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Abstract

In this work, an analysis of change points is made with the Bayes factor, thresholds, and cumulative sum (CUSUM)
statistics methods. For the analysis of change points with the Bayes factor, Poisson data were simulated; the threshold
method was worked with a regression and data of the National Institute of Statistics, Geography and Informatics (INEGI)
of Mexico and coronavirus were used for the CUSUM.
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1. Introduction

When a change point is mentioned, the first question that comes to mind is: what is a change point? Chen and Gupta
(2012) defined it as the site, or point in time t, in a succession of data {xti } i = 1, . . . , n observed and ordered with respect
to time, in such a way that these observations follow a distribution F1, before a point, and in another point after it, the
distribution is F2. That is, from the statistical point of view, the succession of observations shows an inhomogeneous
behaviour.

Under the classical and Bayesian approaches, the change point problem is considered one of the central problems of
statistical inference, since it interrelates the statistical control theory, the hypothesis tests (when detecting if there is any
change in the sequence of observed random variables), and the estimation theory (when estimating the number of changes
and their corresponding locations). This under the classical and Bayesian approaches.

The change point problems originally appear in the quality control and generally can be found in the mathematical model-
ing of various disciplines such as Environmental Science, Epidemiology, Seismic Signal Processes, Economics, Finance,
Geology, Medicine, Biology, Physics, etc. According to Chen and Gupta (2012), the change point problem is, in general,
visualized as follows:

Let X1, X2, . . . , Xn be a succession of independent random vectors (or variables) with probability distribution functions
F1, F2, . . . , Fn, respectively. The change point problem is to test the null hypothesis, so the problem of the point of change
consists of testing the null hypothesis H0 about the non-existence of change against the alternative, Ha that there is at least
one change point:

H0 : F1 = F2 = . . . = Fn

vs

Ha : F1 = · · · = F(k1) , F(k1+1) = · · · = F(k2) , F(k2+1) = · · · = F(kq) , F(kq+1) = · · · = Fn.

Where 1 < k1 < k2 < · · · < kq < n, q is the unknown number of change points and k1, k2, · · · , kq are the respective
unknown positions that have to be estimated. If the distributions F1, F2, . . . , Fn become a common parametric family
F(θ), where θ ∈ Rp, then the problem of change points is to test the null hypothesis H0 about the non-existence of
change in the parameters θi, i = 1, . . . , n of the population against the alternative Ha that there is at least one change point:
H0 : θ1 = θ2 = · · · = θn = θ (unknown)

vs

Ha : θ1 = · · · = θ(k1) , θ(k1+1)) = · · · = θ(k2) , θ(k2+1) = · · · = θ(kq) , θ(kq+1) = · · · = θn.

where q and k1, k2, . . . , kq must be estimated. Together, these hypotheses reveal the inference aspects of the change points
in order to determine if there is any change point in the process, as well as to estimate their number and their respective
positions.

31



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 10, No. 3; 2021

The objective of this work is to develop algorithms and programs to apply some procedures to detect change points,
particularly the Bayes factor, the threshold and the cumulative sum statistics (CUSUM) methods.

In this work, some procedures were programmed in order to obtain change points, for this the Bayes factor was used
to detect temporal and spatiotemporal change points. The homogeneous Poisson process was also used since data was
simulated with this process. Multiple temporal-change points and spatiotemporal change points were detected with the
Bayes factor. Changes were also detected with the threshold method and with the cumulative sum (CUSUM) method.
Finally, the Buishand range, the Pettitt and the standard normal homogeneity tests were applied, which confirmed the
change points detected by the cumulative sum method. For the application of the Bayes factor and the threshold methods,
the concepts presented in Altieri (2015) were taken as the basis, Taylor (2000)’s article was used for the cumulative sum
method.

In this work, the programs were elaborated with some instructions from the INLA package in Gómez (2020), Blangiardo
and Cameletti (2015), except for the standard normal homogeneity, Pettit and Buishand ranges tests, for which the Trend
package (from R) of Pohlert (2020) was used.

Simulated data from a Poisson process as well as cement database, INEGI, and coronavirus data were used. The INEGI
and cement data were taken from an example of regression in Gómez (2020), and coronavirus data was taken from the
page coronavirus.gob.mx.

2. Materials and Methods

2.1 Bayes Factor

To detect the change points, the Bayes factor was used. The definition of the Bayes factor will be given below. The change
points are determined according to the values in Table 1.

