seen from the above proposition, the characteristic function of the LL distribution cannot be computed 

analytically. However, applying the concept of complex analysis; we can express as: 

First, since the 𝑒𝑖𝑡𝑥 = cos(𝑡𝑥) + 𝑖 sin (𝑡𝑥) ∀𝑡 ∈  ℝ;   

𝜑𝑋(𝑡) = ∫ cos 𝑡𝑥 + 𝑖 𝑠𝑖𝑛  𝑡𝑥 

{
 

 𝛽
𝛼
(
𝑥
𝛼
)
𝛽−1

(1 + (
𝑥
𝛼
)
𝛽

)
2

}
 

 

𝑑𝑥 
∞

0

 

Second, evaluating the above equation into two parts to solve it easily, we get: 

i)  

∫ cos 𝑡𝑥

{
 

 𝛽
𝛼
(
𝑥
𝛼
)
𝛽−1

(1 + (
𝑥
𝛼
)
𝛽

)
2

}
 

 

𝑑𝑥 
∞

0

 

ii)  

∫ 𝑖 𝑠𝑖𝑛  𝑡𝑥

{
 

 𝛽
𝛼
(
𝑥
𝛼
)
𝛽−1

(1 + (
𝑥
𝛼
)
𝛽

)
2

}
 

 

𝑑𝑥 
∞

0

 

Third, we can transform 𝑠𝑖𝑛 (𝑡𝑥) 𝑎𝑛𝑑 𝑐𝑜𝑠 (𝑡𝑥) by applying MacLaurin Series, then we find the results of each part: 

i)  

𝑩(1,1) −
(𝑡𝛼)2

2!
𝑩 (

𝛽 + 2

𝛽
,
𝛽 − 2

𝛽
 ) +

(𝑡𝛼)4

4!
𝑩 (

𝛽 + 4

𝛽
,
𝛽 − 4

𝛽
 ) + 

(𝑡𝛼)6

6!
𝑩 (

𝛽 + 6

𝛽
,
𝛽 − 6

𝛽
 ) +⋯ 

ii)  

𝑖𝑡𝛼𝑩(
𝛽 + 1

𝛽
,
𝛽 − 1

𝛽
 ) −

(𝑖𝑡𝛼)3

3!
𝑩 (

𝛽 + 3

𝛽
,
𝛽 − 3

𝛽
 ) +

(𝑖𝑡𝛼)5

5!
𝑩 (

𝛽 + 5

𝛽
,
𝛽 − 5

𝛽
 )

− 
(𝑖𝑡𝛼)7

7!
𝑩 (

𝛽 + 7

𝛽
,
𝛽 − 7

𝛽
 ) + ⋯ 

Hence, the characteristic function is the sum of the two parts: 

𝜑𝑋(𝑡) = 𝑝𝑎𝑟𝑡 𝑖 + 𝑝𝑎𝑟𝑡 𝑖𝑖 

𝜑_𝑋 (𝑡) =  𝑩(1,1) + 𝑖𝑡𝛼𝑩(
𝛽 + 1

𝛽
,
𝛽 − 1

𝛽
 ) −

(𝑡𝛼)2

2!
𝑩 (

𝛽 + 2

𝛽
,
𝛽 − 2

𝛽
 ) −

(𝑖𝑡𝛼)3

3!
𝑩 (

𝛽 + 3

𝛽
,
𝛽 − 3

𝛽
 )

+
(𝑡𝛼)4

4!
𝑩 (

𝛽 + 4

𝛽
,
𝛽 − 4

𝛽
 ) +

(𝑖𝑡𝛼)5

5!
𝑩 (

𝛽 + 5

𝛽
,
𝛽 − 5

𝛽
 ) −⋯ 

Therefore, the characteristic function of the LL distribution is: 

𝜑𝑋(𝑡) =  ∑
(𝑖𝑡𝛼)𝑛

𝑛!
𝑩 (

𝛽 + 𝑛

𝛽
,
𝛽 − 𝑛

𝛽
 )                                                                  (30)

∞

𝑛=0

 

We can also derive the norm characteristic function of the LL distribution: 

|𝜑𝑋(𝑡)| =  𝑩(1,1) = 1                                                                                    (31) 

Since the value of the norm characteristic function of the LL distribution equals 1. It shows us that the characteristic 

function of the LL distribution is a finite function.  

More details about the log-logistic distribution can be found in (Ekawati et al. 2015) 

3. Extensions of Log-Logistic Distribution 

In recent years, the ability to propose new probability models to deal with reliability and survival analysis has increased. 
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Many extensions (or generalizations) of the log-logistic distribution have been proposed in the last two decades. In 

terms of applications, the log-logistic distribution and its generalizations have become the most popular models for 

survival and reliability data. Some recent applications have included: modeling for AIDS and Melanoma data (de 

Santana, Ortega, Cordeiro, & Silva, 2012); used for minification process (Gui, 2013); modeling breast cancer data 

(Ramos et al. 2013); (Tahir et al. 2014); modeling on censored survival data (Lemonte, 2014); modeling time up to first 

calving of cows (Louzada & Granzotto, 2016); modeling, inference, and use to a polled Tabapua Race Time up to First 

Calving Data (Granzotto et al. 2017); modeling positive real data in many areas (Lima & Cordeiro, 2017); analysing a 

right-censored data (Shakhatreh, 2018); modeling lung cancer data (Alshangiti, et al. 2016); and modeling of breaking 

stress data (Aldahlan, 2020). 

Because of the increasing interest in terms of applications and methodology, we feel it is timely that a survey is 

provided of the log-logistic distribution and its generalizations. In this study, we provide such a review. We review in 

the following sections nearly twenty generalizations. For each generalized one, we try to give expressions for the cdf, 

pdf, reliability (or survival) function, the failure (or hazard) rate function, the reversed hazard function, the quantile 

function and the cumulative hazard function. Sometimes not all of these functions are given if they are not stated in the 

original source or if nice closed form expressions are not known. 

In the statistics and probability, the literature on statistical theory abounds in surveys of topics of current interest. 

Ghitany (1998) provided thorough reviews of the recent modifications of the gamma distribution. Pham and Lai  (2007) 

provided through reviews of the recent generalizations of the Weibull distribution. Nadarajah (2013) provided an 

extensive survey of the exponentiated Weibull distribution. Li and Nadarajah (2020) provided an extensive review of 

the student’s t distribution and its generalizations. Rahman et al. (2020) provided an expository review of the 

transmuted probability distributions. Tomy et al. 2020) provided an extensive review of the recent generalizations of the 

exponential distribution. Dey, et al. (2021) provided an extensive review of the transmuted distributions. We contribute 

to the literature by reviewing the log-logistic distribution and its generalizations. While it is common to come across 

reviews which deal with generalizations of an existing distributions, our approach is significantly different. Our focus is 

on the method. To be the best of our knowledge, there is no other work which attempts to bring together at one place 

nearly twenty generalizations (or extensions) of the LL distribution. In this work, we have reviewed only univariate 

log-logistic distribution and related distributions. A future work is to review bivariate, multivariate, matrix variate and 

complex variate log-logistic distribution.  

4. Review of the Methods for Building New Log-Logistic Distributions  

In this section, we present up-to-date review of the methods for building new families of continuous probability 

distributions. In probability and applied statisticians have shown great interest in building and generating new 

generalized probability models that extend well-known probability distributions and are more flexible for data modeling 

in many different disciplines of applications.in recent decades, some different extensions of continuous distributions 

have received great attention in the recent literature. Gupta and Kundu (2009) discussed six different techniques for the 

induction of shape/skewness parameter(s) in probability distributions namely: (1) method of proportional hazard model, 

(2) method of proportional reversed hazard model, (3) method of proportional cumulants model, (4) method of 

proportional odds model, (5) method of power transformed model, and (6) method of Azzalini’s skewed model. On the 

other hand,  Lee et al. (2013), reviewed the different methods of generating new probability distributions and they 

focused on the two main techniques; adding parameters and combining existing probability distributions. On the other 

hand, they discussed three methods developed before 1980s, and they are: (1) method of differential equation, (2) 

method of transformation, and (3) method of quantile. Then they discussed five generating techniques developed since 

1980s, those are : (1) method of adding parameters to an existing distribution, (2) composite method, (3) the 

beta-generated method, (4) the transformed-transformer (T-X) method, and (5) methods of generating skewed 

distributions. Tahir and Nadarajah (2015) wrote a review of methods for generating probability distributions with more 

than 300 reference papers, most of these distributions were introduced in the recent years, (Nadarajah et al. 2013); 

(Tahir and Cordeiro (2015), (Ahmad et al. 2019) and (De Brito et al. 2019) gives an excellent review on the recent 

developments of univariate continuous distributions.  

This study work offers a survey of recently different methods for developing families of probability distributions. The 

technique of obtaining a new generalized distribution is of different forms; generally speaking, the five methods 

developed since 1980s, can be named them as a combination methods because of the reason because of the reason that 

these techniques attempt to add an extra parameters to an existing probability distribution or combining existing 

distributions into new distributions (Lee et al., 2013). In this work, we will categorize into two headings; (1) generator 

method or Parameter Induction method, and (2) Compound method. 
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4.1 Generator Method  

There are several different methods described in the literature used to extend well-known probability distributions. 

Probably, one of the most popular method is to consider distribution generators and is called generator method (also 

known as parameter induction method). The method deals with an induction a shape parameter(s) to a baseline (or 

parent) distribution to improve goodness-of-fits and to explore tail properties. In the generator method, we can 

categorize into; exponentiated-G family, beta-G family, gamma-G family, Marshall-Olkin class, Kumaraswamy class, 

transmuted family, cubic transmuted family, a general transmuted family, alpha-power transformation, T-X family 

method, Zubair-G family, and the Cordeiro-Tahir’s family. 

4.1.1 The Exponentiated-G family of Distributions  

The exponentiated-G family of distributions can be traced back to Gompertz (1825), (Verhulst 1838;1845;1847) and 

Lehmann (1953). It is one of the simplest methods for parameter induction techniques. The method adds one shape 

parameter to an existing distribution. If 𝐺(𝑥) is the cumulative distribution function (cdf) of the baseline model, then  

𝐹(𝑥) = 𝐺(𝑥)𝛾, 𝛾 > 0                                                                          (32) 

𝐹(𝑥) is also the cdf of the new distribution and it is called the exponentiated-G distribution (Exp-G distribution) with 

exponent parameter 𝛾.  

The distribution G is the baseline distribution and 𝛾 is a positive real parameter. The variable 𝑥 can take any of the 

form 

𝑥 = 𝑥 − 𝜇 𝑜𝑟  𝑥 =  
𝑥 − 𝜇

𝜎
 𝑜𝑟 𝑥 = 𝑘 (

𝑥 − 𝜇

𝜎
)  𝑜𝑟 𝑥 = 𝑘 (

𝑥 − 𝜇

𝜎
)

1
𝜎
  . 

The probability density function (pdf) corresponding to (32) is  

𝑓(𝑥) =  𝛾(𝑥)𝐺(𝑥)𝛾−1,                                                                          (33) 

These family of distributions became famous after the papers by (Mudholkar & Srivastava, 1993) 

exponentiated-Weibull distribution, Gupta et al. (1998) named the family to the proportional reversed hazard rate (PHR) 

model, and (Gupta and Kundu 1999, 2001; 2002) exponentiated -exponential distribution. This family of distributions is 

considered in many papers in the literature such as (Mudholkar et al. 1995); (Mudholkar & Hutson, 1996), (Choudhury, 

2005), (Singh et al. 2005), (Nadarajah and Kotz 2006), (Barrios & Dios, 2012), (Shakil & Ahsanullah, 2012) and 

(Gholam, 2013), among many others. 

