
International Journal of Statistics and Probability; Vol. 10, No. 3; May 2021 

ISSN 1927-7032   E-ISSN 1927-7040 

Published by Canadian Center of Science and Education 

49 

Statistical Properties of a New Bathtub Shaped Failure Rate Model With 

Applications in Survival and Failure Rate Data 

Muhammad Z. Arshad1*, Muhammad Z. Iqbal1, Alya Al Mutairi2  
1 Department of Mathematics and Statistics, University of Agriculture, Faisalabad 54000, Pakistan 

2 Department of Mathematics, Faculty of Science, Taibah University, Medina 4321, Saudi Arabia 

Correspondence: Muhammad Z. Arshad, Department of Mathematics and Statistics, University of Agriculture, 

Faisalabad 54000, Pakistan.  

 

Received: February 21, 2021   Accepted: March 15, 2021   Online Published: March 24, 2021 

doi:10.5539/ijsp.v10n3p49          URL: https://doi.org/10.5539/ijsp.v10n3p49 

 

Abstract 

In this study, we proposed a flexible lifetime model identified as the modified exponentiated Kumaraswamy (MEK) 

distribution. Some distributional and reliability properties were derived and discussed, including explicit expressions for 

the moments, quantile function, and order statistics. We discussed all the possible shapes of the density and the failure 

rate functions. We utilized the method of maximum likelihood to estimate the unknown parameters of the MEK 

distribution and executed a simulation study to assess the asymptotic behavior of the MLEs. Four suitable lifetime data 

sets we engaged and modeled, to disclose the usefulness and the dominance of the MEK distribution over its participant 

models.  

Keywords: Kumaraswamy distribution, bathtub shaped hazard rate function, maximum likelihood estimation, order 
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1. Introduction 

In this world of science, the significance of probability distributions has an imperative role to elucidate the real-world 

random phenomenon. In this scenario, Kumaraswamy (1980) proposed a much better choice against the beta 

distribution, the Kumaraswamy distribution. It is defined over the interval bounded in (0, 1)). Several characteristics 

like uni-anti-modal, uni-modal, decreasing, increasing, or constant failure rate, which the Kumaraswamy distribution 

and the beta distribution shared alike. For details, readers are referred to as Jones (2009). He highlighted some 

significant and common features of Kumaraswamy distribution involved simple normalizing constant, uncomplicated 

explicit expressions for the density function, distribution function, order statistics, and quantile function. Beta and 

Kumaraswamy distributions, both are the special cases of the generalized beta distribution see McDonald (1984), Ali et 
al. (2017), and Mukhtar et al. (2019). To model in hydrology, atmosphere temperature, clinical trials, engineering, and 

geology, among other real word random phenomena, Kumaraswamy distribution considers a far better choice than beta 

distribution.  

Let X be a random variable follow by the Kumaraswamy distribution. The associated cumulative distribution function 

(CDF) and corresponding probability density function (PDF) with two shape parameters (𝛼, 𝛽 > 0) with0 < 𝑥 < 1, are 

given by, respectively 

𝑃(𝑥; 𝛼, 𝛽) = ∫ 𝑝(𝑥)𝑑𝑥
𝑥

0

= 𝛼𝛽∫ 𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1𝑑𝑥
𝑥

0

= 1 − (1 − 𝑥𝛼)𝛽 , 

𝑝(𝑥; 𝛼, 𝛽) = 𝛼𝛽𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1 . 

The capability of Kumaraswamy distribution was raised by Cordeiro and de Castro (2011) in introducing a new 

generalized class, called the Kumaraswamy-G (short Kum-G) family. The cumulative distribution function (CDF) and 

probability density function (PDF) of the Kum-G family, is defined by, respectively 

 (𝑥; 𝛼, 𝛽,  ) = 1 − (1 −  𝛼(𝑥;  ))
𝛽
,  
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 (𝑥; 𝛼, 𝛽,  ) = 𝛼𝛽  (𝑥;  ) 𝛽−1(𝑥;  )(1 −  𝛼(𝑥;  ))
𝛽−1
.  

where  (𝑥;  ) is CDF of arbitrary baseline model based on the parametric vector   with 𝛼, 𝛽 > 0 are the two shape 

parameters, respectively. Let  (𝑥;  ) = 𝑑 (𝑥;  ) 𝑑𝑥⁄  is the probability density function of any baseline model.  

To study further modifications and generalizations using the Kum-G family, see the exemplar work of Bourguignon et 
al. (2013). They developed the Kumaraswamy Pareto (KP) distribution and discussed their vital characteristics and 

explored their application to the hydrological data. Lemonte et al. (2013) developed two versions of the Kumaraswamy 

distribution named (i) exponentiated Kumaraswamy distribution, and (ii) Log Exponentiated Kumaraswamy 

distribution. They derived numerous mathematical and reliable characters and discussed the application with the 

assistance of Log Exponentiated Kumaraswamy distribution. Alizadeh et al. (2015) developed the Kumaraswamy 

version of the Marshall-Olkin (1997) family. Afify et al. (2016) initiated the Kumaraswamy version of Marshall-Olkin 

Fréchet distribution (Krishna et al. (2013)) and explored their application in the medical science and reliability 

engineering data. Ibrahim (2017) developed the Kumaraswamy version of the power function distribution and explored 

their application in medical science data. Bursa and Ozel (2017) discussed the exponentiated version of Kumaraswamy 

power function distribution and explored their application in the metrology data. Mahmoud et al. (2018) developed a 

five-parameter Kumaraswamy edition of the exponentiated Fréchet distribution. They explored twenty-seven models 

and explored their application in reliability engineering data. Nawaz et al. (2018) generalized Kappa distribution via 

Kumaraswamy G class with the intention that it would be a better alternative to the generalized Kappa distribution and 

exploring their application in the hydrology data. Silva et al. (2019) proposed the exponentiated Kum-G class and 

explored their application in the reliability engineering data. Cribari-Neto and Santos (2019), introduced an interesting 

work according to some specific nature of data included exactly zero, exactly one, or both the cases were involved 

known as the inflated Kumaraswamy distributions. This distribution was the mixture of Kumaraswamy and Bernoulli 

distributions.  

This article is organized in the following sections. We define the linear expressions, shapes, quantile function, reliability, 

and other mathematical measures in Section 2. The estimation of the model parameters by the method of maximum 

likelihood and simulation results is performed in Section 3. Applications to real data sets are discussed in Section 4 to 

illustrate the importance and flexibility of the proposed model and finally, some conclusions are reported in Section 5. 

1.1 New Model 
The new model is based on the Type II Half Logistic G family of distributions attributed to Hassan et al. (2017) with 

associated CDF is given as follows: 

 (𝑥;  ,  ) = 1 −∫
2  − 𝑡

(1   − 𝑡)2
𝑑𝑡

−𝑙   (𝑥; )

0

=
2[ (𝑥;  )] 

1  [ (𝑥;  )] 
,   (1) 

where  (𝑥;  ) is any arbitrary baseline model based on  ∈ Ω, and  > 0 is a shape parameter with 𝑥 > 0.  

For deep understanding, we suggest the reader see some notable efforts including Balakrishnan (1985), extended half 

logistic distribution by Altun et al. (2018), type II half logistic exponential by Elgarhy et al. (2019), Kumaraswamy 

inverse Lindley distribution by Hemeda et al. (2020), Al-Marzouki et al. (2021), and among others.  