If there is a problem in which you must choose between two possible models, based on an observed data set D, the
plausibility of the two different models M1 and M2, parameterized by parameter vectors θ1 and θ2, can be measured using
the Bayes factor, which is defined as:

B =
P(D|M1)
P(D|M2)

=

∫
θ1

P(D|θ1,M1)Π(θ1|M1)dθ1∫
θ2

P(D|θ2,M2)Π(θ2|M2)dθ1

where P(D|M1) is called the marginal likelihood or integrated likelihood. This is similar to what is done in the likelihood
ratio tests but now, instead of maximizing the likelihood, the Bayes factor performs a weighted average on the distribution
of the parameters.

A value of B > 1 means that the data supports M1 more than M2.

In the case of the Bayes factor, Jeffreys established an interpretation scale of B, this is shown in Table 1.

Table 1. Interpretation scale of B, according to Jeffreys

B Strength of the evidence in favor of M1

B ≤ 1 Negative supports M2

1 < B ≤ 3 Very scarce
3 < B ≤ 10 Substantial

10 < B ≤ 30 Strong
30 < B ≤ 100 Very strong

> 100 Decisive

Another way to consider the Bayes factor is as follows:

Suppose two hypotheses H0 and H1 such that the a priori probabilities are f0 = P(H0) and f1 = P(H1).

After observing a sample, the a posteriori probabilities of both hypotheses are α0 = P(H0|x) y α1 = P(H1|x). The Bayes
factor in favor of H0 is defined as:

B =

α0
α1

f0
f1

=
α0 f1
α1 f0

.
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Thus, the Bayes factor represents the a posteriori plausibility divided by the a priori plausibility and reports the changes
in our beliefs introduced by data. This has the property of being almost objective and partially eliminates the influence of
the a priori distribution.

As an example suppose the simple contrast:

H0 : θ = θ0 vs Ha : θ = θ1.

We have that the a posteriori distributions are:

α0 = P(H0|x) =
f0L(θ0|x)

f0L(θ0|x) + f1L(θ1|x)
,

α1 = P(H1|x) =
f1L(θ1|x)

f0L(θ0|x) + f1L(θ1|x)
.

So, the Bayes factor is:

B =
α0 f1
α1 f0

=
f0L(θ0|x) f1
f1L(θ1|x) f0

=
L(θ0|x)
L(θ1|x)

,

which coincides with the likelihood ratio, so that the a priori distribution would not influence the Bayes factor, in this
case.

Thus, the Bayes factor for the change point, when it is divided into two segments, is given by the likelihood ratio:

L0

L1
=

Q1Q2

L1
,

where Q1 is the likelihood of segment 1 and Q2 is the likelihood of segment 2, under the alternative hypothesis; and L1 is
the likelihood under the null hypothesis.

Applying the logarithm, we have

B = log{Q1} + log{Q2} − log{L1}.

2.1.1 Homogeneous Poisson Process

To find the change points, first is simulated a homogeneous Poisson process and after of obtained data is worked on. The
homogeneous Poisson process is defined as follows:

Definition 1: A collection of random variables {N(t) : t ≥ 0}, defined in a probability space (ω, F, P) is said to be a
Poisson process (homogeneous) with intensity λ > 0 if it satisfies the following properties:

i)P(N(0) = 0) = 1, this is, N(0) it is always 0.

ii) For all 0 < s < t, N(t) − N(s) has Poisson distribution of parameter λ(t − s).

iii) For all 0 ≤ t1 < . . . < tn, n ≥ 1 (that is, to say for all finite set of times), the random variables N(tn)−N(tn−1), . . . ,N(t2)−
N(t1),N(t1) − N(0),N(0), are independent. This is known as the property of independent increments.

2.1.2 Bisection Method

The bisection method was used to determine the change points with the Bayes factor. This method consists of dividing
the data in half and looking for a change point with the Bayes factor as well as with the likelihoods corresponding to the
null and alternative hypotheses. Then we go to the left side of the data and it is also divided in half; subsequently, the
right side is divided, and so on. We continue going successively to the left and to the right, dividing each side in half and
looking for change points with the Bayes factor.