Exponentiated log-logistic distribution 

This new extended distribution was developed by  (Rosaiah et al. 2006), (Aslam & Jun, 2010), (Rao et al. 2012) and 

(Chaudhary & Kumar, 2014). The cdf of Exponentiated log-logistic distribution (ELL) is given as 

𝐹𝐸𝐿𝐿(𝑥) = 𝑃𝐸𝐿𝐿({𝑦|𝑦 ≤ 𝑥}) =  [
(
𝑥
𝛼
)
𝛽

1 + (
𝑥
𝛼
)
𝛽
]

𝛾

  𝑓𝑜𝑟 𝑥 ≥ 0                                             (34) 

where 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 > 0 are the unknown parameters of the model.  

The ELL is obtained from the CDF of the log-logistic by 𝐹(𝑥) = 𝐺(𝑥)𝛾. The pdf of ELL is as follows: 

𝑓
𝐸𝐿𝐿
(𝑥) = 

𝛽𝛾 (
𝑥
𝛼
)
𝛽𝛾−1

𝛼  (1 + (
𝑥
𝛼
)
𝛽

)
𝛾+1   𝑓𝑜𝑟 𝑥 ≥ 0                                                        (35) 

The ELL distribution may be taken as a parametric model for survival analysis, if the lifetimes show a large variability. 

For any lifetime random variable t, the reliability (survival) functions 𝑆(𝑡), the hazard rate function ℎ(𝑡), the reversed 

hazard rate function 𝑟(𝑡) and the cumulative hazard rate function 𝐻(𝑡), associated with (34) and (35) are  

𝑆𝐸𝐿𝐿(𝑡) = 1 − 𝐹𝐸𝐿𝐿(𝑡)                                                                                 (36) 

ℎ𝐸𝐿𝐿(𝑡) =  
𝑓
𝐸𝐿𝐿
(𝑥)

1 − 𝐹𝐸𝐿𝐿(𝑡)
                                                                                 (37) 
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𝑟𝐸𝐿𝐿(𝑡) =  
𝑓
𝐸𝐿𝐿
(𝑥) 

𝐹𝐸𝐿𝐿(𝑥)
                                                                                     (38) 

𝐻𝐸𝐿𝐿(𝑡) = − log[1 − 𝐹𝐸𝐿𝐿(𝑡)]                                                                                (39) 

Two-parameter Exponentiated log-logistic distribution: 

Chaudhary (2007, 2019) studied the exponentiated log-logistic distribution regarding to the standard log-logistic 

distribution (when 𝛼 = 1) and called two-parameter exponentiated log-logistic distribution. 

If the cdf of the standard LL distribution is  

𝐹(𝑥;  𝛽) =
𝑥𝛽

1 + 𝑥𝛽 
, 𝑥 < 0, 𝛽 > 0                                                                         (40)  

Then the cdf of the two-parameter exponentiated LL distribution is given by 

𝐹(𝑥;  𝛽) = {
𝑥𝛽

1 + 𝑥𝛽 
}

𝛾

, 𝑥 < 0, 𝛽 > 0                                                               (41)  

the pdf corresponding to (41) is given by 

𝑓(𝑥) =  
𝛽𝛾𝑥𝛽𝛾

𝑥  [1 + 𝑥𝛽]𝛾+1
  𝑓𝑜𝑟 𝑥 > 0                                                                            (42) 

The survivor function, hazard rate function and the quantile function are given by respectively  

ℎ(𝑥) =  
𝛽𝛾𝑥𝛽𝛾

[1 − {
𝑥𝛽

1 + 𝑥𝛽  
}
𝛾

]

  𝑓𝑜𝑟 𝑥 > 0                                                                              (43) 

𝑆(𝑥) =  1 − {
𝑥𝛽

1 + 𝑥𝛽 
}

𝛾

  𝑓𝑜𝑟 𝑥 > 0                                                                        (44) 

𝑥𝑞 =  (𝑞
−
1
𝛾 − 1 )

−
1
𝛽

        𝑓𝑜𝑟 0 < 𝑞 > 1.                                                                   (45) 

4.1.2 The Beta-G Family of Distributions  

Beta distribution is a continuous probability distribution with two positive shape parameters, 𝑎 𝑎𝑛𝑑 𝑏. It is the natural 

extension of the uniform distribution and the prior of the binomial distribution. It can rescale and shift to create a new 

probability distribution with a wide range of shapes and apply for a different application.  

Eugene et al. (2002) and Jones (2004)were introduced the Beta-G family of distributions based on the parameter 

induction technique. The generator method that Eugene et al. (2002) proposed is as follows. For any continuous 

baseline cumulative distribution function cdf  

𝐺(𝑥) = 𝐺(𝑥, 𝜃) 

where 𝜃 is the parameter vector, the cdf of the beta-G, 𝐹(𝑥) say, is given by 

𝐹(𝑥) = 𝐼𝐺(𝑥)(𝑎, 𝑏) =  
1

𝑩(𝑎, 𝑏)
∫ 𝑥𝑎−1(1 − 𝑥)𝑏−1𝑑𝑥,
𝐺(𝑥)

0

                                                (46) 

Where 𝑎, 𝑏 > 0 are additional shape parameters to those in 𝜃 that aim to provide greater flexibility of its tails and to 

introduce skewness. 𝑥 ∈ (0,1), 𝑩(𝑎, 𝑏) =  ∫ 𝑥𝑎−1(1 − 𝑥)𝑏−1𝑑𝑥
∞

0
  represents the beta function and 𝐼𝐺(𝑥)(𝑎, 𝑏) =

 
1

𝑩(𝑎,𝑏)
∫ 𝑥𝑎−1(1 − 𝑥)𝑏−1𝑑𝑥 
𝑥

0
 represents the incomplete beta function ratio, 𝑩(𝑎, 𝑏) =  ∫ 𝑥𝑎−1(1 − 𝑥)𝑏−1𝑑𝑥 =

1

0

 
Γ(𝑎)+Γ(𝑏)

Γ(𝑎+𝑏)
  is the beta function, 𝚪(. ) is the gamma function, and 𝑩(𝑎, 𝑏) =  ∫ 𝑥𝑎−1(1 − 𝑥)𝑏−1𝑑𝑥 

𝑥

0
 is the incomplete 

beta function.  

The pdf of the beta-G family of distribution takes the form 

𝑓(𝑥) =  
1

𝐵(𝑎, 𝑏)
𝑔(𝑥)𝐺(𝑥)𝑎−1[1 − 𝐺(𝑥)]𝑏−1                                                               (47) 
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The beta-G family is also called the beta logit family. These family of distributions become much more popular after 

Eugene et al. (2002) .This class is studied and discussed the estimation methods and the characterization by maximum 

entropy by (Zografos & Balakrishnan, 2009) and the moments from beta-G family are studied by (Cordeiro & 

Nadarajah, 2011) 

Beta log-logistic distribution  

Lemonte, (2014) proposed and studied the beta log-logistic distribution. The new distribution is quite flexible to model 

and analyze positive real data. The cdf of the beta log-logistic (BLL) distribution is given by  

𝐹𝐵𝐿𝐿(𝑡) = 𝐼 𝑥𝛽

𝛼𝛽+𝑥𝛽

(𝑎, 𝑏)                                                                                          (48) 

The pdf corresponding to (48) is  

𝑓
𝐵𝐿𝐿
(𝑥) =  

(
𝛽
𝛼
)

𝐵(𝑎, 𝑏)

(
𝑥
𝛼
)
𝑎𝛽−1

[1 + (
𝑥
𝛼
)
𝛽

]
𝑎+𝑏

, 𝑥 > 0.                                                  (49) 

For any lifetime random variable t, the reliability (survival) functions 𝑆(𝑡), the hazard rate function ℎ(𝑡), the reversed 

hazard rate function 𝑟(𝑡) and the cumulative hazard rate function 𝐻(𝑡), associated with (48) and (49) are  

𝑆(𝑡) = 1 − 𝐼𝐺(𝑥)(𝑎, 𝑏) =  1 −  𝐼 𝑥𝛽

𝛼𝛽+𝑥𝛽

(𝑎, 𝑏)                                                             (50) 

ℎ(𝑡) =  
𝑓𝐵𝐿𝐿(𝑥)

1 − 𝐹𝐵𝐿𝐿(𝑡)
                                                                                        (51) 

𝑟(𝑡) =
𝑓𝐵𝐿𝐿(𝑥)

𝐹𝐵𝐿𝐿(𝑥)
                                                                                           (52) 

𝐻(𝑡) =  − log[1 − 𝐹𝐵𝐿𝐿(𝑡)]                                                                             (53) 

This extension distribution can be used in many fields, like economics, reliability analysis in engineering, survival 

analysis, hydrology, and other disciplines as the LL distribution. 

4.1.3 The Gamma-G Family of Distributions  

Zografos and Balakrishnan (2009)proposed a simple generator approach (or parameter induction technique). If 

𝐺(𝑥, 𝜃), 𝑔(𝑥, 𝜃),  and 𝑆(𝑥, 𝜃) are the cdf, pdf and survival function of the baseline distribution respectively. Then the 

cdf of the gamma-G family is given by 

𝐹(𝑥, 𝜃) =  
1

Γ(𝛿)
∫ 𝑡𝛿−1𝑒−𝑡𝑑𝑡,    𝛿 > 0                                                                 (54)
−𝑙𝑜𝑔𝑆(𝑥,𝜃)

0

 

And the pdf of the gamma-G family is given by 

𝑓(𝑥, 𝜃) =  
1

Γ(𝛿)
[−𝑙𝑜𝑔𝑆(𝑥, 𝜃)]𝛿−1𝑔(𝑥, 𝜃).                                                                   (55) 

The corresponding hazard (or failure) rate function is given by 

ℎ(𝑥, 𝜃) =  
1

Γ(𝛿, −𝑙𝑜𝑔𝑆(𝑥, 𝜃))
[−𝑙𝑜𝑔𝑆(𝑥, 𝜃)]𝛿−1𝑔(𝑥, 𝜃).                                                  (56) 

Another gamma-G family was proposed by (Ristic and Balakrishnan, 2012) which is slightly different from the above 

generator. The cdf and pdf of their generator was defined by  

𝐹(𝑥, 𝜃) =  1 − 
1

Γ(𝛿)
∫ 𝑡𝛿−1𝑒−𝑡𝑑𝑡,    𝛿 > 0                                                      (57)
−𝑙𝑜𝑔𝑆(𝑥,𝜃)

0

 

And the pdf of the gamma-G family is given by 

𝑓(𝑥, 𝜃) =  
1

Γ(𝛿)
[−𝑙𝑜𝑔𝐹(𝑥, 𝜃)]𝛿−1𝑔(𝑥, 𝜃).                                                              (58) 

The corresponding hazard function is given by 
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ℎ(𝑥, 𝜃) =  
1

Γ(𝛿, −𝑙𝑜𝑔𝐹(𝑥, 𝜃))
[−𝑙𝑜𝑔𝐹(𝑥, 𝜃)]𝛿−1𝑔(𝑥, 𝜃).                                                  (59) 

Nadarajah et al. (2015b) studied the mathematical and statistical properties of the Zografos-Balakrishnan-G family of 

distributions.  