The new model is:  

(i) flexible enough and bounded in (0, 1) interval,  

(ii) exhibits a bathtub-shaped failure rate function,  

(iii) offers more realistic and rationalized results specifically on the complex skewed symmetric and 

sophisticated random phenomena, 

(iv) provides consistently a better fit over its competitors as shown in the application section using four real 

data sets,  

(v) provides simple and uncomplicated CDF, PDF, and likelihood functions.  

Formally, a random variable X is said to follow the modified exponentiated Kumaraswamy (MEK) distribution if the 

baseline model  (𝑥; 𝛼, 𝛽, 𝛾) by Lemonte et al. (2013) with associated CDF,  

 (𝑥; 𝛼, 𝛽, 𝛾) = (1 − (1 − 𝑥𝛼)𝛽)
𝛾
, (2) 

is placed in equation (1) with  =1. The associated CDF with three shape parameters   𝛼, 𝛽, 𝛾 > 0  and the 
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corresponding PDF is given by respectively  

 (𝑥; 𝛼, 𝛽, 𝛾) =
2

1  (1 − (1 − 𝑥𝛼)𝛽)−𝛾
,  (3) 

 (𝑥; 𝛼, 𝛽, 𝛾) =
2𝛼𝛽𝛾𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1(1 − (1 − 𝑥𝛼)𝛽)

−𝛾−1

(1  (1 − (1 − 𝑥𝛼)𝛽)−𝛾)2
,  (4) 

2. Distributional Properties  

2.1 Linear Representation 

Linear combination provides a much informal approach to discuss the CDF and PDF than the conventional integral 

computation when determining the mathematical properties. For this, we consider the following binomial expansion: 

(1 −  )𝛽 =∑(−1) (
𝛽
 
)   

 

  0

, | | < 1, 

From Equation (3), linear expression of CDF is given by 

 (𝑥) = 2∑∑∑(−1)𝑗+𝑘 (
−1
 
) (
−𝛾 
𝑗
* (
𝛽𝑗
𝑘
) 𝑥𝛼𝑘

 

𝑘 0

 

𝑗 0

 

  0

. (5) 

From Equation (4), linear expression of PDF is given by 

 (𝑥) = 2𝛼𝛽𝛾𝑥𝛼−1∑∑(−1)𝑗 (
−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
* (1 − 𝑥𝛼)𝛽𝑗+𝛽−1

 

𝑗 0

 

  0

. (6) 

 (𝑥) = 2𝛼𝛽𝛾∑∑∑(−1)𝑗+𝑘 (
−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
* (
𝛽𝑗  𝛽 − 1

𝑘
) 𝑥𝛼𝑘+𝛼−1

 

𝑘 0

 

𝑗 0

 

  0

. (7) 

Expression in Equation (6) will be quite helpful in the forthcoming computations of various mathematical properties of 

the MEK distribution. 

2.2 Shapes   
Different plots of density and failure rate functions of the MEK distribution are displayed in Figures 1 and 2, for various 

choices of the parameters. Possible shapes of the density function including increasing, decreasing, symmetric, and 

upside-down bathtub shapes and, Figure 2 illustrates the increasing, decreasing, U - shaped, and upside-down 

bathtub-shaped failure rate function.  
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Figure 1. Plot of the density function for Parameters Figure 2. Plot of the failure rate function for Parameters 

Black(𝛼 = 4.7, 𝛽 = 0.9, 𝛾 = 0.9),Blue(𝛼 = 0.8, 𝛽 =

0.8, 𝛾 = 1.8),Red(𝛼 = 0.9, 𝛽 = 3.7, 𝛾 = 1.7), Green(𝛼 =

1.0, 𝛽 = 0.6, 𝛾 = 1.6), chocolate1(𝛼 = 1.1, 𝛽 = 2.5, 𝛾 =

1.5), Cadet blue(𝛼 = 1.2, 𝛽 = 1.4, 𝛾 = 1.4), Darkviolet 

(𝛼 = 1.3, 𝛽 = 0.5, 𝛾 = 0.3), Deeppink(𝛼 = 1.4, 𝛽 =

0.6, 𝛾 = 0.2), Navy(𝛼 = 1.5, 𝛽 = 3.7, 𝛾 = 5.1) 

Black(𝛼 = 0.1, 𝛽 = 0.1, 𝛾 = 1.5), Blue(𝛼 = 1.1, 𝛽 =

0.3, 𝛾 = 0.3),Red(𝛼 = 2.1, 𝛽 = 0.5, 𝛾 = 0.4),Green(𝛼 =

0.1, 𝛽 = 1.7, 𝛾 = 0.5), chocolate1(𝛼 = 0.01, 𝛽 = 0.9, 𝛾 =

0.7), Cadet blue(𝛼 = 0.3, 𝛽 = 1.7, 𝛾 = 0.8), Darkviolet 

(𝛼 = 0.2, 𝛽 = 0.5, 𝛾 = 0.9), Deeppink(𝛼 = 0.5, 𝛽 =

1.3, 𝛾 = 1.1), Navy(𝛼 = 1.1, 𝛽 = 0.1, 𝛾 = 1.2) 

 
2.3 Quantiles  
Hyndman and Fan (1996) introduced the concept of quantile function. The pth quantile function of X~MEK(𝑥; 𝛼, 𝛽, 𝛾) 

with 𝛼 , 𝛽, 𝛾 > 0, is obtained by inverting the CDF mention in Equation (3). Quantile function is defined by  𝑝 =
 (𝑥𝑝) = 𝑃(𝑋 ≤ 𝑥𝑝), 𝑝 ∈ (0,1). 

Quantile function of X is given by  

𝑥𝑝 = (1 − (1 − (
𝑝

2 − 𝑝
*

1
𝛾⁄

)

1 𝛽

)

1 𝛼

. (8) 

One may obtain 1st quartile, median and 3rd quartile of X by setting p = 0.25, 0.5, and 0.75 in Equation (8) respectively. 

Henceforth, to generate random numbers, we assume that CDF (5) follows uniform distribution u= U (0, 1).  

2.4 Skewness, Kurtosis, and Mean Deviation 
The Skewness and kurtosis of MEK distribution can be calculated by the following two useful measures 

 =
𝑄0.75  𝑄0.25 − 2𝑄0.50

𝑄0.75 − 𝑄0.25
, 

and 

 
𝑀 =

𝑄0.375 − 𝑄0.125 − 𝑄0.625  𝑄0.875
𝑄0.75 − 𝑄0.25

, 

by Bowley (1920) and Moors (1988) respectively. These descriptive measures, based on quartiles and octiles, provide 

more robust estimates than the traditional skewness and kurtosis measures. Moreover, these measures are almost less 

reactive to outliers and work more effectively for the distributions, deficient in moments. The following Table-1, 

presents some results of the first four moments about the origin, variance, skewness, and kurtosis of MEK distribution 

for some choices of parameters place in S-I(𝛼 = 1.07, 𝛽 = 5, 𝛾 =1.1), S-II(𝛼 = 1.1, 𝛽 = 5, 𝛾 =1.07), S-III(𝛼 =
1.09, 𝛽 = 5, 𝛾 =1.1), S-IV(𝛼 = 1.1, 𝛽 = 5, 𝛾 =1.09), S-V(𝛼 = 1.1, 𝛽 = 5, 𝛾 =1.1), S-VI(𝛼 = 1.1, 𝛽 = 1.1, 𝛾 = 5 ), 