2.2 Threshold Method

The following is an example of change points determined by the threshold method, explained in Altieri (2015), which
consists of associating a posteriori probability to the data and defining a threshold, in such a way that, if the probability is
less than that threshold, it is said that there is a change point.
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An example of how to associate probabilities is given below, using de following multiple linear regression:

Yi = β0 +

4∑
j=1

β jX j,i + εi.

For this example, we took the cement database in G´mez (2020). In the model, Yi represents the evolved heat of the
observation i and X j,i is the proportion of the component j in the observation i. The parameter β0 is an intercept and β j,
j = 1, . . . , 4 are coefficients associated with the covariates. Finally, εi, i = 1, 2, . . . , n is an error term with a Gaussian
distribution having zero mean and precision τ.

2.2.1 Cement Data

The cement database used is shown in Table 2.

Table 2. Regression data

X1 X2 X3 X4 Y X1 X2 X3 X4 Y
7 26 6 60 78.5 1 31 22 44 72.5
1 29 15 52 74.3 2 54 18 22 93.1
11 56 8 20 104.3 21 47 4 26 115.9
11 31 8 47 87.6 1 40 23 34 83.8
7 52 6 33 95.9 11 66 9 12 113.3
11 55 9 22 109.2 10 68 8 12 109.4
3 71 17 6 102.7

2.3 Cumulative Sum Method

The Cumulative Sum method consists of the following:

1.- The average is calculated x1+x2+...+x32
32 .

2. The cumulative sum starts at zero S 0 = 0.

3. Other cumulative sums of the form S i = S i−1 + (Xi − X̄) are calculated for i = 2, . . . , 32

S 0 = 0,

S 1 = S 0 + (X1 − X̄),

S 2 = S 1 + (X2 − X̄),
...

S 32 = S 31 + (X32 − X̄).

Bootstrapping is also performed, but an estimator of the magnitude of the change is required before that. An option that
works well regardless of distribution and despite multiple changes is S di f f , which is the maximum difference of S i and
the minimum of S i, as can be seen below:

S di f f = S max − S min where S max = maxi=0,...,33S i, S min = mini=0,...,33S i.

The magnitude of the change is S di f f . A positive value of Sdiff indicates that there was a change from low to high,
which means that traffic accidents changed. The latter is the topic of the problem addressed. Next, a bootstrap analysis of
a single routine is performed. The procedure is the next:

1. A bootstrap sample of 32 units, denoted by Xo
1 , X

o
2 , . . . , X

o
32, was generated, randomly rearranging the 32 original values.

This is called sampling without replacement.

2. Based on the bootstrap samples, the CUSUM bootstrap is calculated. This is denoted by S o
0, S

o
1, . . . , S

o
32.

3. The maximum, the minimum and the CUSUM bootstrap difference, denoted by S omax, S omin, and S odi f f are
calculated.

4. It is determined if the bootstrap difference S odi f f is less than the difference S di f f .

A bootstrap analysis consists of performing a large number of bootstraps and counting the number of bootstraps for which
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S odi f f is less than S di f f . Let N be the number of bootstrap samples performed and let X be the bootstrap for which
S odi f f < S di f f . Then the confidence of the change occurred is calculated as a percentage as follows:

Confidence level=100 X
N %.

2.3.1 Traffic Accident Data

The cumulative sum method was applied to traffic accident data in 32 cities, which are the states of the Mexican Republic.
The data, which correspond to the number of traffic accidents, were obtained from INEGI page and are presented in Table
3:

Table 3. Number of traffic accidents

City Accidents City Accidents City Accidents
1 74 11 188 22 146
2 60 12 56 23 69
3 26 13 36 24 113
4 24 14 351 25 278
5 94 15 49 26 208
6 22 16 171 27 41
7 78 17 68 28 136
8 270 18 42 29 80
9 223 19 229 30 140
10 104 20 36 31 37
11 188 21 206 32 83

2.3.2 Coronavirus Data

Coronavirus data corresponding to May 2020, obtained from the coronavirus.gob.mx page, were used to detect the change
points, applying the cumulative sum method. Three groups of data were formed, corresponding to eight, seven, and five
days, respectively. In each database, it was detected where the change from minor to major occurred, that is, where a
higher number of contagion cases occurred in the country. In the database they are divided into infections of men and
women; however, for the analysis of changes, the total contagion cases (men plus women) were considered. Table 4 shows
the data used.