Zografos-Balakrishnan log-logistic distribution  

Ramos et al. (2013) proposed a gamma log-logistic distribution by using the Zografos-Balakrishnan -G technique and 

they called the Zografos-Balakrishnan Log-logistic distribution (ZB-G). The ZB-G family is a LL distribution plus an 

extra shape parameter 𝛿 > 0.  The pdf and cdf of the Zografos-Balakrishnan Log-logistic distribution is given by using 

the equations of (1) and (2): 

𝑓(𝑥, 𝜃) =  
𝛽

𝛼𝛽Γ(𝛿)
𝑥𝛽−1 [1 + (

𝑥

𝛼
)
𝛽

]

−2

{log [1 + (
𝑥

𝛼
)
𝛽

]}

𝛿−1

.                                         (60) 

And the corresponding cdf is given by 

𝐹(𝑥, 𝜃) =  
1

Γ(𝛿)
∫ 𝑡𝛿−1𝑒−𝑡𝑑𝑡,                                                           (61)
𝑙𝑜𝑔[1+(

𝑥
𝛼)

𝛽
]

0

 

The method for Ristic and Balakrishnan (2012) is an alternative method that can be used to extend the LL distribution 

and it can be an open research question.  

4.1.4 The Marshall-Olkin Family of Distributions  

Marshall and Olkin, (1997) introduced a simple generator approach of adding a single parameter to a family of 

well-known distributions and several authors applied their technique to generalize the well-known probability 

distributions in the last two decades.  

If 𝐺(𝑥, 𝜃) and 𝑆(𝑥, 𝜃) are the cdf and survival function of the baseline distribution depending on the vector 

parameter  , and  𝛾 > 0  is an additional parameter known as tilt parameter. Then the survival function of Marshall 

and Olkin (MO) family is given by 

𝑆𝑀𝑂(𝑥;  𝛾, 𝜃) =  
𝛾. 𝑆(𝑥, 𝜃)

1 − �̅� 𝑆(𝑥, 𝜃)
,         𝜃, 𝛾 > 0, 𝑥 ∈ ℝ.                                                         (62) 

Where �̅� = 1 − 𝛾 . Note that, if 𝛾 = 1 , then 𝑆𝑀𝑂(𝑥, 𝛾, 𝜃) =  𝑆(𝑥, 𝜃)  which means that we obtain the baseline 

distribution. Applying (62), the generalized versions of the well-known distribution have been proposed. 

The pdf corresponding to (62) is given by  

𝑓(𝑥;  𝛾, 𝜃) =  
𝛾𝑔(𝑥;  𝜃)

{1 − �̅� 𝑆(𝑥, 𝜃)}2
,                                                                          (63) 

And the hazard rate function h(t) is given by  

ℎ(𝑥;  𝛾, 𝜃) =  
1

1 − �̅� 𝑆(𝑥, 𝜃)
ℎ(𝑥; 𝑣 = 𝜃),                                𝑥 ∈ ℝ                                 (64) 

Marshall-Olkin log-logistic distribution 

Gui (2013) introduced the Marshall-Olkin Log-logistic distribution (MOLL) and studied the mathematical and 

statistical properties of the proposed model and used it to models of time series.  The survival function, pdf, and the 

hazard rate function of the proposed distribution are given by: 

𝑆𝑀𝑂𝐿𝐿(𝑥; 𝛼, 𝛽, 𝛾) =  
𝛾. 𝛼𝛽

𝑥𝛽 +  𝛾. 𝛼𝛽
,         𝛼, 𝛽, 𝛾, 𝑥 > 0,                                                         (65) 

𝑓
𝑀𝑂𝐿𝐿

(𝑥; 𝛼, 𝛽, 𝛾) =  
𝛼𝛽𝛽𝛾𝑥𝛽−1

(𝑥𝛽 +  𝛾. 𝛼𝛽)2
,         𝛼, 𝛽, 𝛾, 𝑥 > 0,                                                   (66) 

ℎ𝑀𝑂𝐿𝐿(𝑥; 𝛼, 𝛽, 𝛾) =  
𝛽𝑥𝛽−1

𝑥𝛽 +  𝛾. 𝛼𝛽
,         𝛼, 𝛽, 𝛾, 𝑥 > 0,                                                                        (67) 

Other authors who studied the further results involving reliability analysis, the estimation of the parameters and the uses 

of the Marshall-Olkin log-logistic distribution are (Alshangiti et al.  2016), and (Shakhatreh, 2018), (Nasiru et al. 
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2019)  

4.1.5 The Alpha Power Transformation  

Mahdavi and Kundu (2017) proposed a new generator technique that many authors applied to introduce for new 

statistical distributions to increase flexibility of the given family. The technique adds a new parameter to the baseline 

distribution. The cdf of Alpha power transformation (AP) is defined as  

𝐹𝐴𝑃𝑇(𝑥;  𝜃, 𝛾) =  
𝛾𝐺(𝑥;𝜃) − 1

𝛾 − 1

′

 𝜃, 𝛾 > 0 , 𝛾 ≠ 1, 𝑥 ∈ ℝ.                                                             (68) 

where 𝐺(𝑥; 𝜃) is the cdf of the baseline distribution and 𝜃 is the vector parameter. 

The pdf corresponding to (68) is given as  

𝐹𝐴𝑃𝑇(𝑥;  𝜃, 𝛾) =  
log(𝛾) 𝛾

𝐺(𝑥;𝜃)

𝛾 − 1
𝑔(𝑥; 𝜃);        𝜃, 𝛾 > 0 , 𝛾 ≠ 1, 𝑥 ∈ ℝ.                                 (69) 

Two-parameter Alpha Power Transformed Log-logistic distribution  

Several researchers have applied the alpha power technique to extend the log-logistic distribution.  

Malik and Ahmad (2020) proposed the two-parameter alpha power log-logistic distribution (APLL) of two unknown 

parameters 𝜃 scale parameters and 𝛾 shape parameter. Note that, Malik and Ahmad (2020) extended the standard 

log-logistic distribution (where the shape parameter equals 1). 

If the cdf of the standard LL distribution takes the form: 

𝐹(𝑥; 𝜃) =  
𝑥𝜃

1 + 𝑥𝜃
,                                                                             (70) 

Then the cdf of the APLL is given by 

𝐹𝐴𝑃𝐿𝐿(𝑥;  𝜃, 𝛾) =  
𝛾 (

𝑥𝜃

1 + 𝑥𝜃
 ) − 1 

𝛾 − 1
       𝜃, 𝛾 > 0 , 𝛾 ≠ 1, 𝑥 ∈ ℝ.                                             (71) 

The pdf corresponding to (71) is given by 

𝑓
𝐴𝑃𝐿𝐿

(𝑥;  𝜃, 𝛾) =  
log(𝛾) 

𝛾 − 1

𝜃𝑥𝜃−1

(1 + 𝑥𝜃)2
𝛾
(
𝑥𝜃

1+𝑥𝜃
)
;        𝜃, 𝛾 > 0 , 𝛾 ≠ 1, 𝑥 ∈ ℝ.                            (72) 

The survival function of the APLL is defined as 

𝑆𝐴𝑃𝐿𝐿(𝑥;  𝜃, 𝛾) = 𝛾
(
𝑥𝜃

1+𝑥𝜃
)[
𝛾(

1

1+𝑥𝜃
 )−1 

𝛾−1
]

;        𝜃, 𝛾 > 0 , 𝛾 ≠ 1, 𝑥 ∈ ℝ.                                    (73) 

The hazard rate function of the APLL is given by 

ℎ𝐴𝑃𝐿𝐿(𝑥;  𝜃, 𝛾) =  log (𝛾)
𝜃𝑥𝜃−1

(1 + 𝑥𝜃)2
1

𝛾 (
1

1 + 𝑥𝜃
 ) − 1

;        𝜃, 𝛾 > 0 , 𝛾 ≠ 1, 𝑥 ∈ ℝ.                   (74) 

The reverse hazard rate function of the APLL is given by 

𝑟𝐴𝑃𝐿𝐿(𝑥;  𝜃, 𝛾) =  log (𝛾)
𝜃𝑥𝜃−1

(1 + 𝑥𝜃)2

𝛾 (
1

1 + 𝑥𝜃
 ) 

𝛾 (
1

1 + 𝑥𝜃
 )− 1

;        𝜃, 𝛾 > 0 , 𝛾 ≠ 1, 𝑥 ∈ ℝ.                       (75) 

The Alpha Power Transformed Log-logistic distribution 

Aldahlan (2020) proposed an Alpha Power Transformed Log-logistic distribution (APTLL) and studied the 

mathematical and statistical properties of the new distribution. Aldahlan (2020)  extended the two-parameter 

log-logistic distribution. If the cdf of the two-parameter baseline log-logistic distribution takes the form: 

𝐹(𝑥; 𝛼, 𝛽) =  
1

1 + (
𝑥
𝛼
)
−𝛽
,                                                                             (76) 
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Then the cdf of the APTLL is given by 

𝐹𝐴𝑃𝑇𝐿𝐿(𝑥;  𝛼, 𝛽, 𝛾) =  

𝛾(
1

1 + (
𝑥
𝛼
)
−𝛽) − 1 

𝛾 − 1
       𝛼, 𝛽, 𝛾 > 0 , 𝛾 ≠ 1, 𝑥 > 0.                                  (77) 

The pdf corresponding to (77) is given by 

𝑓
𝐴𝑃𝑇𝐿𝐿

(𝑥;  𝛼, 𝛽, 𝛾) =  
log(𝛾) 

𝛼𝛽(𝛾 − 1)

𝛽𝑥𝛽−1

(1 + (
𝑥
𝛼
)
𝛽

)
2 𝛾

(
1

1+(
𝑥
𝛼
)
−𝛽)

;        𝛼, 𝛽, 𝛾 > 0 , 𝛾 ≠ 1, 𝑥 > 0.     (78) 

The survival function of the APTLL is defined as 

𝑆𝐴𝑃𝑇𝐿𝐿(𝑥; 𝛼, 𝛽, 𝛾) =
 𝛾 − 𝛾

(
1

1+(
𝑥
𝛼
)
−𝛽)

𝛾 − 1
;        𝛼, 𝛽, 𝛾 > 0 , 𝛾 ≠ 1, 𝑥 > 0.                                          (79) 

The hazard rate function of the APTLL is given by 

ℎ𝐴𝑃𝐿𝐿(𝑥; 𝛼, 𝛽, 𝛾) =  

𝛼−𝛽log (𝛾)𝛽𝑥𝛽−1

(1 + (
𝑥
𝛼
)
𝛽

)
2 𝛾

(
1

1+(
𝑥
𝛼)

−𝛽)

𝛾 − 𝛾

(
1

1+(
𝑥
𝛼)

−𝛽
)

;        𝛼, 𝛽, 𝛾 > 0 , 𝛾 ≠ 1, 𝑥 > 0.          (80) 

The reverse hazard rate function of the APTLL is given by 

𝑟𝐴𝑃𝑇𝐿𝐿(𝑥;  𝛼, 𝛽, 𝛾) =

𝛼−𝛽log (𝛾)𝛽𝑥𝛽−1

(1 + (
𝑥
𝛼
)
𝛽

)
2 𝛾

(
1

1+(
𝑥
𝛼)

−𝛽)

𝛾 (
1

1 + (
𝑥
𝛼
)
−𝛽)− 1

;             𝛼, 𝛽, 𝛾 > 0 , 𝛾 ≠ 1, 𝑥 > 0.            (81) 

The cumulative hazard rate function of the APTLL is given by  

𝐻𝐴𝑃𝑇𝐿𝐿(𝑥;  𝛼, 𝛽, 𝛾) = − log

[
 
 
 
 
 
 

 𝛾 −  𝛾

(
1

1+(
𝑥
𝛼
)
−𝛽)

𝛾 − 1

]
 
 
 
 
 
 

;             𝛼, 𝛽, 𝛾 > 0 , 𝛾 ≠ 1, 𝑥 > 0.                     (82) 

4.1.6 The Kumaraswamy-G Family of Distributions  

Kumaraswamy Distribution 

Kumaraswamy (1980) introduced a new two-parameter continuous distribution on (0,1) named Kumaraswamy 

distribution. Kumaraswamy distribution has the cdf and pdf of the form 

𝐺(𝑥) = 1 − (1 − 𝑥𝑎)𝑏,                                                                                     (83) 

where 𝑥 ∈ (0,1) and 𝑎 𝑎𝑛𝑑 𝑏 are both shape parameters.  