S-VII(𝛼 = 1.1, 𝛽 = 1.2, 𝛾 = 5 ), S-VIII(𝛼 = 1.1, 𝛽 = 1.3, 𝛾 = 5 ), S-IX(𝛼 = 1.01, 𝛽 = 5 ,  𝛾 = 1.3 ), and S-X(𝛼 =
1.02, 𝛽 = 5, 𝛾 = 1.4). The behavior of variance, skewness, and kurtosis has decreasing trend as per the results indicate 

in Table-1.  
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Table 1. Some results of moments, variance, skewness, and kurtosis 

    S-I S-II S-III S-IV S-V 

  
1
 2.2094 2.1831 2.1857 2.1772 2.1743 

  
2
 4.4551 4.3292 4.3346 4.2921 4.2741 

  
3
 9.8507 9.4252 9.4155 9.2805 9.2114 

  
4
 23.176 21.849 21.709 21.294 21.033 

Variance 0.8224 0.7061 0.6777 0.6404 0.6082 

Skewness 1.0973 1.0949 1.0885 1.0893 1.0867 

Kurtosis 1.1677 1.1658 1.1554 1.1558 1.1514 

    S-VI S-VII S-VIII S-IX S-X 

  
1
 2.1743 2.1487 2.1282 2.2315 2.1974 

  
2
 4.2741 4.1162 3.9881 4.5144 4.3161 

  
3
 9.2113 8.6180 8.1575 9.9463 9.2237 

  
4
 21.033 18.903 17.364 22.952 20.505 

Variance 0.6081 0.3139 0.0613 0.6987 0.3811 

Skewness 1.0867 1.0649 1.0491 1.0752 1.0581 

Kurtosis 1.1514 1.1157 1.0917 1.1262 1.1007 

 
2.5 Reliability Characteristics  
One of the imperative roles of probability distribution in reliability engineering is to analyze and predicts the life of a 

component. Numerous reliability measures for the MEK distribution are discussed here. One may explain the reliability 

function as the probability of a component that survives till the time x and analytically it is written as𝑅(𝑥) = 1 −  (𝑥). 

Reliability function of X is given by 

𝑅(𝑥) = 1 −
2

1  (1 − (1 − 𝑥𝛼)𝛽)−𝛾
. (9) 

In reliability theory, a significant contribution of a function, most of the time considers as a failure rate function or 

hazard rate function, and sometimes it is called the force of mortality. Time depended this function is used to measure 

the failure rate of a component in a particular period x and mathematically it is written as ℎ(𝑥) =  (𝑥) 𝑅(𝑥)⁄ . 

Hazard rate function of X is given by 

ℎ(𝑥) =
2𝛼𝛽𝛾𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1(1 − (1 − 𝑥𝛼)𝛽)

−𝛾−1

((1  (1 − (1 − 𝑥𝛼)𝛽)−𝛾))(1  (1 − (1 − 𝑥𝛼)𝛽)−𝛾 − 2)
, 𝑥 > 0. (10) 

The conditional survivor function is the probability that a component whose life says x, survives in an additional 

interval at z. It can be written as 𝑅( 𝑥⁄ ) = 𝑃(𝑋 >   𝑥 𝑋 > 𝑡) =
𝑅(𝑋 >𝑧+𝑥)

𝑃(𝑋 > 𝑥)
=
𝑅(𝑥+𝑧)

𝑅(𝑥)
.  

Conditional survivor function of X is given by 

𝑅( 𝑥⁄ ) =
((1 − (1 − (𝑥   )𝛼)𝛽)

−𝛾
− 1)(1  (1 − (1 − 𝑥𝛼)𝛽)

−𝛾
)

(1  (1 − (1 − (𝑥   )𝛼)𝛽)−𝛾)(1  (1 − (1 − 𝑥𝛼)𝛽)−𝛾 − 1)
,.  

Most of the time, it is assumed that the mechanical components/parts of some systems follow the bathtub-shaped failure 

rate phenomena. For this, several well-established and useful reliability measures are available in the literature to 

discuss the significance of EM distribution. the cumulative hazard rate function is expressed by ℎ𝑐(𝑥) = − 𝑙𝑜 (𝑅(𝑥)).  

Cumulative hazard rate function of X is given by 
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ℎ𝑐(𝑥) = − 𝑙𝑜 (1 −
2

1  (1 − (1 − 𝑥𝛼)𝛽)−𝛾
*  

The reverse hazard rate function is expressed by ℎ𝑟(𝑥) =  (𝑥) 𝑅(𝑥)⁄ .  

Reverse hazard rate function of X is given by 

2𝛼𝛽𝛾𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1(1 − (1 − 𝑥𝛼)𝛽)
−𝛾−1

(1  (1 − (1 − 𝑥𝛼)𝛽)
−𝛾
)

(1  (1 − (1 − 𝑥𝛼)𝛽)−𝛾)2((1 − (1 − 𝑥𝛼)𝛽)−𝛾 − 1)
.  

Mills ratio is expressed by 𝑀(𝑥) = 𝑅(𝑥)  (𝑥)⁄ .  

Mills ratio of X is given by 

(1  (1 − (1 − 𝑥𝛼)𝛽)
−𝛾
)
2
((1 − (1 − 𝑥𝛼)𝛽)

−𝛾
− 1)

2𝛼𝛽𝛾𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1(1 − (1 − 𝑥𝛼)𝛽)−𝛾−1(1  (1 − (1 − 𝑥𝛼)𝛽)−𝛾)
.  

Odd function is expressed by 𝑂(𝑥) =  (𝑥) 𝑅(𝑥)⁄ .  

Odd function of X is given by 

𝑂(𝑥) =
2

((1 − (1 − 𝑥𝛼)𝛽)−𝛾 − 1)
  

We may develop the linear expressions for reliability characteristics, mention in section 1.2. The reliability and hazard 

rate functions of X are given by 

𝑅 (𝑥) = 1 − 2∑∑∑(−1)𝑗+𝑘 (
−1
 
) (
−𝛾 
𝑗
* (
𝛽𝑗
𝑘
) 𝑥𝛼𝑘

 

𝑘 0

 

𝑗 0

 

  0

,  

and 

ℎ (𝑥) =
2𝛼𝛽𝛾 ∑ ∑ ∑ (−1)𝑗+𝑘 (

−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
* (
𝛽𝑗  𝛽 − 1

𝑘
) 𝑥𝛼𝑘+𝛼−1 

𝑘 0
 
𝑗 0

 
  0

1 − 2∑ ∑ ∑ (−1)𝑗+𝑘 (
−1
 
) (
−𝛾 
𝑗
* (
𝛽𝑗
𝑘
) 𝑥𝛼𝑘 

𝑘 0
 
𝑗 0

 
  0

  

 

 
 

2.6 Limiting Behavior 
Here we study the limiting behavior of distribution function, density function, reliability function, and failure rate 

function of the MEK distribution present in Equations (3), (4), (9), and (10) at x→ 0 and x→ 1.  

Proposition-1 

Limiting behavior of distribution function, density function, reliability function, and failure rate function of the MEK 
distribution at x → 0 is followed by 

  (𝑥)~0,  

  (𝑥)~0,  

 𝑅(𝑥)~1,  

 ℎ(𝑥)~0.  

Proposition-2  

Limiting behavior of distribution function, density function, reliability function, and failure rate function of the MEK 
distribution at x  → 1 is followed by 

  (𝑥)~1,  

  (𝑥)~0,  

 𝑅(𝑥)~0,  

 ℎ(𝑥)~Indeterminate.  