Table 4. Coronavirus infection data

Date Data Date Data Date Data
1 1225 9 1270 16 1483
2 1241 10 1161 17 1145
3 1121 11 2512 18 2747
4 2298 12 2428 19 2261
5 1840 13 2516 20 2083
6 2024 14 2353
7 2085 15 2564
8 2071

3. Results and Discussion

3.1 Analysis of Multiple Change Points With the Bayes Factor

In order to detect, analyze, and compare points of change, a program was developed to detect 5 points of change. A set
of 60 data with 6 different values for the parameter λ were used, which were obtained from a Poisson simulation process.
This exercise is intended to detect the changes generated for the different values of λ. In addition, a comparison was made
with the results obtained when applying an a priori uniform, a log-gamma, and a Gaussian.

A program was generated in R to detect multiple points of change in time. In total, for five change points, 60 data were
used; the smallest segment was four points. A homogeneous Poisson process with different λ was simulated and the a
posterior distribution was approached with the R INLA package, which performs the approximation through Taylor series.
Bayes factor and the bisection method were used to detect the change points.
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A uniform a priori, log gamma and a Gaussian were used. Five change points are shown in Figure 1.

For the following problem, 60 data are used and the smallest division was reached, which was four data. So, there are
fifteen divisions as shown in Table 5.

The change points for a uniform a priori with λ = 2, 1, 4, 7, 6, 1 and in the data divisions or segments 8, 7, 15, 15, 8, 7, were
as shown in Table 5, the change points are the first four and the seventh.

With the same change points and the a priori loggamma with parameters 0.01 and 0.01, the result is that shown in Table
5. It can be seen that compared to the uniform, the log-likelihoods of the loggamma are smaller, however they also detect
the change points.

With the a priori Gaussian with zero mean and precision parameter 0.001, for the same number of change points as the
uniform and the log gamma, the five change points were detected; these are the first four and the seventh, in Table 5. It
can be seen that the value of the log-likelihood of the seventh change point is less than those of the following positions,
however.

The five change points in Table 5 were detected with the Bayes factor B, mentioned above. The values for B indicate the
strength of the evidence in favor of the change point hypothesis. Va-lues less than 1 indicate that there is no change point.
The data in bold, which correspond to the change points, were detected in the following way: value 1 in the middle of
the data, value 2 in data 15, value 3 in data 45, value 4 in data 8, and value 7 in data 53. As can be seen, the values of
the change points are not equal to each other or to the rest. On the other hand, where a change point did not occur, there
were values equal to each other, for example, values 5 and 6, as well as 8, 10, and 14, and in the same way as 9, 11, 13,
and 15; therefore, all these values indicate the non-existence of change points. The strength of the evidence in favor of
the alternative hypothesis, indicated by applying the bisection method for gradual detection of the change points, is strong
for the first point of change and decreases for the following ones; notice this in Table 5. The change points are shown in

Table 5. Change points

Number uniform loggamma Gaussian
1 49.565011 43.644575 42.972975
2 24.392282 25.829232 26.592785
3 13.940830 26.041694 28.329433
4 16.000633 9.990938 11.641769
5 12.478724 2.387813 4.477951
6 12.478724 2.387813 4.477951
7 12.572475 4.498905 5.523642
8 5.701123 1.835601 5.801758
9 4.732525 1.384310 4.912561

10 5.701123 1.835601 5.801758
11 4.732525 1.384310 4.912561
12 5.701123 1.835601 5.801758
13 4.732525 1.384310 4.912561
14 5.701123 1.835601 5.801758
15 4.732525 1.384310 4.912561

Figure 1 and are at 8, 15, 30, 45, and 53 divisions.

3.1.1 Six Change Points With the Bayes Factor

With the same uniform model, six change points were detected for λ = 2, 1, 4, 7, 6, 1, 2, in the data divisions or segments
of 8, 7, 15, 15, 8, 4, 3. The change points detected are the first four, the seventh, and the last. These are shown in Tables 6
and 7.

With the a priori logarithm of gamma, six change points were also detected, which are the first four, the seventh and the
last in Table 6. The difference with the uniform is that the log likelihood is smaller, as can be seen.

For the a priori Gaussian, six change points were also detected. These are shown below in log likelihood values. The
results are somewhat similar to those from the uniform. The change points correspond to the first four, the seventh, and
the last in Table 6. The difference between Gaussian and uniform is that the last change point is less than the previous log
likelihood values, where there is no change point.
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Figure 1. Five change points graph

With the beta logit (with parameters 2 and 2), six change points were well detected, being the same as for the uniform and
the gamma logit: the first four, the seventh, and the last. No big differences are visualized with respect to the uniform.