𝑔(𝑥) = 𝑎 𝑏 𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1,                                                                                (84) 
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The Kumaraswamy distribution has the same basic shape properties to the beta distribution; where (1) 𝑎 > 1 𝑎𝑛𝑑 𝑏 >
1 unimodal; (2) 𝑎 < 1 𝑎𝑛𝑑 𝑏 < 1 bathtub; (3) 𝑎 ≤ 1 𝑎𝑛𝑑 𝑏 > 1 decreasing; (4) 𝑎 > 1 𝑎𝑛𝑑 𝑏 ≤ 1 increasing, and 

(4) 𝑎 = 𝑏 = 1 constant. 

Kumaraswamy-G family of distributions 

Jones (2009) and Cordeiro and de Castro (2011) introduced the Kumaraswamy-G family of distributions by extending 

the beta-G family of distributions by applying Kumaraswamy distribution as a generator instead of the beta generator. 

That is; the cdf of the Kumaraswamy-G of distributions is derived by replacing the cdf in (46) by the Kumaraswamy 

distribution as the following: 

The cdf of the Kumaraswamy-G family of distributions 

𝐹𝐾𝑈−𝐺(𝑥) = 1 − [1 − 𝐺(𝑥)𝑎]𝑏,                                                                            (85) 

The pdf corresponding to (85) is given by 

𝑓
𝐾𝑈−𝐺

(𝑥) = 𝑎 𝑏 𝑔(𝑥)𝐺(𝑥)𝑎−1[1 − 𝐺(𝑥)𝑎]𝑏−1,                                                         (86) 

Where 𝑥 > 0, 𝑎, 𝑏 > 0 are the two extra shape parameters in addition to those in the baseline model whose role are to 

govern tail weights and skewness. The pdf of the Kumaraswamy-G family has many similar properties to the beta-G 

family, but has some advantages in terms of mathematical tractability, since it doesn’t involve any specific function 

such as the beta function.  

Kumaraswamy log-logistic distribution  

de Santana et al. (2012) and Muthulakshmi, (2013) proposed and studied the mathematical and statistical properties of 

the Kumaraswamy log-logistic distribution. de Santana et al. (2012)  proposed a new distribution that contain several 

essential distributions as sub-models to the extended distribution. 

The cdf and pdf of the Kumaraswamy Log-logistic distribution (KULL) are defined as  

𝐹𝐾𝑈𝐿𝐿(𝑥) = [(1 − 
1

1 + (
𝑥
𝛼
)
𝛽
)

𝑎

]

𝑏

,                                                                            (87)  

𝑓𝐾𝑈𝐿𝐿(𝑥) =
𝑎 𝑏 𝛽

𝛼𝑎𝛽
𝑥𝑎𝛽−1 [1 + (

𝑥

𝛼
)
𝛽

]

−(𝑎+1)

{1 − [1 −
1

1 + (
𝑥
𝛼
)
𝛽
]

𝑎

}

𝑏−1

,             𝑥 > 0        (88)  

The survival function corresponding to (87) is  

𝑆𝐾𝑈𝐿𝐿(𝑥) = 1 − 𝐹𝐾𝑈𝐿𝐿(𝑥) = [1 − (1 − 
1

1 + (
𝑥
𝛼
)
𝛽
)

𝑎

]

𝑏

,                                                      (89) 

The hazard function corresponding to (87) is  

ℎ𝐾𝑈𝐿𝐿(𝑥) =
𝑎 𝑏 𝛽

𝛼𝑎𝛽
𝑥𝑎𝛽−1 [1 + (

𝑥

𝛼
)
𝛽

]

−(𝑎+1)

{1 − [1 −
1

1 + (
𝑥
𝛼
)
𝛽
]

𝑎

}

−1

,             𝑥 > 0            (90)  

where 𝛼 is the scale parameter, and the shape parameters 𝑎, 𝑏, 𝑎𝑛𝑑  𝛽 govern the skewness of (87). 

4.1.7 The McDonald-G family of Distributions  

McDonald Distribution 

McDonald, (2008) introduced a new distribution called McDonald distribution with cdf of the form 

𝐹(𝑥;  𝑎, 𝑏, 𝑐) = 𝐼𝑥𝑐(𝑎𝑐
−1, 𝑏) =  

𝐵𝑥𝑐(𝑎𝑐
−1, 𝑏)

𝐵(𝑎𝑐−1, 𝑏)
=  

1

𝐵(𝑎𝑐−1, 𝑏)
∫ 𝑥𝑎𝑐

−1−1(1 − 𝑥)𝑏−1𝑑𝑥               (91)
𝑥𝑐

0
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where 𝑎, 𝑏, 𝑐  >  0 𝑎re the three shape parameters. Some of the special cases of the Mc distribution includes the beta 

type 1 distribution (c=1) and the Kumaraswamy distribution (a=1).  

The pdf corresponding to (91) is  

𝑓(𝑥;  𝑎, 𝑏, 𝑐) =  
𝑐

𝐵(𝑎𝑐−1, 𝑏)
𝑥𝑎−1(1 − 𝑥𝑐)𝑏−1, 0 < 𝑥 < 1                                               (92) 

McDonald-G family of distributions 

Alexander et al. (2012) introduced the McDonald-G family of distributions by replacing the upper limit 𝑥𝑐of the 

integral in equation (91) with 𝐺(𝑥𝑐).  

For any baseline cumulative distribution function (cdf) 𝐺(𝑥), the resulting cdf 𝐹(𝑥) of the Mc-generalized family of 

distribution Mc-G is  

𝐹𝑀𝑐𝐺(𝑥, 𝜃) = 𝐼𝐺(𝑥)𝑐(𝑎𝑐
−1, 𝑏) = 

1

𝐵(𝑎𝑐−1, 𝑏)
∫ 𝑥𝑎𝑐

−1−1(1 − 𝑥)𝑏−1𝑑𝑥                                 (93)
𝐺(𝑥)𝑐

0

 

where the 𝐼𝐺(𝑥)𝑐(𝑎, 𝑏) is the incomplete beta function ratio and 𝐼𝐺(𝑥)𝑐(𝑎, 𝑏) =  
𝐵𝐺(𝑥)𝑐(𝑎𝑐

−1,𝑏)

𝐵(𝑎𝑐−1,𝑏)
 

The pdf corresponding to (93) is 

𝑓
𝑀𝑐𝐺
(𝑥, 𝜃) =  

𝑐

𝐵(𝑎𝑐−1, 𝑏)
𝑔(𝑥){𝐺(𝑥)}𝑎−1{1 − 𝐺(𝑥)𝑐}𝑏−1                                                       (94) 

Lemonte and Cordeiro (2013) stated that this method of parameter induction facilitates the computation of several 

statistical and mathematical properties of the G family of probability distributions. 

McDonald Log-logistic distribution  

Tahir et al. (2014) introduced and studied the McDonald log-logistic distribution and they considered three of the above 

extended models of log-logistic distribution, (1) beta log-logistic distribution; (2) Kumaraswamy log-logistic 

distribution; and (3) gamma log-logistic or Zografos-Balakrishnan log-logistic distribution.  

Using the equations of the cdf and pdf of the McDonald-G family, they obtained the CDF and pdf of the McDonald 

log-logistic distribution. 

The cdf of the McDonald is given by 

𝐹𝑀𝑐𝐿𝐿(𝑥, 𝜃) = 𝐼𝑤(𝑎𝑐
−1, 𝑏) =  

1

𝐵(𝑎, 𝑏)
∫ 𝑤𝑎𝑐

−1−1(1 − 𝑤)𝑏−1𝑑𝑤                                              (95)
𝑤𝑐

0

 

Where 𝑤 = 𝐶𝐷𝐹 𝑜𝑓 𝐿𝐿 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =  [1 + (
𝑥

𝛼
)
−𝛽

]
−1

 and 𝑎, 𝑏, 𝑐, 𝛼, 𝛽 > 0,  where 𝑎, 𝑏, 𝑐, 𝑎𝑛𝑑 𝛽  are shape 

parameters while 𝛼 is a scale parameter.  

The corresponding pdf of the (95) is given by 

𝑓
𝑀𝑐𝐿𝐿

(𝑥, 𝜃) = 
𝑐

𝐵(𝑎𝑐−1, 𝑏)
(
𝛽

𝛼
) (
𝑥

𝛼
)
𝑎𝛽−1

[1 + (
𝑥

𝛼
)
𝛽

]
−(𝑎+1)

[1 − {1 − [1 + (
𝑥

𝛼
)
𝛽

]
−1

}

𝑐

]

𝑏−1

, (96) 

For a lifetime random variable t, the survivor function, the hazard (failure) rate function, the reversed hazard rate 

function, the cumulative hazard rate function and the quantile function of the McDLL distribution are given by 

𝑆(𝑡, 𝜃) = 1 − 𝐹(𝑡, 𝜃) = 1 − 𝐼𝑤(𝑎𝑐
−1, 𝑏)                                                                                            (97) 

ℎ(𝑡, 𝜃) =

𝑐 (
𝛽
𝛼
) (
𝑡
𝛼
)
𝑎𝛽−1

[1 − {1 − [1 + (
𝑡
𝛼
)
𝛽

]
−1

}

𝑐

]

𝑏−1

𝐵(𝑎𝑐−1, 𝑏) [1 + (
𝑡
𝛼
)
𝛽

]
(𝑎+1)

[𝐼𝑤(𝑎𝑐
−1, 𝑏) ]

                                                               (98) 
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𝑟(𝑡, 𝜃) =

𝑐 (
𝛽
𝛼
) (
𝑡
𝛼
)
𝑎𝛽−1

[1 − {1 − [1 + (
𝑡
𝛼
)
𝛽

]
−1

}

𝑐

]

𝑏−1

𝐵(𝑎𝑐−1, 𝑏) [1 + (
𝑡
𝛼
)
𝛽

]
(𝑎+1)

[1 − 𝐼𝑤(𝑎𝑐
−1, 𝑏) ]

                                              (99) 

𝐻(𝑡, 𝜃) = ∫ ℎ(𝑡, 𝜃)𝑑𝑡 =  − log 𝑆(𝑡, 𝜃) =  − log[1 − 𝐼𝑤(𝑎𝑐
−1, 𝑏) ]

𝑡

0

                                (100) 

And 

𝑋𝑞 =  {[(𝐼𝑞
−1(𝑎𝑐−1, 𝑏))

−
1
𝑐
− 1 ]𝛼}

−
1
𝛽

                                                                       (101) 

4.1.8 The Transmuted Family of Distributions  

Shaw and Buckley (2009) introduced a new method of parameter induction (generator technique) and several 

researchers applied their method to extend and generalize the well-known probability distributions in the last decade. 

They named the family as quadratic transmuted family of distributions and they used it to financial mathematics and 

other applied fields.  

For any baseline distribution with cdf 𝐺(𝑥; 𝜃) depending on the vector parameter 𝜃, then the CDF of the transmuted 

family is given by 

𝐹(𝑥; 𝛾, 𝜃) = (1 + 𝛾)𝐺(𝑥; 𝜃) − 𝛾𝐺(𝑥; 𝜃)2,                                                           (102) 

where 𝜃 > 0, |𝛾| ≥ 1, 𝑥 ∈  ℝ.  𝜃 is the vector parameter, 𝛾 is the extra shape parameter. When 𝛾 = 0, we obtain the 

baseline distribution, i.e., 𝐹(𝑥; 𝛾, 𝜃) =  𝐺(𝑥; 𝜃). 