The above limiting behaviors of distribution, density, reliability, and failure rate functions illustrate that there is no 

effect of parameters on the tail of the MEK distribution. 
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2.7 Moments and Its Associated Measures 
Moments have a remarkable role in the discussion of distribution theory, to study the significant characteristics of a 

probability distribution. 

Theorem 1: If X ~MEK (𝑥; 𝛼, 𝛽, 𝛾), for 𝛼 , 𝛽, 𝛾 > 0, then the r-th ordinary moment ( say μ 𝑟
  ) of X is given by 

μ 𝑟
 
= 2𝛽𝛾∑∑(−1)𝑗 (

−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
* (

𝑟

𝛼
 1, 𝛽(𝑗  1))

 

𝑗 0

 

  0

 

Proof:   𝑟
 

 can be written by following Equation (6), as 

  𝑟
 
= 2𝛽𝛾∑∑(−1)𝑗 (

−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
*∫ 𝑥𝑟(𝛼𝑥𝛼−1(1 − 𝑥𝛼)𝛽𝑗+𝛽−1)

1

0

𝑑𝑥

 

𝑗 0

 

  0

, 

by simple computation on the prior expression leads to the final form of the r-th ordinary moment and it is given by  

  𝑟
 
= 2𝛽𝛾∑∑(−1)𝑗 (

−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
* (

𝑟

𝛼
 1, 𝛽(𝑗  1))

 

𝑗 0

 

  0

, (11) 

where B(𝑥; 𝛼, 𝛽)=∫ 𝑡𝛼(1 − 𝑡)𝛽−1𝑑𝑡
𝑥

0
 and 𝛼, 𝛽, 𝛾 > 0 are the beta function and shape parameters, control the tail 

behavior of X, respectively.  

The derived expression in Equation (11) provides a supportive and useful role in the development of numerous statistics. 

For instance: to deduce the mean of X, place r =1 in Equation (11) and it is given by 

  1
 
= 2𝛽𝛾∑∑(−1)𝑗 (

−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
* (

1

𝛼
 1, 𝛽(𝑗  1)) .

 

𝑗 0

 

  0

 

The higher-order ordinary moments of X approximating to 2nd, 3rd, and 4th, can be formulated by setting r = 2, 3, and 4 

in Equation (11) respectively. Further to discuss the variability in X, the Fisher index F.I = (𝑉𝑎𝑟(𝑋) 𝐸(𝑋)⁄ ) plays a 

supportive role. One may perhaps further determine the well-established statistics for instance: skewness (𝛽1 =  3
2  2

3⁄ ), 

kurtosis (𝛽2 =  4  2
2⁄ ), and mode = (√𝛽1(𝛽2  3)SD (2(5𝛽2 − 6𝛽1 − 9))⁄ ) of X by integrating Equation (11). 

Moment generating function 𝑀𝑋(𝑡) can be presented by 

𝑀𝑋(𝑡) =∑
𝑡𝑟

𝑟!

 

𝑟 0

  𝑟
 
. 

Moment generating function of X is followed by equation (9) 

𝑀𝑋(𝑡) = 2𝛽𝛾∑
𝑡𝑟

𝑟!

 

𝑟 0

∑∑(−1)𝑗 (
−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
* (

𝑟

𝛼
 1, 𝛽(𝑗  1))

 

𝑗 0

 

  0

. 

A well-established recurrence relationship between the ordinary moments (  𝑟
 
) and central moments ( 𝑠) to derive 

the cumulants is  𝑠 = ∑ (
𝑠
𝑘
) (−1)𝑘( 1

 
)
𝑠
 𝑠−𝑘
 𝑠

𝑘 0 . Hence, the first four cumulants are: 𝐾1 =  1
 
, 𝐾2 =  2

 
−  1

 2
 , 

𝐾3 =  3
 
− 3 2

 
 1
 
 2 1

 3
, and 𝐾4 =  4

 
− 4 3

 
 1
 
− 3 2

 2
 12 2

 
 1
 2
− 6 1

 4
.  

The s-th central moment (   𝑠) of X is given by  
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 𝑠 =∑(
𝑠
𝑘
) (−1)𝑘

𝑠

𝑘 0

(

 
 
 
 
 
 
 

(

 2𝛽𝛾∑∑

(−1)𝑗 (
−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
*

 (
1

𝛼
 1, 𝛽(𝑗  1))

 

𝑗 0

 

  0
)

 

𝑠

2𝛽𝛾∑∑

(−1)𝑗 (
−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
*

 (
𝑠 − 𝑘

𝛼
 1, 𝛽(𝑗  1)+

 

𝑗 0

 

  0

)

 
 
 
 
 
 
 

. 

2.8 Incomplete Moments 
Incomplete moments are classified into lower incomplete moments and upper incomplete moments. Lower incomplete 

moments are defined as 𝑀𝑟(𝑣) = 𝐸𝑋≤𝑣(𝑥
𝑟) = ∫ 𝑥𝑟 (𝑥)𝑑𝑥

𝑙

0
.  

Lower incomplete moments of X is given by  

𝑀𝑟(𝑣) = 2𝛽𝛾∑∑(−1)𝑗 (
−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
* 𝑙 (

𝑟

𝛼
 1, 𝛽(𝑗  1))

 

𝑗 0

 

  0

. 

Upper incomplete moments are defined as 𝑀𝑠
 (𝑢) = 𝐸𝑋>𝑢(𝑥

𝑟) = ∫ 𝑥𝑟 (𝑥)𝑑𝑥
1

𝑙
 or more convenient, it can be written 

as  𝑀𝑠
 (𝑢) = ∫ 𝑥𝑟 (𝑥)𝑑𝑥

1

0
− ∫ 𝑥𝑟 (𝑥)𝑑𝑥

𝑙

0
.  

Upper incomplete moments of X is given by 

𝑀𝑠
 (𝑢) = 2𝛽𝛾∑∑(−1)𝑗 (

−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
*

(

 
 
 (
𝑟

𝛼
 1, 𝛽(𝑗  1)) −

 𝑙 (
𝑟

𝛼
 1, 𝛽(𝑗  1))

)

 
 

 

𝑗 0

 

  0

. 

Let be the residual life (RL) function 𝑚𝑛(𝑤) = 𝐸[(𝑋 − 𝑤)
𝑛 𝑋 ≤ 𝑤] =

1

𝑆(𝑤)
∫ (𝑥 − 𝑤)𝑛 (𝑥)𝑑𝑥
1

𝑤
 has the n-th moment 

𝑚𝑛(𝑤) =  
1

1−𝐹(𝑤)
∑ (

𝑛
𝑟
)𝑛

𝑟 0 (−𝑤)𝑛−𝑟 (∫ 𝑥𝑟
1

0
 (𝑥)𝑑𝑥 − ∫ 𝑥𝑟

𝑤

0
 (𝑥)𝑑𝑥).  

Residual life function X is given by 

𝑚𝑛(𝑤) =  
2𝛽𝛾 ∑ (

𝑛
𝑟
)𝑛

𝑟 0 (−𝑤)𝑛−𝑟

1 −  (𝑤)
∑∑

(−1)𝑗 (
−2
 
)

(
−𝛾 − 𝛾 − 1

𝑗
*

 

𝑗 0

 

  0

(

 
 
 (
𝑟

𝛼
 1, 𝛽(𝑗  1)) −

 𝑤 (
𝑟

𝛼
 1, 𝛽(𝑗  1))

)

 
 
. 

The life expectancy or mean residual life (MRL) function,𝑚1(𝑤), of 𝑋, follows from the above equation with n = 1. 

Let be the reverse residual life (RRL) function  𝑅𝑛(𝑤) = 𝐸[(𝑤 − 𝑋)
𝑛 𝑋 ≤ 𝑤] =

1

𝐹(𝑤)
∫ (𝑤 − 𝑥)𝑛 (𝑥)𝑑𝑥
1

0
 has the 

n-th moment. 𝑅𝑛(𝑤) =  
1

𝐹(𝑤)
∑ (

𝑛
𝑟
)𝑛

𝑟 0 (−1)𝑟𝑤𝑛−𝑟 ∫ 𝑥𝑟
1

0
 (𝑥)𝑑𝑥.  

Reverse residual life (RRL) function of X is given by 

𝑅𝑛(𝑤) =  
2𝛽𝛾

 (𝑤)
(∑(

𝑛
𝑟
)

𝑛

𝑟 0

(−1)𝑟𝑤𝑛−𝑟∑∑
(−1)𝑗 (

−2
 
)

(
−𝛾 − 𝛾 − 1

𝑗
*

 

𝑗 0

 

  0

, 𝑤 (
𝑟

𝛼
 1, 𝛽(𝑗  1)). 

The mean waiting time or mean inactivity time of 𝑋, follows from the above Equation with n = 1. 
Kayid and Izadkhah (2014) defined, strong mean inactivity time (SMIT). It can be written as 

𝑀(𝑡) = 𝑡2 −
1

𝑓(𝑡)
∫ 𝑥2 (𝑥)𝑑𝑥
𝑡

0
 for   , 𝑡 > 0.  

Strong mean inactivity time of X is given by 
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𝑀(𝑡) = 𝑡2 −

((1  (1 − (1 − 𝑥𝛼)𝛽)
−𝛾
)
2
)

(

 2𝛽𝛾∑ ∑

(−1)𝑗 (
−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
*

 𝑡 (
2
𝛼
 1, 𝛽(𝑗  1))

 
𝑗 0

 
  0

)

 

2𝛼𝛽𝛾𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1(1 − (1 − 𝑥𝛼)𝛽)−𝛾−1
. 

Mean past lifetime (MPL) for the conditional random variable (𝑥 − 𝑋 𝑋 ≤ 𝑥⁄ ) is given by 𝑘(𝑥) = 𝐸(𝑥 − 𝑋 𝑋 ≤ 𝑥⁄ ). 
It can be written as 𝑘(𝑥) = 𝑥 −

∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑡
0

𝐹(𝑥)
.  

Mean past life time of X is given by   

𝑘(𝑥) = 𝑥 −
1

2
(1  (1 − (1 − 𝑥𝛼)𝛽)

−𝛾
)

(

 2𝛽𝛾∑∑

(−1)𝑗 (
−2
 
) (
−𝛾 − 𝛾 − 1

𝑗
*

 𝑡 (
1

𝛼
 1, 𝛽(𝑗  1))

 

𝑗 0

 

  0
)

 . 

2.9 Order Statistics  
In reliability analysis and life testing of a component in quality control, order statistics (OS) and moments have 

noteworthy consideration. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛  be a random sample of size n follows to the MEK distribution and 

𝑋(1) < 𝑋(2) < . . . < 𝑋(𝑛)  be the corresponding order statistics. The random variables𝑋( ),  𝑋(1), and  𝑋(𝑛)  be the ith, 

minimum, and maximum order statistics of 𝑋. 

The PDF of 𝑋( )is given by 

 ( )(𝑥) =
1

 ( , 𝑛 −   1)!
( (𝑥))

 −1
(1 −  (𝑥))

𝑛− 
 (𝑥),  = 1,2,3, … , 𝑛. 

By incorporating Equations (3) and (4), the PDF of 𝑋( )takes the form 

 (  𝑛)(𝑥) =
𝛼𝛽𝛾

 ( , 𝑛 −   1)!

(

 
 
 
 
 

(
2

1  (1 − (1 − 𝑥𝛼)𝛽)−𝛾
*
 −1

(1 −
2

1  (1 − (1 − 𝑥𝛼)𝛽)−𝛾
*
𝑛− 

(
2𝛼𝛽𝛾𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1(1 − (1 − 𝑥𝛼)𝛽)

−𝛾−1

(1  (1 − (1 − 𝑥𝛼)𝛽)−𝛾)2
+
)

 
 
 
 
 

.  

The last equation is quite helpful in computing the w-th moment order statistics of the MEK distribution. Further, the 

minimum and maximum order statistics of 𝑋 follow directly from the above equation with i=1 and i= n, respectively.  

The w-th moment order statistics, 𝐸(𝑋𝑂𝑆
𝑤 ), of X is 

𝐸(𝑋𝑂𝑆
𝑤 ) =

2𝛼𝛽𝛾

 ( , 𝑛 −   1)!
 ,∑∑∑(−1)𝑗+𝑙(2)𝛼 (

𝑛 −  
𝑗
* (
𝛼
𝑘
) (
𝛽
𝑙
) (

𝑟

𝛼
 1, 𝛽𝑙  1)

 

𝑙 0

 

𝑘 0

 

𝑗 0

. (12) 

2.10 Entropy 
When a system is quantified by disorderedness, randomness, diversity, or uncertainty, in general, it is known as entropy.  

Rényi (1961) entropy of X is described by 

  (𝑋) =
1

1 −  
𝑙𝑜 ∫  (𝑥)𝑑𝑥

1

0

 ,  > 0 𝑎𝑛𝑑   1. (13) 

First, we simplify  (𝑥) in terms of   (𝑥), we get   

  (𝑥) = (2𝛼𝛽𝛾) 𝑥 (𝛼−1)(1 − 𝑥𝛼) (𝛽−1)(1 − (1 − 𝑥𝛼)𝛽)
− (𝛾+1)

(1  (1 − (1 − 𝑥𝛼)𝛽)
−𝛾
)
2 
. 
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  (𝑥) = (2𝛼𝛽𝛾) ∑∑(−1)𝑗 (
−2 
 
) (
−𝜆 
𝑗
*

 

𝑗 0

 

  0

𝑥 (𝛼−1)(1 − 𝑥𝛼)𝛽𝑗+ (𝛽−1), 

by shifting the above equation in Equation (13), we get 

  (𝑋) =
1

1 −  
𝑙𝑜 ((2𝛼𝛽𝛾) ∫∑∑(−1)𝑗 (

−2 
 
) (
−𝜆 
𝑗
*

 

𝑗 0

 

  0

𝑥 (𝛼−1)(1 − 𝑥𝛼)𝛽𝑗+ (𝛽−1)𝑑𝑥

1

0

) ,  

by solving simple mathematics on the prior equation we will be provided the reduced form of the Rényi entropy for X 

and it is given by 

  (𝑋) =
1

1 −  
𝑙𝑜 ((2𝛼𝛽𝛾) )

1

𝛼
∑∑  ,𝑗

 

𝑗 0

 

  0

 (
 (𝛼 − 1)  1

𝛼
, 𝛽𝑗   (𝛽 − 1)  1) , (14) 

where 𝜆 =  (𝛾  1)   𝛾,   ,𝑗 = (−1)
𝑗 (
−2 
 
) (
−𝜆 
𝑗
*. 

The quadratic entropy is a special case of Rényi entropy, called quadratic Rényi entropy (QRE). It has a wide range of 

applications in economics, signal processing, and physics. It is obtained by substituting   by 2 in Equation (14).  