The pdf corresponding to (102) is given by using differentiation  

𝑓(𝑥; 𝛾, 𝜃) = 𝑔(𝑥; 𝛾, 𝜃)[1 + 𝛾 − 2𝛾𝐺(𝑥; 𝜃)],                                                             (103) 

Aryal and Tsokos (2009, 2011) first highlight the method in (114) and proposed a couple of transmuted probability 

distributions that would offer more distributional flexibility in reliability and environmental analysis. For detail about 

this family we refer to  (Bourguignon et al. 2016)and (Alizadeh et al. 2017) who studied the general properties of this 

family, while (Tahir and Cordeiro, 2015) have introduced a list of quadratic transmuted family of distributions. Rahman 

et al. (2020) have provided an up-to-date list of popular transmuted -G classes of distributions. 

Transmuted Log-logistic distribution  

Aryal (2013) proposed and studied some of the statistical and mathematical properties of the transmuted log-logistic 

distribution. using the equations (102) and (103); they derived the cdf and pdf of the transmuted LL distribution as 

follows: 

𝐹𝑇𝐿𝐿(𝑥; 𝛾, 𝜃) =
(1 + 𝛾)𝛼𝛽𝑥𝛽 + 𝑥2𝛽

(𝛼𝛽 + 𝑥𝛽)2
 , 𝑥 > 0                                                              (104) 

The pdf of the transmuted log-logistic distribution is given by 

𝑓
𝑇𝐿𝐿
(𝑥; 𝛾, 𝜃) =

𝛽𝛼𝛽𝑥𝛽−1[(1 + 𝛾)(𝛼𝛽 + 𝑥𝛽) + 2𝛾𝑥𝛽]

(𝛼𝛽 + 𝑥𝛽)3
, 𝑥 > 0                                           (105) 

More details about the transmuted LL distribution and its applications to real data sets can be found in (Granzotto and 

Louzada, 2015); (Louzada and Granzotto,  2016); and (Adeyinka, 2019). 

4.1.9 The Cubic Transmuted Family of Distributions  

Granzotto et al. (2017) introduced a new parameter induction technique of generating probability distributions called 

Cubic Transmutation technique. The reason behind developing of cubic transmuted family was that the quadratic 

transmuted distribution captures the complexity of unimodal data but the real-life data become more complex to use 

them, and sometimes cannot be fitted by applying the quadratic transmuted family.  

For any baseline distribution with cdf 𝐺(𝑥; 𝜃) depending on the vector parameter 𝜃, then the CDF of the cubic 

transmuted family is given by 

𝐹(𝑥; 𝛾, 𝜃) = 𝛾1𝐺(𝑥; 𝜃) + (𝛾2 − 𝛾1)𝐺(𝑥; 𝜃)
2 + (1 − 𝛾2)𝐺(𝑥; 𝜃)

3,           𝑥 ∈ ℝ,                      (106) 

where 𝛾1 ∈ [0,1], 𝑎𝑛𝑑 𝛾2 ∈ [−1,1]. 
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The pdf corresponding to (106) is given by 

𝑓(𝑥; 𝛾, 𝜃) = 𝑔(𝑥; 𝜃)[𝛾1 + 2 (𝛾2 − 𝛾1)𝐺(𝑥; 𝜃) + 3(1 − 𝛾2)𝐺(𝑥; 𝜃)
2],          𝑥 ∈ ℝ,                 (107) 

Rahman et al. (2019, 2020) proposed two new cubic transmuted families of distributions. On the other hand, Aslam et al. 

(2018)introduced another cubic transmuted-G family of distributions using the T-X idea of (Alzaatreh et al, 2013). 

Rahman et al. (2020) have provided an up-to-date list of popular cubic transmuted -G classes of distributions. In general, 

the cubic transmuted distributions show better flexibility to handle multi-modal data than the quadratic transmuted 

distributions.  

Cubic transmuted Log-logistic distribution  

Granzotto et al. (2017) proposed the cubic transmuted log-logistic distribution. they used the transmuted log-logistic 

distribution to derive the pdf of the cubic transmuted log-logistic distribution.  

The pdf of the cubic transmuted log-logistic distribution is given by 

𝑓𝐶𝑇𝐿𝐿(𝑥; 𝛾, 𝜃) =
𝛽𝑥𝛽−1𝑒𝛼

(1 + 𝑒𝛼𝑥𝛽)4
[𝛾1(1 − 𝑒

2𝛼𝑥2𝛽) + 𝛾2𝑒
𝛼𝑥𝛽(2 − 𝑒𝛼𝑥𝛽)  + 3𝑒2𝛼𝑥2𝛽], 𝑥 > 0          (108) 

The cdf corresponding to (108) is given by 

         (109) 

4.1.10 The General Transmuted Family of Distributions  

Merovci et al. (2016) proposed and studied the statistical and mathematical properties of the generalized transmuted 

family of distributions. (Alizadeh et al. 2017) introduced a new generalized transmuted family of distributions and have 

described it as a linear combination of exponentiated densities in terms of the same parent distribution. Recently, 

Rahman et al. (2018) introduced a couple of new general transmuted family of distributions and they named 

k-transmuted families and they defined by 

𝐹(𝑥; 𝜃) = 𝐺(𝑥; 𝜃) + [1 − 𝐺(𝑥; 𝜃)]∑𝛾𝑖[𝐺(𝑥; 𝜃)]
𝑖

𝑘

𝑖=1

, 𝑥 𝑥 ∈ ℝ,                                 (110) 

where 𝛾𝑖 ∈ [−1,1] for 𝑖 = 1,2, … , 𝑘 and −𝑘 ≤ ∑ 𝛾𝑖 ≤ 1,
𝑘
𝑖=1  and  

𝐹(𝑥; 𝜃) = 𝐺(𝑥; 𝜃) + 𝐺(𝑥; 𝜃)∑𝛾𝑖[𝐺(𝑥; 𝜃)]
𝑖

𝑘

𝑖=1

, 𝑥 𝑥 ∈ ℝ,                                              (111) 

where 𝛾1 ∈ [−1,1]  and 𝛾𝑖 ∈ [−1,1]for 𝑖 = 1,2, … , 𝑘. 

AL-Kadim (2018) introduced a generalized family of transmuted distribution which turned out to be a special case of 

family (110). 

4.1.11 The Weibull-G Family of Distributions  

Alzaatreh et al. (2013) and Bourguignon et al. (2014) proposed the Weibull-G family of continuous probability 

distributions. Weibull-G family is an interesting technique of inducting an extra shape parameter(s) to an existing G 

distribution. Considering the cdf of the Weibull distribution which is given by 

𝐹(𝑥) = 1 − 𝑒−𝛼𝑥
𝛽
, 𝑥 > 0                                                                                    (112) 

where 𝛼, 𝛽 > 0 are the unknown parameters of the Weibull distribution.  

They defined the cdf of the Weibull-G family by replacing 𝑥 𝑤𝑖𝑡ℎ 𝐺(𝑥; 𝜃)/𝑆(𝑥; 𝜃)  [𝑆(𝑥; 𝜃) = 1 − 𝐺(𝑥; 𝜃), ], the cdf 

is given by 

𝐹(𝑥; 𝛼, 𝛽, 𝜃) =  ∫ 𝛼𝛽𝑡𝛽−1𝑒−𝛼𝑡
𝛽
𝑑𝑡  = 1 − exp {−𝛼 [

𝐺(𝑥; 𝜃)

𝑆(𝑥; 𝜃)
]

𝛽

}

𝐺(𝑥;𝜃)
1−𝐺(𝑥;𝜃)

0

, 𝑥 ∈ 𝐷 ⊆ ℝ;  𝛼, 𝛽 > 0,       (113) 

Where 𝐺(𝑥; 𝜃) is the baseline cdf, which depends on a parameter vector 𝜽′ = (𝛼, 𝛽).  

The pdf corresponding to (113) is given by 
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𝑓(𝑥; 𝛼, 𝛽, 𝜃) = 𝛼𝛽𝑔(𝑥; 𝜃)
𝐺(𝑥; 𝜃)𝛽−1

𝑆(𝑥; 𝜃)𝛽+1
𝑒𝑥𝑝 {−𝛼 [

𝐺(𝑥; 𝜃)

𝑆(𝑥; 𝜃)
]

𝛽

},                                       (114) 

The hazard rate function of the Weibull-G family is given by 

ℎ(𝑥; 𝛼, 𝛽, 𝜃) =  
𝛼𝛽𝑔(𝑥; 𝜃)𝐺(𝑥; 𝜃)𝛽−1

𝑆(𝑥; 𝜃)𝛽+1
= 
𝛼𝛽𝐺(𝑥; 𝜃)𝛽−1

𝑆(𝑥; 𝜃)𝛽
ℎ(𝑥; 𝜃),                                      (115) 

whereℎ(𝑥; 𝜃) = 𝑔(𝑥; 𝜃)/𝑆(𝑥; 𝜃) .  𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝛼𝛽𝐺(𝑥; 𝜃)𝛽−1/𝑆(𝑥; 𝜃)𝛽+1 works as a corrected factor 

for the failure rate function of the parent (or baseline) distribution.  

The Weibull-G family can deal with general situations in modeling and analysing time-to-event data with different 

shapes of the hazard (or failure) rate function. For example, if the baseline distribution is a log-logistic distribution the 

𝐺(𝑥; 𝜃)𝛽−1

𝑆(𝑥; 𝜃)𝛽+1
= [1 + (

𝑥

𝑠
)
𝑐

]
−1

, 𝑥 > 0                                                                           (116)  

Weibull-Log-logistic Distribution  

Oluyede et al. (2016)proposed the log-logistic Weibull distribution and they applied it into a lifetime data. Considering 

a series system and assuming that the lifetime of the component follow the log-logistic and Weibull distribution with 

survival functions  𝑆1(𝑡; 𝜃) = [1 + (
𝑡

𝑠
)
𝑐

]
−1

, 𝑎𝑛𝑑  𝑆2(𝑡; 𝜃) = 𝑒
−𝛼𝑡𝛽 ,  respectively. The survival 𝑆(𝑡) = 𝑃(𝑇 > 𝑡) of 

the system is given by 

𝑆(𝑡) =  ∏𝑆𝑖(𝑡)

2

𝑖=1

                                                                            (117) 

The cdf of the log-logistic-Weibull distribution is given by 

𝐹(𝑥) = 1 − (1 + (
𝑥

𝑠
)
𝑐

)
−1

𝑒−𝛼𝑥
𝛽
,                                                                 (118) 

The corresponding pdf is given by 

𝑓(𝑥) =  𝑒−𝛼𝑥
𝛽
[1 + (

𝑥

𝑠
)
𝑐

]
−1

{𝛼𝛽𝑥𝛽−1 +
𝑐𝑥𝑐−1

(𝑠𝑐 + 𝑥𝑐)
},                                             (119) 

Where 𝑠, 𝑐, 𝛼, 𝛽 > 0 𝑎𝑛𝑑 𝑥 ≥ 0. 

4.1.12 The Exponentiated Generalized Family of Distributions  

Cordeiro et al. (2013) proposed a new family of distributions, called the exponentiated generalized (EG) class of 

distributions. This method belongs to the parameter induction method, where the purpose is to add two new extra shape 

parameters to the baseline (or parameter) distribution. 

The cdf of the EG class of distribution is given by  

𝐹𝐸𝐺(𝑥; 𝜃) = {1 − [1 − 𝐺(𝑥)]
𝑎}𝑏, 𝑥 ∈ ℝ,                                                                (120) 

where 𝑎 > 0, 𝑎𝑛𝑑 𝑏 > 0 are two extra parameters whose role is to govern the skewness and create distributions with 

heavier/lighter tails. 