A generalization of the Boltzmann-Gibbs entropy is the 𝜂 – entropy. Although in physics, it is referred to as the Tsallis 

entropy. Tsallis (1988) entropy / 𝜂 – entropy is described by 

𝜂 – entropy is described by 

 𝜂(𝑋) =
1

𝜂 − 1
(1 −∫ 𝜂−1(𝑥)𝑑𝑥

1

0

) , 𝜂 > 0 𝑎𝑛𝑑 𝜂  1. 

𝜂 – entropy of X is given by 

 𝜂(𝑋) =
1

𝜂 − 1

(

  
 

1 − ((2𝛼𝛽𝛾)𝜂−1)
1

𝛼
∑∑  ,𝑗

 

𝑗 0

 

  0

 (
(𝜂 − 1)(𝛼 − 1)  1

𝛼
, 𝛽𝑗  (𝜂 − 1)(𝛽 − 1)  1)

)

  
 
. (15) 

Mathai and Haubold (2013) generalized the classical Shannon entropy known as  − entropy. It is presented by 

  (𝑋) =
1

 − 1
(∫ 2− (𝑥)𝑑𝑥

1

0

− 1) ,  > 0 𝑎𝑛𝑑   1. 

 − entropy of X is given by 

  (𝑋) =
1

 − 1

(

 
 
 

(

  
 

((2𝛼𝛽𝛾) )
1

𝛼
∑∑  ,𝑗

 

𝑗 0

 

  0

 (
(2 −  )(𝛼 − 1)  1

𝛼
, 𝛽𝑗  (2 −  )(𝛽 − 1)  1)

)

  
 
− 1

)

 
 
 
. (16) 

Another generalized version of the Shannon entropy is the �̅� - entropy. It is presented by 

 �̅�(𝑋) =
1

�̅� − 1
(1 −∫ �̅�(𝑥)𝑑𝑥

1

0

) , �̅�  1. 

�̅� - entropy of X is given by 
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 �̅�(𝑋) =
1

�̅� − 1

(

 
 
1 − (((2𝛼𝛽𝛾)�̅�)

1

𝛼
∑∑  ,𝑗

 

𝑗 0

 

  0

 (
�̅�(𝛼 − 1)  1

𝛼
, 𝛽𝑗  �̅�(𝛽 − 1)  1),

)

 
 
. (17) 

Havrda and Charvat (1967) introduced 𝜔 − entropy measure. It is presented by 

 𝜔(𝑋) =
1

21−𝜔 − 1
(∫ 𝜔(𝑥)𝑑𝑥

1

0

− 1) , 𝜔 > 0 𝑎𝑛𝑑 𝜔  1. 

𝜔 − entropy of X is given by 

 𝜔(𝑋) =
1

21−𝜔 − 1

(

 
 
(((2𝛼𝛽𝛾)𝜔)

1

𝛼
∑∑  ,𝑗

 

𝑗 0

 

  0

 (
𝜔(𝛼 − 1)  1

𝛼
, 𝛽𝑗  𝜔(𝛽 − 1)  1), − 1

)

 
 
. (18) 

where                     𝜆 =  (𝛾  1)   𝛾,   ,𝑗 = (−1)
𝑗 (
−2 
 
) (
−𝜆 
𝑗
*. 

3. Estimation  

In this section, we utilize the method of maximum likelihood estimation which provides the maximum information 

about the unknown model parameters.  

By Equation (4), the likelihood function, 𝐿(𝜗) = ∏  (𝑥 ; 𝛼, 𝛽, 𝛾),
𝑛
  1 of the MEK distribution is:  

 𝐿 (𝜗) = (2𝛼𝛽𝛾)𝑛∏
𝑥 
𝛼−1(1 − 𝑥 

𝛼)𝛽−1(1 − (1 − 𝑥 
𝛼)𝛽)

−𝛾−1

(1  (1 − (1 − 𝑥 
𝛼)𝛽)−𝛾)2

𝑛

  1

 . 

The log-likelihood function,𝑙(𝜗), reduces to 

𝑙(𝜗) =

(

  
 
𝑛(𝑙𝑜 2  𝑙𝑜 𝛼  𝑙𝑜 𝛽  𝑙𝑜 𝛾)  (𝛼 − 1)∑𝑙𝑜 (𝑥 )

𝑛

  1

 (𝛽 − 1)∑𝑙𝑜 (1 − 𝑥 
𝛼)

𝑛

  1

−

(𝛾  1)∑𝑙𝑜 (1 − (1 − 𝑥 
𝛼)𝛽 )

𝑛

  1

− 2∑𝑙𝑜 (1  (1 − (1 − 𝑥 
𝛼)𝛽)

−𝛾
 )

𝑛

  1 )

  
 
. 

The maximum likelihood estimates (MLEs) of the MEK model parameters can be obtained by maximizing the last 

equation for 𝛼, 𝛽, and 𝛾, or by solving the following nonlinear Equations, 

 𝑙

 𝛼
=

(

 
 
 
 
 
 

𝑛

𝛼
 ∑𝑙𝑜 (𝑥 )

𝑛

  1

 ∑𝑙𝑜 (𝑥 )

𝑛

  1

− (𝛽 − 1)∑
𝑥 
𝛼𝑙𝑜 𝑥 
1 − 𝑥 

𝛼

𝑛

  1

−

(𝛾 − 1)∑
𝛽𝑥 

𝛼𝑙𝑜 𝑥 (1 − 𝑥 
𝛼)𝛽−1

1 − (1 − 𝑥 
𝛼)𝛽

𝑛

  1

 2∑
𝛽𝛾𝑥 

𝛼𝑙𝑜 𝑥 (1 − 𝑥 
𝛼)𝛽−1(1 − (1 − 𝑥 

𝛼)𝛽)
−𝛾−1

1  (1 − (1 − 𝑥 
𝛼)𝛽)−𝛾

𝑛

  1 )

 
 
 
 
 
 

, 

 𝑙

 𝛽
=

(

 
 
 

𝑛

𝛽
 ∑𝑙o (1 − 𝑥 

𝛼)

𝑛

  1

− (1  𝛾)∑
(1 − 𝑥 

𝛼)𝛽𝑙𝑜 (1 − 𝑥 
𝛼)

1 − (1 − 𝑥 
𝛼)𝛽

𝑛

  1

 2∑
𝛾𝑙𝑜 (1 − 𝑥 

𝛼)(1 − 𝑥 
𝛼)𝛽(1 − (1 − 𝑥 

𝛼)𝛽)
−𝛾−1

1  (1 − (1 − 𝑥 
𝛼)𝛽)−𝛾

𝑛

  1 )

 
 
 
, 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 10, No. 3; 2021 

60 

 𝑙

 𝛾
=

(

  
 

𝑛

𝛾
−∑𝑙𝑜 (1 − (1 − 𝑥 

𝛼)𝛽)

𝑛

  1

 

2∑
((1 − (1 − 𝑥 

𝛼)𝛽)
−𝛾
)𝑙𝑜 (1 − (1 − 𝑥 

𝛼)𝛽)

1  (1 − (1 − 𝑥 
𝛼)𝛽)−𝛾

𝑛

  1 )

  
 
. 

The last three non-linear Equations do not provide the analytical solution for MLEs and the optimum value of 𝛼, 𝛽 , 
and 𝛾. The Newton-Raphson is considered an appropriate algorithm which plays a supportive role in such kind of 

MLEs. For numerical solutions, the R statistical software (package name, Adequacy-Model) is preferred to estimate the 

MEK distribution parameters. 

3.1 Simulation Study 
In this section, to observe the performance of MLE’s, the following algorithm is adopted. 

Step-1: A random sample x1 , x2 , x3 , ..., xn of sizes n = 25, 50, and 100 are generated from Equation (5). 

Step-2: Each sample is replicated 1000 times.  

Step-3: The required results are obtained based on the different combinations of the parameters place in S-XI, S-XII, 

and S-XIII. 

Step-4: Gradual decrease in S.Es and pretty close ML estimates to the true parameters for the increases of sample size 

help out to declare that the method of maximum likelihood estimation works quite well for MEK distribution. 

4. Application 

In this section, we report the flexibility and potentiality of the MEK distribution by modeling in various disciplines of 

applied sciences. For this, we consider four suitable lifetime data sets. The first dataset presents the 20 observations of 

flood including 0.265, 0.269, 0.297, 0.315, 0.3235, 0.338, 0.379, 0.379, 0.392, 0.402, 0.412, 0.416, 0.418, 0.423, 0.449, 

0.484, 0.494, 0.613, 0.654, 0.74, discussed by Dumonceaux and Antle (1973). The second dataset discussed by 

Caramanis et al. (1983) and Mazumdar and Gaver (1984). They estimated the unit capacity factors by comparing two 

different algorithms called SC16 and P3. The observations are 0.853, 0.759, 0.866, 0.809, 0.717, 0.544, 0.492, 0.403, 

0.344, 0.213, 0.116, 0.116, 0.092, 0.070, 0.059, 0.048, 0.036, 0.029, 0.021, 0.014, 0.011, 0.008, 0.006. The third dataset 

refers to 20 mechanical parts failure times. This data set was analyzed by Murthy et al. (2004) and the observations are 

0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085, 0.086, 0.089, 0.098, 0.098, 0.114, 0.114, 0.115, 0.121, 0.125, 0.131, 

0.149, 0.160, 0.485 and finally the forth dataset refers to the measurement on 48 samples of petroleum rock obtained 

from petroleum reservoirs. This data was discussed by Cordeiro and Brito (2012) and the observations are: 0.0903296, 

0.2036540, 0.2043140, 0.2808870, 0.1976530, 0.3286410, 0.1486220, 0.1623940, 0.2627270, 0.1794550, 0.3266350, 

0.2300810, 0.1833120, 0.1509440, 0.2000710, 0.1918020, 0.1541920, 0.4641250, 0.1170630, 0.1481410, 0.1448100, 

0.1330830, 0.2760160, 0.4204770, 0.1224170, 0.2285950, 0.1138520, 0.2252140, 0.1769690, 0.2007440, 0.1670450, 

0.2316230, 0.2910290, 0.3412730, 0.4387120, 0.2626510, 0.1896510, 0.1725670, 0.2400770, 0.3116460, 0.1635860, 

0.1824530, 0.1641270, 0.1534810, 0.1618650, 0.2760160, 0.2538320, 0.2004470.  

Some descriptive statistics are presented in Table 3. The MEK distribution is compared with its competing models 

(mention in Table-4), based on some criteria called, -Log-likelihood (-LL), Bayesian information criterion (BIC), 

Cramer-Von Mises (W*), Anderson-Darling (A*), and Kolmogorov Smirnov (K-S) test statistics. Tables 5-8, confirm 

the parameter estimates and their standard errors (in parenthesis) and the goodness-of-fit criteria, respectively. The 

MEK distribution is a better fit among all competitors, based on the results in Tables 5-8. Further, fitted density and 

distribution functions, Kaplan-Meier survival, and Probability- Probability (PP) plots are presented in Figures 3-6, 

respectively, provide close fits to the four datasets.  
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Table 2. Average MLEs and Standard Errors (in parenthesis) 

 

S-XI 

(𝛼 = 0.1, 𝛽 = 0.5, 𝛾 = 0.5) 
Parameter estimate 

(Standard Error) 

S-XII 

(𝛼 = 0.2, 𝛽 = 0.5, 𝛾 = 0.7) 
Parameter estimate 

(Standard Error) 

𝑛 �̂� �̂� �̂� �̂� �̂� �̂� 

25 
0.1846 

(0.2493) 

0.4643 

(0.2518) 

0.4647 

(0.5686) 

0.2146 

(0.5654) 

0.6297 

(0.3091) 

0.8348 

(1.9998) 

50 
0.0964 

(0.1442) 

0.5622 

(0.2283) 

0.5111 

(0.7047) 

0.1405 

(0.2377) 

0.5124 

(0.1945) 

0.8625 

(1.2555) 

100 
0.0971 

(0.0964) 

0.5005 

(0.1516) 

0.4974 

(0.4481) 

0.1949 

(0.2040) 

0.5225 

(0.1407) 

0.6845 

(0.6362) 

 

S-XIII 

(𝛼 = 1.1, 𝛽 = 1.7, 𝛾 = 0.2) 
Parameter estimate 

(Standard Error) 

𝑛 �̂� �̂� �̂� 

25 
1.4605 

(0.0020) 

1.4963 

(0.8981) 

0.1374 

(0.0236) 

50 
1.2108 

(0.0935) 

1.5576 

(0.1588) 

0.1690 

(0.0243) 

100 
1.1019 

(0.0249) 

1.6998 

(0.0424) 

0.2000 

(0.0175) 

 

Table 3. Descriptive Information 

Data set Minimum Median Mean Maximum Skewness Kurtosis 

Flood data 0.011 0.041 0.045 0.125 1.1672 4.324 

Unit capacity data 0.006 0.116 0.288 0.866 0.718 1.974 

Failure times data 0.067 0.098 0.121 0.485 3.585 15.203 

Petroleum rock data 0.090 0.198 0.218 0.464 1.169 4.109 

 

Table 4. Competitive Models 

Abbr. Model Parameters/ variable Range Reference 

L-I  (𝑥) = 𝑥𝛼  𝛼 > 0, 0 < x < 1 Lehmann (1953) 

L-II  (𝑥) = 1 − (1 − 𝑥)𝛼  𝛼 > 0, 0 < x < 1 Lehmann (1953) 

TL  (𝑥) = (2𝑥 − 𝑥2)𝛼 𝛼 > 0, 0 < x < 1 Topp and Leone (1955) 

Kum  (𝑥) = 1 − (1 − 𝑥𝛼 )𝛽 𝛼, 𝛽 > 0, 0 < x < 1 Kumaraswamy (1980) 

GPF  (𝑥) = 1 − (
 − 𝑥

 − 𝑚
*
𝛼

 𝛼 > 0,𝑚 ≤ 𝑥 ≤    Saran and Pandey (2004) 

EK  (𝑥) = (1 − (1 − 𝑥𝛼)𝛽)
𝛾
 𝛼, 𝛽, 𝛾 > 0, 0 < x < 1 Lemonte et al. (2013) 

 

WPF  (𝑥) = 1 −  
−𝛼(

𝑥 

  −𝑥 
)

 

 
𝛼, 𝛽, 𝛾 > 0, 0 < 𝑥 ≤    Tahir et al. (2014) 

KPF  (𝑥) = 1 − (1 − (
𝑥

 
*
𝛼𝛽

)

𝛾

 𝛼, 𝛽, 𝛾 > 0, 0 < 𝑥 ≤   Ibrahim (2017) 

MT-II  (𝑥) =  𝑥
 𝑙𝑛2 − 1 𝛼 > 0, 0 < x < 1 Muhammad (2017) 
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Topp-Leone (TL), Kumaraswamy (Kum), Lehmann -I and Lehmann-II (L-I, L-II), generalized power function (GPF), 

exponentiated Kumaraswamy (EK), Weibull power function (WPF), Kumaraswamy power function (KPF), and 

Mustapha Type-II (MT-II).  