The pdf corresponding to (120) is given by  

𝑓
𝐸𝐺
(𝑥; 𝜃) = 𝑎𝑏[1 − 𝐺(𝑥)]𝑎−1{1 − [1 − 𝐺(𝑥)]𝑎}𝑏−1𝑔(𝑥), 𝑥 ∈ ℝ,                                    (121) 

where 𝑔(𝑥) =  
𝑑𝐺(𝑥)

𝑑𝑥
 is the pdf of the baseline (or parent) distribution. the two parameters in (121) can add entropy to 

the center of the Exponentiated Generalized density or possible control both tail weights.  

Exponentiated generalized log-logistic distribution  

Lima and Cordeiro (2017) studied the mathematical and statistical properties of a new four-parameter survival model 

applying the exponentiated generalized (EG) class. 
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The cdf of the new distribution is given by 

𝐹𝐸𝐺𝐿𝐿(𝑥; 𝜃) = {1 − [1 −
𝑥𝛽

𝛼𝛽 + 𝑥𝛽
]

𝑎

}

𝑏

, 𝑥 ∈ ℝ,                                                    (122) 

The pdf corresponding to (122) is given by 

𝑓
𝐸𝐺𝐿𝐿

(𝑥; 𝜃) =
𝑎𝑏𝛽 (

𝑥
𝛼
)
𝛽−1

𝛼 [1 + (
𝑥
𝛼
)
𝛽

]
2 [1 −

𝑥𝛽

𝛼𝛽 + 𝑥𝛽
]

𝑎−1

{1 − [1 −
𝑥𝛽

𝛼𝛽 + 𝑥𝛽
]

𝑎

}

𝑏−1

, 𝑥 ∈ ℝ,              (123) 

The hazard rate function of the EGLL is given by 

ℎ𝐸𝐺𝐿𝐿(𝑥; 𝜃) =

𝑎𝑏𝛽 (
𝑥
𝛼
)
𝛽−1

[1 −
𝑥𝛽

𝛼𝛽 + 𝑥𝛽
]
𝑎−1

{1 − [1 −
𝑥𝛽

𝛼𝛽 + 𝑥𝛽
]
𝑎

}

𝑏−1

𝛼 [1 + (
𝑥
𝛼
)
𝛽

]
2

{1 − [1 −
𝑥𝛽

𝛼𝛽 + 𝑥𝛽
]
𝑎

}
𝑏 , 𝑥 ∈ ℝ,                 (124) 

The quantile function of EGLL is given by inverting (122) 

𝑥𝑞 =

𝛼𝛽 {1 − [1 − 𝑞
1
𝛽]

1
𝛼

}

[1 − 𝑞
1
𝛽]

1
𝛼

, 𝑥 ∈ ℝ,                                                              (125) 

 

4.1.13 The T-X Family of Distributions  

Alzaatreh et al. (2013) proposed a new family of distributions, called the T-X family of distributions as an extension to 

the beta-G family of distributions introduced by (Eugene et al., 2002).  

If the cdf of the baseline distribution is 𝐺(𝑥; 𝜃) then the cdf of the T-X family is given as 

𝐹(𝑥) =  ∫ 𝑟(𝑡)𝑑𝑡 = {𝑅𝑊(𝐹(𝑥))},                                                    (126)
𝑊𝐹(𝑥)

𝑎

   

where R is the cdf of the baseline random variable, and the function  𝑊(𝐹(𝑥) must satisfy the following conditions: 

1. 𝑊(𝐹(𝑥) ∈ [𝑎, 𝑏], 

2. 𝑊 is differentiable and monotonically non-decreasing 

3. 𝑊(𝐹(𝑥) → 𝑎 as 𝑥 → −∞ and 𝑊(𝐹(𝑥) → 𝑏  as 𝑥 → ∞ 

Where [𝑎, 𝑏] is the support of the baseline random variable for −∞ ≤ 𝑎 < 𝑏 ≤ ∞. 

The pdf corresponding to (126) if it exists is given by 

𝑓(𝑥) → {
𝑑

𝑑𝑥
𝑊𝐹(𝑥)} 𝑟{𝑊(𝐹(𝑥))}.                                                            (127) 

Alzaatreh and Ghosh (2015) introduced three sub-families of the T-X family which are beta-exponential-X family, 

gamma-X family, and the Weibull-X family. These three sub-families demonstrate that the T-X family consists of many 

sub-classes of distributions within each sub-family, one can introduce many new distributions as well as relateits 

members to many existing probability distributions. More details about the T-X family of distributions and their 

modifications we can refer to (Nasiru, 2018). 

4.1.14 The Weibull-X Family of Distributions 

Alzaatreh and Ghosh (2015) proposed the Weibull-X family of distributions. Using the  concept of T-X family of 

distributions introduced by Alzaatreh et al. (2013).  

The cdf and the pdf of the T-X family of distributions are given by; 
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𝐹(𝑥) =  ∫ 𝑟(𝑡)𝑑𝑡                                                                           (128
−log [1−𝐺(𝑥)]

𝑎

) 

𝑓(𝑥) →
𝑔(𝑥)

1 − 𝐺(𝑥)
𝑟{− log[1 − 𝐺(𝑥)] = ℎ𝑔(𝑥)𝑟𝐻𝑓(𝑥).                                                    (129) 

Where ℎ𝑔(𝑥) 𝑎𝑛𝑑 𝐻𝑓(𝑥) are the hazard rate and the cumulative hazard rate functions associated with 𝑔(𝑥). 

If a random variable T follows the Weibull distribution with a pdf of  

𝑟(𝑡) = (
𝛽

𝛼
) (
𝑡

𝛼
) 𝛽−1𝑒−(

𝑡
𝛼)

𝛽

, 𝑡 > 0                                                                           (130) 

The pdf and cdf of the Weibull-X family of distributions is given by 

𝑓(𝑥) →
𝛽𝑔(𝑥)

𝛼(1 − 𝐺(𝑥))
(
− log[1 − 𝐺(𝑥)]

𝛼
)

𝛽−1

𝑒𝑥𝑝 {−(
− log[1 − 𝐺(𝑥)]

𝛼
 )   𝛽}                  (131) 

𝐹(𝑥) =  1 −  𝑒𝑥𝑝 {−(
− log[1 − 𝐺(𝑥)]

𝛼
 )   𝛽} , 𝑥 ∈ ℝ                                                         (132) 

5.1.15 The Exponentiated Kumaraswamy-G family  

Lemonte et al. (2013)proposed the exponentiated Kumaraswamy-G family of distributions. The cdf and the pdf of the 

EK family are given by 

𝐹(𝑥; 𝜃) = [1 − (1 − 𝑥𝛼)𝛽]
𝛾
, 𝑥 ∈ (0,1)                                                                      (133) 

𝑓(𝑥; 𝜃) = 𝛼𝛽𝛾𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1[1 − (1 − 𝑥𝛼)𝛽−1]
𝛾−1

, 𝑥 ∈ (0,1)                                 (134) 

where 𝛼𝛽 𝑎𝑛𝑑 𝛾 are extra positive shape parameters. The distribution (134) provides more options for analysing data 

restricted to the interval (0,1). 

5.1.16 The Generalized Weibull-G Family of Probability Distributions  

Cordeiro et al. (2015)proposed a new generalized Weibul-G family of probability distributions and they studied the 

mathematical and statistical properties of the family and some special models.  

The cdf of the generalized Weibull family is given by 

𝐹(𝑥; 𝛼, 𝛽, 𝜃) = 𝛼𝛽∫ 𝑡𝛼−1𝑒−𝛼𝑡
𝛽
𝑑𝑡 = 1 − exp{−𝛼(− log[1 − 𝐺(𝑥; 𝜃)])𝛽}

−log[1−𝐺(𝑥;𝜃)]

0

       (135) 

The pdf corresponding to (130) is given by 

𝑓(𝑥; 𝛼, 𝛽, 𝜃) =
𝛼𝛽𝑔(𝑥; 𝜃)

[1 − 𝐺(𝑥; 𝜃)]
{− log[1 − 𝐺(𝑥; 𝜃)]}𝛽−1𝑒𝑥𝑝{−𝛼(− log[1 − 𝐺(𝑥; 𝜃)])𝛽}         (136) 

The generalized Weibull-Log-logistic Distribution  

Cordeiro et al. (2015) introduced the generalized Weibull log-logistic distribution (GWLL). 

the pdf of the GWLL with a log-logistic distribution having a scale parameter of a and a shape parameter of b is given 

by;  

𝑓(𝑥) =
𝛼𝛽𝑎𝑥𝑏−1

𝑏𝑎
(1 + (

𝑥

𝑏
)
𝑎

)
−1

{log (1 + (
𝑥

𝑏
)
𝑎

)}
𝛽−1

𝑒𝑥𝑝 {−𝛼 (log [(1 + (
𝑥

𝑏
)
𝑎

)])
𝛽

}        (137) 

The literature on the generalized log-logistic distribution using generator (or parameter induction) methods is enrich 

enough and is also rapidly improving. We now describe the generalization of the log-logistic distribution using 

compounding and other methods in the following. 

5.1.17 The Gamma Uniform Family of Probability Distributions  

Torabi and Hedesh (2016) proposed a new generator approach called the gamma-uniform family of distributions. the 

cdf of the family is given by  

𝐹(𝑥) = 𝛼𝛽∫
𝑒
−
𝑤
𝛽𝑤𝛼−1

Γ(𝛼)𝛽𝛼
𝑑𝑤 = 1 − Q {𝛼

𝑥 − 𝑎

𝛽(𝑏 − 𝑥)
} , 𝑎 < 𝑥 < 𝑏.                             

𝑥−𝑎
𝑏−𝑥

0

     (138) 
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The pdf and hazard rate function corresponding to (138) are given by 

𝑓(𝑥) =  
(𝑏 − 𝑎)𝑒

−
𝑥−𝑎

𝛽(𝑏−𝑥) (
𝑥 − 𝑎
𝑏 − 𝑥

)
𝛼−1

(b − x)2Γ(𝛼)𝛽𝛼
, 𝑎 < 𝑥 < 𝑏                                                    (139) 

ℎ(𝑥) =
(𝑏 − 𝑎)𝑒

−
𝑥−𝑎

𝛽(𝑏−𝑥) (
𝑥 − 𝑎
𝑏 − 𝑥

)
𝛼−1

(b − x)2Γ(𝛼,
𝑥 − 𝑎

𝛽(𝑏 − 𝑥)
)𝛽𝛼

, 𝑎 < 𝑥 < 𝑏                                                      (140) 

This distribution can be applied for modeling any data set with changing the extra parameters. 

4.2 Compounding Methods  

The compounding method is a technique that combine two or more existing distributions  

4.2.1 The Exponentiated G-Geometric Class 

Nadarajah et al. (2015)introduced the exponentiated G-geometric also known as the generalized G-geometric class. If  

𝑇[𝐺(𝑥;  𝜏);  𝛾] = 𝐺(𝑥; 𝜏)𝛾 and N be a geometric random variable with failure probability parameter 𝑝 ∈ (0,1) and 

probability mass function ℙ(𝑁 = 𝑛) = 𝑞𝑝𝑛−1, 𝑛 = 1,2, … , 𝑝. where p is the success probability.  

If we define 𝑋 = 𝑚𝑖𝑛(𝑌1, … , 𝑌𝑁), the unconditional of cdf of the exponentiated G-geometric (EGG) class can follow as 

𝐹𝐸𝐺𝐺(𝑥; 𝜃) =∑(1 − 𝑝)𝑝𝑛−1[1 − (1 − 𝐺(𝑥; 𝜏)𝛾)
𝑛] =  

𝐺(𝑥; 𝜏)𝛾

{1 − 𝑝[1 − 𝐺(𝑥; 𝜏)𝛾]}
                    (141)

∞

𝑛=1

 

Where 𝛾 > 0, 0 < 𝑝 < 1 are two extra shape parameters. This new family can also be obtained by modification or an 

extension of Marshall-Olkin family of distribution by replacing the baseline CDF with its exponentiation and adding 

two more extra shape parameters to the original distribution. 

The pdf corresponding to (141) is given by 

𝑓
𝐸𝐺𝐺
(𝑥; 𝜃) =

𝛾(1 − 𝑝)𝐺𝛾−1(𝑥; 𝜏)𝑔(𝑥; 𝜏)

{1 − 𝑝[1 − 𝐺(𝑥; 𝜏)𝛾]}2
                                                                  (142) 

The exponentiated log-logistic geometric distribution 

Mendoza et al. (2016)proposed and studied the exponentiated log-logistic geometric distribution. they derived some of 

the mathematical and statistical properties of the EEG Log-logistic distribution. 

If {𝑌𝑖}𝑖=1
𝑍  are an i.i.d random variables having the exponentiated log-logistic distribution with cdf and pdf  

𝐹𝐸𝐿𝐿(𝑥) = 𝑃𝐸𝐿𝐿({𝑦|𝑦 ≤ 𝑥}) =  [
(
𝑥
𝛼
)
𝛽

1 + (
𝑥
𝛼
)
𝛽
] 

𝛾

 𝑓𝑜𝑟 𝑥 ≥ 0                                                              (143) 

𝑓
𝐸𝐿𝐿
(𝑥) = 

𝛽𝛾 (
𝑥
𝛼
)
𝛽𝛾−1

𝛼  (1 + (
𝑥
𝛼
)
𝛽

)
𝛾+1   𝑓𝑜𝑟 𝑥 ≥ 0                                                                   (144) 

where 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 > 0 are the unknown parameters of the model. For 𝛾 = 1, we obtain as a special case the LL 

distribution.  

Then,  

 The conditional density function of EGG log-logistic function for 𝑋1 = min({𝑌𝑖}𝑖=1
𝑍 ): is  

𝑓(𝑥|𝑧; 𝛾, 𝛼, 𝛽) =  
𝑧𝛽𝛾

𝛼
(
𝑥

𝛼
)
𝛽𝛾−1

[1 + (
𝑥

𝛼
 )
𝛽

]

−(𝛾+1)

 {1 −  [1 + (
𝑥

𝛼
)
−𝛽

]

−𝛾

}

𝑧−1

                      (145) 

The pdf of the exponentiated log-logistic geometric type I (ELLGI) distribution reduces to 
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 𝑓
𝐸𝐿𝐿𝐺𝐼

(𝑥;  𝜃) =  
(1−𝑝)𝛽𝛾

𝛼
(
𝑥

𝛼
)
𝛽𝛾−1

[1 + (
𝑥

𝛼
 )
𝛽

]
−(𝛾+1)

 {1 − 𝑝 [1 −  {1 + (
𝑥

𝛼
)
−𝛽

}
−𝛾

]}
−2

                      (146) 

Where 𝑥 > 0,   𝜃 is the vector of parameters ((𝛼, 𝛽, 𝛾 > 0, 𝑎𝑛𝑑 𝑝 ∈ (0,1).. 

The cdf corresponding to (146) is given by 

𝐹𝐸𝐿𝐿𝐺𝐼(𝑥;  𝜃) =  [1 + (
𝑥

𝛼
 )
−𝛽

]
−𝛾

 {1 − 𝑝 [1 −  {1 + (
𝑥

𝛼
)
−𝛽

}
−𝛾

]}

−1

, 𝑥 > 0                         (147) 

The hazard rate function corresponding to (146) is given by 

ℎ𝐸𝐿𝐿𝐺𝐼(𝑥;  𝜃) =  
(1 − 𝑝)𝛽𝛾

𝛼
(
𝑥

𝛼
)
𝛽𝛾−1

[1 + (
𝑥

𝛼
 )
𝛽

]
−(𝛾+1)

 {1 − 𝑝 [1 −  {1 + (
𝑥

𝛼
)
−𝛽

}
−𝛾

]}

−1

×    {1 − 𝑝 [1 −  {1 + (
𝑥

𝛼
)
−𝛽

}
−𝛾

] − {1 + (
𝑥

𝛼
)
−𝛽

}
−𝛾

}

−1

, 𝑥 > 0                 (148) 

 The conditional density function of EGG log-logistic function for 𝑋2 = max({𝑌𝑖}𝑖=1
𝑍 ): is  

𝑓(𝑥|𝑧; 𝛾, 𝛼, 𝛽) =  
𝑧𝛽𝛾

𝛼
(
𝑥

𝛼
)
𝛽𝛾−1

[1 + (
𝑥

𝛼
 )
𝛽

]

−(𝛾+1)

[1 + (
𝑥

𝛼
)
−𝛽

]

−𝛾(𝑧−1)

                                 (149) 

The pdf of the exponentiated log-logistic geometric type II (ELLGII) distribution reduces to 

 𝑓
𝐸𝐿𝐿𝐺𝐼𝐼

(𝑥;  𝜃) =  
(1−𝑝)𝛽𝛾

𝛼
(
𝑥

𝛼
)
𝛽𝛾−1

[1 + (
𝑥

𝛼
 )
𝛽

]
−(𝛾+1)

{1 − 𝑝 [1 + (
𝑥

𝛼
)
−𝛽

]
−𝛾

}
−2

                          (150) 

Where 𝑥 > 0,   𝜃 is the vector of parameters ((𝛼, 𝛽, 𝛾 > 0, 𝑎𝑛𝑑 𝑝 ∈ (0,1).. 

The cdf corresponding to (150) is given by 

𝐹𝐸𝐿𝐿𝐺𝐼𝐼(𝑥;  𝜃) = (1 − 𝑝) [1 + (
𝑥

𝛼
 )
−𝛽

]
−𝛾

 {1 − 𝑝 [1 + (
𝑥

𝛼
)
−𝛽

]
−𝛾

}

−1

, 𝑥 > 0                           (151) 

The hazard rate function corresponding to (150) is given by 

ℎ𝐸𝐿𝐿𝐺𝐼𝐼(𝑥;  𝜃) = 

(1 − 𝑝)𝛽𝛾
𝛼

(
𝑥
𝛼
)
𝛽𝛾−1

[1 + (
𝑥
𝛼
 )
𝛽

]
−(𝛾+1)

 {1 − 𝑝 [1 + (
𝑥
𝛼
)
−𝛽

]
−𝛾

}
−2

1 − (1 − 𝑝) [1 + (
𝑥
𝛼
)
−𝛽

]
−𝛾

 {1 − 𝑝 [1 + (
𝑥
𝛼
)
−𝛽

]
−𝛾

}
−1

 

                      (152) 

4.3 Other Methods  

In this section, we present some new techniques for generating new probability distributions.  

4.3.1 Khan and Khosa’s Generalized Log-Logistic Distribution  

Khan and Khosa (2015) proposed a generalized log-logistic distribution that belongs to the PH family and they 

described that it has properties identical to those of log-logistic, and tend to the Weibull in the limit, and they defined 

that these features enable the model to handle all kinds of hazard functions.  

The pdf, survivor function, hazard rate function, and the cumulative hazard rate function of the Generalized log-logistic 

distribution is given by respectively; 

𝑓(𝑡; 𝜃) =  
𝑘𝜌(𝜌𝑡)𝑘−1

(1 + (𝛾𝑡)𝑘)2
, t > 0,                                                                          (153) 

  𝑆(𝑡; 𝜃) = [ 1 + (𝛾𝑡)𝑘]
−
𝑝𝑘

𝛾𝑘 ,                                                                                      (154) 

ℎ(𝑡; 𝜃) =  
𝑘𝜌(𝜌𝑡)𝑘−1

1 + (𝛾𝑥)𝑘
,                                                                                            (155) 

𝐻(𝑡; 𝜃) =
𝑝𝑘

𝛾𝑘
log[ 1 + (𝛾𝑡)𝑘],                                                                               (156) 

5. Estimation of the Parameters  

In the statistics literature, due to the importance of the LL distribution and its generalizations, the estimation of the 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 10, No. 3; 2021 

116 

unknown parameters has been widely studied from the two main inferential statistics of thought: frequentists and 

Bayesians. From the frequentist approach, there are several different techniques that were proposed for parameter 

estimation but the maximum likelihood estimators (MLEs) are commonly used in most of the studies because of their 

appealing properties and can be applied when building confidence regions and intervals and also in test statistics. 

Although MLE method has been proven to be consistent, asymptotically efficient under very general conditions, it was 

found that it breaks down as one parameter tending to cause the likelihood to be infinite, rendering the other parameters 

inconsistent and is not applicable to J-shape distributions (Cheng and Amin, 1983). Ranneby, (1984) mentioned that the 

MLE is unbound and inefficient in the estimation of the mixtures of continuous distributions and heavy-tailed 

distributions. Therefore, to overcome the drawbacks in the MLE method (Cheng and Amin, 1979) proposed a maximum 

product of spacings (MPS) estimator to deal with those problems as it will return valid results over a much wider range 

of distributions and their generalizations. The method was also developed independently by (Ranneby, 1984).  

In this study, we applied the maximum product spacings (MPS) method to estimate the unknown parameters for most of 

the generalized distributions discussed in this paper. For more information about the MPS estimator we can refer to 

(Cheng and Amin, 1979, 1983; Kawanishi, 2020; Ranneby, 1984; Thongkairat et al. 2018). The MPS estimator is a 

general technique used for estimating unknown parameters from observations with continuous univariate distributions 

and is an alternative to the MLE method. The log-likelihood for the distribution parameters can be maximized by using 

nonlinear likelihood equations obtained by differentiating the log-likelihood or by using software programs and 

packages. In this study, we applied the MPS (Maximum Product Spacing) package (version 2.3.1) (Teimouri, 2018) 

available in the R programming language to estimate the unknown parameters of the generalized distributions. The 

package has been continuously updated and more information can be obtained from 

https://cran.rstudio.com/web/packages/MPS/index.html. Currently, Bayesian inference of the log-logistic parameters 

and some of its generalizations has also received attention in the literature and some of them are still needs to be 

studied.  

6. Real-life Data Application 

In this section, we compare the performances of some of the generalizations of the log-logistic distribution in Section 5 

using a real-life data set. The data represent the survival times of 121 patients with breast cancer obtained from a large 

hospital in a period from 1929 to 1938 (Lee and Wang, 2003). The data are: 

(154.0, 139.0, 129.0, 129.0, 127.0, 126.0, 125.0, 117.0, 115.0, 111.0, 109.0, 109.0, 105.0, 103.0, 96.0, 93.0, 90.0, 

89.0, 88.0, 83.0, 80.0, 78.0, 69.0, 68.0, 67.0, 67.0, 65.0, 65.0, 62.0, 61.0, 60.0, 60.0, 60.0, 59.0, 58.0, 57.0, 56.0,  

55.0, 54.0, 52.0, 51.0, 51.0, 51.0, 49.0, 48.0, 47.0, 46.0, 46.0, 45.0, 45.0, 44.0, 43.0, 43.0, 43.0, 42.0, 41.0, 41.0, 

41.0, 40.0, 40.0, 40.0, 39.0, 39.0, 38.0, 38.0, 38.0, 37.0, 37.0, 37.0, 35.0, 35.0, 32.0, 31.0, 31.0, 30.0, 29.1, 28.2,  

27.9, 24.0, 24.0, 23.6, 23.4, 23.0, 21.1, 21.0, 21.0, 20.9, 20.4, 19.8, 17.9, 17.5, 17.3, 17.2, 16.8, 16.5, 16.3, 16.2, 

15.7, 15.5, 14.8, 14.4, 14.4, 13.5, 12.3, 12.2, 11.8, 11.0, 10.3, 8.4, 8.4, 7.5, 7.4, 6.8, 6.6, 6.3, 6.2, 5.6, 5.0, 4.0,  

0.3, 0.3) 

Table 1. Descriptive statistics of the data 

Mean Median Variance Skewness Kurtosis Minimum Maximum  

46.33 40 1244.464 1.03 0.35 0.3 154 

 

We fitted the following scale-shape variations of some of the surveyed distributions: The beta log-logistic distribution 

(BLL), the Kumaraswamy log-logistic distribution (KWLL), the exponentiated log-logistic distribution (ELL), the 

exponentiated generalized log-logistic distribution (EGLL), the Zografos-Balakrishnan log-logistic distribution (ZBLL), 

the Marshall-Olkin log-logistic distribution (MO-LL), the Weibull-log-logistic distribution (WLL), the Weibull-X (T-X) 

log-logistic distribution (WXLL) , the exponentiated Kumaraswamy log-logistic distribution (EKWLL), the 

gamma-uniform log-logistic distribution (GLL), and the Log-logistic (LL) distribution.  