 

Table 5. Parameter Estimates and Standard Errors (parenthesis) for Flood data 

Model 

Parameters 

(Standard Errors) 
Information Criterion 

�̂� �̂� �̂� -LL BIC W* A* K-S 

MEK 
0.766 

(0.474) 

4.537 

(1.501) 

25.346 

(31.929) 
-15.903 -22.820 0.059 0.369 0.142 

EK 
0.684 

(0.393) 

5.002 

(1.496) 

35.178 

(46.797) 
-15.514 -22.041 0.074 0.454 0.161 

K 
3.363 

(0.603) 

11.792 

(5.361) 
- -12.866 -19.741 0.166 0.972 0.211 

TL 
2.244 

(0.502) 
- - -7.367 -11.739 0.119 0.712 0.335 

L-I 
1.114 

(0.249) 
- - -0.112 2.771 0.122 0.731 0.394 

L-II 
1.727 

(0.386) 
- - -2.512 -2.027 0.128 0.764 0.413 

MT-II 
0.852 

(0.211) 
- - 1.247 5.489 0.131 0.782 0.388 

GPF 
1.579 

(0.353) 
- - -16.277 -29.559 0.131 0.728 0.224 

WPF 
30.814 

(16.071) 

11.045 

(20.466) 

0.319 

(0.590) 
-13.264 -17.540 0.146 0.868 0.198 

KPF 
1.386 

(173.04) 

1.693 

(211.35) 

1.865 

(0.572) 
-9.884 -10.780 0.303 1.717 0.263 

 

   

   
Figure 3. The Empirical Fitted PDF, CDF, Kaplan-Meier Survival, and PP-Plots of the MEK distribution for flood data 
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Table 6. Parameter Estimates and Standard Errors (parenthesis) for Unit Capacity Factors data 

Model 

Parameters 

(Standard Errors) 
Information Criterion 

�̂� �̂� �̂� -LL BIC W* A* K-S 

MEK 
1.411 

(9.021) 

0.957 

(0.436) 

0.435 

(2.767) 
-10.151 -10.897 0.090 0.579 0.151 

EK 
0.065 

(0.117) 

1.185 

(0.235) 

9.781 

(20.034) 
-9.849 -10.292 0.103 0.648 0.169 

K 
0.504 

(0.129) 

1.186 

(0.326) 
- -9.671 -13.071 0.108 0.682 0.179 

TL 
0.594 

(0.124) 
- - -8.115 -13.095 0.119 0.746 0.169 

L-I 
0.454 

(0.095) 
- - -9.485 -15.833 0.107 0.675 0.189 

L-II 
1.989 

(0.415) 
- - -4.383 -5.630 0.112 0.703 0.347 

MT-II 
0.371 

(0.086) 
- - -8.921 -14.708 0.117 0.732 0.199 

GPF 
1.185 

(0.247) 
- - -3.516 -3.897 0.114 0.683 0.411 

WPF 
2.285 

(1.167) 

1.105 

(0.679) 

0.551 

(0.244) 
-9.234 -9.061 0.095 0.616 0.155 

KPF 
1.389 

(72.029) 

0.287 

(14.865) 

0.737 

(0.187) 
-11.752 -14.099 0.128 0.767 0.211 

 

   

   

 

Figure 4. The Empirical Fitted PDF, CDF, Kaplan-Meier Survival, PP-Plots of the MEK distribution for unit capacity 

factors data 
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Table 7. Parameter Estimates and Standard Errors (parenthesis) for Failure Times data 

Model 

Parameters 

(Standard Errors) 
Information Criterion 

�̂� �̂� �̂� -LL BIC W* A* K-S 

MEK 
0.568 

(0.199) 

10.893 

(3.789) 

40.053 

(42.362) 
-34.540 -60.094 0.143 1.053 0.166 

EK 
0.517 

(0.165) 

11.897 

(4.019) 

63.739 

(63.007) 
-33.551 -58.115 0.172 1.232 0.168 

K 
1.587 

(0.244) 

21.868 

(10.210) 
- -25.648 -60.094 0.143 1.053 0.166 

TL 
0.625 

(0.139) 
- - -13.742 -24.490 0.339 2.156 0.484 

L-I 
0.448 

(0.100) 
- - -8.558 -14.121 0.321 2.063 0.510 

L-II 
7.341 

(1.641) 
- - -22.593 -42.191 0.369 2.314 0.398 

MT-II 
0.340 

(0.084) 
- - -7.097 -11.197 0.339 2.153 0.500 

GPF 
3.135 

(0.701) 
- - -26.208 -50.417 0.416 2.501 0.426 

WPF 
25.321 

(10.981) 

8.698 

(30.616) 

0.189 

(0.664) 
-26.422 -43.857 0.397 2.452 0.264 

KPF 
1.053 

(87.439) 

0.959 

(79.636) 

2.224 

(0.682) 
-19.137 -29.286 0.762 4.159 0.370 

 

   

   
Figure 5. The Empirical Fitted PDF, CDF, Kaplan-Meier Survival, PP-Plots of the MEK distribution for failure times 

data 
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Table 8. Parameter Estimates and Standard Errors (parenthesis) for Petroleum Rock data 

Model 

Parameters 

(Standard Errors) 
Information Criterion 

�̂� �̂� �̂� -LL BIC W* A* K-S 

MEK 
0.756 

(0.450) 

8.525 

(3.693) 

21.870 

(31.023) 
-58.371 -105.12 0.038 0.232 0.089 

EK 
0.727 

(0.271) 

9.439 

(2.784) 

24.699 

(24.178) 
-57.859 -104.10 0.058 0.346 0.108 

K 
2.719 

(0.294) 

44.667 

(17.587) 
- -52.491 -97.241 0.208 1.280 0.153 

TL 
0.989 

(0.143) 
- - -21.166 -38.461 0.119 0.721 0.368 

L-I 
0.630 

(0.091) 
- - -6.011 -8.152 0.114 0.690 0.429 

L-II 
3.965 

(0.572) 
- - -30.221 -56.569 0.128 0.778 0.359 

MT-II 
0.479 

(0.077) 
- - -25.54 -1.238 1.225 0.743 0.424 

GPF 
1.788 

(0.258) 
- - -52.703 -101.534 0.232 1.442 0.156 

WPF 
42.995 

(15.791) 

8.774 

(28.625) 

0.313 

(1.021) 
-52.741 -93.869 0.200 1.225 0.149 

KPF 
1.441 

(90.546) 

1.405 

(88.274) 

2.632 

(0.555) 
-46.042 -80.471 0.417 2.545 0.186 

 

   

   
Figure 6. The Empirical Fitted PDF, CDF, Kaplan-Meier Survival, PP-Plots of the MEK distribution for petroleum rock 

data 
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5. Conclusion  

In this article, we developed a flexible lifetime model that demonstrated the increasing, decreasing, and upside-down 

bathtub-shaped density and failure rate functions. The proposed model is referred to as the modified exponentiated 

Kumaraswamy (MEK) distribution. Numerous mathematical and reliability measures were derived and discussed. For 

estimation of the model parameters, we followed the method of maximum likelihood and executed a simulation study to 

observe the asymptotic behavior of MLEs. The MEK distribution explored its dominance by modeling in four-lifetime 

datasets and we hope it will be considered as a choice against the baseline model.  
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