Each distribution was fitted by the method of maximum product spacings (MPS). Table 2 gives the values of the MPS 

estimates of the model parameters for the BLL, KWLL, ELL, ZBLL, EGLL, MO-LL, WLL, WXLL, EKWLL, GLL, 

and LL models fitted to the exceedances of breast cancer data. We estimate the unknown parameters of each model by 

maximum product spacings (MPS). There exist many maximization methods in R packages like NM (Nelder-Mead), 

BFGS (Broyden-Fletcher Goldfarb-Shanno), NR (Newton-Raphson), BHHH (Berndt-Hall-Hall-Hausman), and SANN 

(Simulated-Annealing) methods. In this study, the maximum product spacing estimators (MPS) are computed using 

Nelder-Mead optimization (NM) and the measures of goodness of fit AIC, BIC, CAIC, HQIC, Anderson-Darling (A*) 

https://cran.rstudio.com/web/packages/MPS/index.html
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and Cramer-von Misses (W*) are used to compare the ten selected models.  

Table 2. MPS estimators of the model parameters and the maximum of the log-likelihood function  

Distributions MPS estimators of the parameters  

 a b c α β 𝓵(�̂�) 

GLL (a, α, β) 0.765   1.495 63.618 -579.011 

WXLL (a, b, α, β) 0.878 0.865  1.439 44.828 -579.143 

KWLL (a, b, α, β) 0.366 4.311  3.113 207.018 -579.211 

EGLL (a, b, α, β) 6.870 0.691  1.683 187.670 -579.301 

WLL (a, b, α, β) 14.442 0.610  0.115 222.676 -579.411 

BLL (a, b, α, β) 0.696 6.885  1.661 203.623 -579.412 

ZBLL (a, α, β) 0.351   3.011 79.117 -580.609 

ELL (a, α, β) 0.319   3.305 71.682 -580.748 

EKWLL (a, b, c, α, β) 3.603 5.835 0.181 1.700 82.094 -579.330 

MO-LL (a, α, β) 1.137   1.800 32.683 -587.677 

LL (α, β)    1.856 35.177 -587.599 

 

Table 3 lists the values of the following statistics: Akaike Information Criterion (AIC), values of Bayesian Information 

Criterion (BIC), values of Consistent Akaike Information Criterion (CAIC), values of Hannan-Quinn information 

Criterion (HQIC), Cramer-von Misses statistic (W*), and Anderson-Darlin Statistic (A*). The smaller the values of 

these criteria the better the fit. For more information about these criteria, we refer to (Anderson & Burnham, 2004; 

Bierens, 2004; Burnham & Anderson, 2004)and (Fang, 2011). 

Table 3. Goodness-of-fit tests for the generalizations of the 2-parameter log-logistic distribution  

Distribution Goodness of fit (G-O-F) criteria  

 BIC AIC CAIC HQIC A* W* 

GLL 1172.411 1164.023 1164.229 1167.430 0.463 0.063 

WXLL 1177.469 1166.286 1166.631 1170.828 0.407 0.055 

KWLL 1177.607 1166.424 1166.769 1170.966 0.538 0.079 

EGLL 1177.786 1166.602 1166.947 1171.144 0.422 0.057 

WLL 1178.006 1166.823 1167.168 1171.365 0.417 0.057 

BLL 1178.008 1166.825 1167.170 1171.367 0.431 0.058 

ZBLL 1175.606 1167.218 1167.423 1170.625 0.442 0.052 

ELL 1175.885 1167.498 1167.703 1170.904 0.439 0.051 

EKWLL 1182.639 1168.660 1169.182 1174.338 0.476 0.062 

LL 1184.791 1179.199 1179.301 1181.47 1.257 0.2096 

MO-LL 1189.742 1181.355 1181.560 1184.761 1.084 0.131 

We can see that the 3-parameter gamma-uniform log-logistic distribution gives the smallest AIC, CAIC, BIC, and HQIC 

values. The GLL distribution provides significantly better fits than all of the other distributions, including the WELL 

and other distributions. MO-LL and LL distributions give the largest values for all criterion and tests, also the EKWLL 

distribution, these distributions may be thought to give worst fits. The maximum likelihood estimates of the best fitting 

GLL distribution are �̂� = 0.7652255,  �̂� = 1.4947180, �̂� = 63.6183351. The fitting was performed using the R 

package MPS (Teimouri, 2018).  

Shifted log-logistic distribution or generalized log-logistic distribution or simply a three-parameter log-logistic 

distribution is an extension of the 2-parameter log-logistic distribution by an adding a shift parameter or location 

parameter. If we apply the generalization of the shifted log-logistic distribution by adding an extra parameter(s) and 

then apply the above breast cancer data. The comparison of the selected models plus the Shifted (3-parameter) 

Log-logistic distribution (SLL) are listed in Table 4. 
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The pdf of the shifted log-logistic distribution is given by 

𝑓(𝑥) =  

𝛽
𝛼
(
𝑥 − 𝜇
𝛼

)
𝛽−1

(1 + (
𝑥 − 𝜇
𝛼

)𝛽)2
,                                                                                    (157) 

Table 4. Goodness-of-fit tests for the generalizations of the shifted log-logistic distribution  

Distribution Goodness of fit (G-O-F) criteria  

 BIC AIC CAIC HQIC A* W* 

GLL 1178.489 1167.306 1167.650 1171.848 0.352 0.051 

WXLL 1182.851 1168.872 1169.394 1174.549 0.411 0.059 

WLL 1183.550 1169.572 1170.093 1175.249 0.365 0.052 

KWLL 1183.807 1169.828 1170.350 1175.506 0.372 0.051 

ZBLL 1181.69 1170.506 1170.851 1175.048 0.410 0.051 

ELL 1181.954 1170.771 1171.116 1175.313 0.412 0.051 

BLL 1185.310 1171.331 1171.331 1177.009 0.395 0.062 

EGLL 1185.337 1171.358 1171.880 1177.035 0.385 0.052 

EKWLL 1188.942 1172.168 1172.904 1178.941 0.437 0.054 

SLL 1183.224 1174.836 1175.042 1178.243 0.795 0.130 

MO-LL 1188.349 1177.165 1177.510 1181.707 0.606 0.085 

LL 1184.791 1179.199 1179.301 1181.470 1.257 0.2096 

 

We can see that the 4-parameter gamma-uniform log-logistic distribution gives the smallest AIC, CAIC, BIC, HQIC, A*, 

and W* values. The GLL distribution provides significantly better fits than all of the other distributions, including the 

WELL and other distributions. MO-LL and LL distributions give the largest values for all criterion and tests, also the 

EKWLL distribution, these distributions may be thought to give worst fits. The maximum likelihood estimates of the 

best fitting GLL distribution are �̂� = 1.7621529,  �̂� = 0.9813133, �̂� = 27.1799543,  �̂� = -1.8892325.  

TTT Plot 

In the survival and reliability analysis, there is a qualitative information about the failure rate shape, which can help in 

selecting a specified model. The Total time on test (TTT) plot or TTT transform is a device used for assessing the 

empirical behavior of the hazard (or failure) rate function. The hazard rate may be constant, decrease, increase, be an 

upside-down bathtub shaped, bathtub shaped or indicate a more complicated process. The TTT plot for the above 

survival data is displayed in Fig 1, which reveals an increasing hazard rate function. This plot reveals that the 

distributions with increasing hazard rate function could be good candidates for modeling the above cancer data. In our 

case, the GLL is the one that best fits the data. 

 

Figure 1. The TTT-plot for Cancer data 
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7. Censored Data and G-Classes of the Log-Logistic Distribution 

The generating and extension of the existing probability distributions is an essential topic in survival and reliability 

analysis and has been applied in many applications in fields like social sciences, biological sciences, engineering, 

economics, physics, chemistry, medicine among others. Extension and generating of an existing probability distribution 

might allow to the resulting distribution to accommodate non-monotone forms for the failure rate function. Lai et al 

(2013) stated that the time of failure or life can have different interpretations depending on the area applications. 

Therefore, we can obtain more flexible distributions for modeling this kind of random variables. On the other hand, 

effectiveness and tractability for modeling censored data require, among other things, closed form expressions for the 

cumulative distribution function.  

The LL distribution has been found to be very useful for modeling and analysing the incomplete (censored and 

truncated) data in the area of survival and reliability analysis. The LL distribution is an effective model for censored 

data, especially where the hazard rate is non-monotonic (i.e. incidence of an event increases after some finite time and 

then slowly decreases). When it comes to the extension of the log-logistic distribution using the G-classes of 

distributions, the Kumaraswamy-G family of distributions can be effective and tractable models for incomplete (or 

censored) data. The Marshall-Olkin family and the Exponentiated-G family of distributions can also be effective and 

tractable models for censored data, provided G is in closed form. However, beta-G and Mc-G distributions may not be 

effective or tractable models for censored data since their cumulative distribution functions involve the incomplete beta 

function. 

8. Concluding Remarks 

The LL distribution is one of the most commonly used distributions in survival and reliability analysis, particularly for 

events where the hazard rate is non-monotonic. It has also appeared in the literature under other names, such as Fisk 

distribution. Various LL extensions and generalizations have been introduced in recent years. In this paper, we have 

listed twenty distributions obtained from different generated families and compounding methods on the LL distribution. 

We review some of the statistical and mathematical properties of the LL distribution. We expect that these extensions or 

generalizations of the LL distributions will be an addition to the art of constructing useful models and lifetime 

distributions in general. One can discover easier the type of G-Classes that still is not applied to the LL distribution. The 

generalization of log-logistic distribution through generator, compounding and other methods was first applied in the 

area of survival and reliability analysis. After that time, several researchers have successfully applied these methods of 

generalizations to model lifetime and survival data. At present, these methods are being applied in the areas of 

engineering, economics, environmental, medical, hydrology, social science among others to handle more complex data. 

9. Future Projects after the Survey 

We hope our work will be of value to the statistical and probability community. As for the scope of future work, the 

possible future projects are: (1) to propose more new extensions of the LL distribution which have not been attempted; 

(2) to review and extend some of the generalized LL distributions, (3) to prepare a review and new developments on 

parametric survival models, (4) to derive some mathematical and statistical properties of the new extended distributions, 

(5) to estimate the parameters of the new extensions using both the classical and Bayesian approaches; (6) to review the 

multi variate, matrix variate and complex variate of the generalized LL distribution; and (6) to applied the new 

extensions of the LL distribution into a real-life data sets. 
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