For the a priori truncated Normal with mean 0 and precision 0.001, the likelihood is smaller compared to the uniform.
This is very similar to the loggamma, since six change points were also detected: the first four, the seventh, and the last in
Tables 6 and 7.

In a similar way to the previous problem, the observed change points are shown in tables 6 and 7. These values are not
repeated among themselves or among the rest. Instead, the rest of the values are repeated, for example, 5 and 6, as well
as 8, 10, 12 and 14, and also 9, 11, and 13; therefore, all these values do not indicate change points, even when they are
greater than 1.

Table 6. Six change points

Num uniform loggamma Gaussian

1 37.382628 44.717137 38.258157
2 23.107912 28.913661 26.506732
3 22.987741 27.851420 26.529322
4 16.466681 5.045601 11.798824
5 12.478724 2.387813 4.477951
6 12.478724 2.387813 4.477951
7 16.555598 3.062915 12.572375
8 5.701123 1.835601 5.801758
9 4.732525 1.384310 4.912561
10 5.701123 1.835601 5.801758
11 4.732525 1.384310 4.912561
12 5.701123 1.835601 5.801758
13 4.732525 1.384310 4.912561
14 5.701123 1.835601 5.801758
15 4.733385 1.720949 4.280097

The change points are shown in Figure 2. These are given in 8, 15, 30, 45, 53, and 57 divisions.

Programming was done in R. The program is presented in appendix A as Program A1.

An algorithm was created for the problem of detecting six change points with the Bayes factor. This algorithm is presented
below:

Algorithm 1: it detects six change points.

Input the INLA function returns the variables mp1, mp2, and mp which contain data simulated with an AR1 autoregres-
sive model and data from a Poisson family for datos A, datos B and datos.

Output the vector respuesta keeps the likelihoods of 15 divisions.

Initialize vectors are initialized mp1, mp2, and mp which contain the simulated data with an AR1 autoregressive model
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Table 7. Six change points

Num logit beta normal
truncated

1 49.664317 51.841263
2 30.567246 16.016904
3 18.174484 33.658036
4 9.944739 7.969972
5 4.633706 2.186421
6 4.633706 2.186421
7 11.248933 1.984581
8 4.076750 1.881876
9 3.794214 1.783849

10 4.076750 1.881876
11 3.794214 1.783849
12 4.076750 1.881876
13 3.794214 1.783849
14 4.076750 1.881876
15 4.405551 2.260447

Figure 2. Six change points graph

and a Poisson family for datos A, datos A, and datos.

Return {respuesta} vector that keeps the verosimilitudes of the divisions.

The datos vector is divided into 1 to 30 and 31 to 60, and it is assigned to datos A and datos B.

i) The likelihood for datos A and datos B is calculated and stored in the respuesta vector,

ii) Vectors datos A and datos B are halved and the data are assigned to datos C and datos D,

iii) The likelihood fo datos C and datos D is calculated.

iv Steps i) and ii) are repeated for the new divisions of the data until the division of only two data.

v) The results obtained are recorded.

3.1.2 Space-Time Analysis of Multiple Change Points With the Bayes Factor

For multiple change points in space-time, what was done was assigning positions. The first one was assigned in the center
and the rest around it in ascending and counterclockwise order. The a posteriori was approximated with the R-INLA
package. The a priori uniform, the Bayes factor, and the bisection method were also used. The simulation of values was
done for a homogeneous Poisson process; four random values of λ (between 1 and 15) were used for each position, so
three change points were estimated. The values of λ are given in each row of Table 8.

And the resulting change points are the first three of Tables 9, 10, 11, and 12. These are in 15, 30, and 45 divisions.

The behavior of the values is similar to that of the first problem presented in this work. The change points indicated in
bold in tables 9, 10, 11, and 12 are not repeated, unlike the rest. According to the strength of the evidence for Bayes factor
B, values less than 1 indicate that there is no point of change. These values are observed in table 10, position 6, value 3,
and in table 11, position 9, value 2.
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Table 8. Lambda values

[1] [2] [3] [4]
[1] 10 3 5 13
[2] 8 12 6 5
[3] 14 8 13 5
[4] 5 4 7 12
[5] 12 7 6 8
[6] 12 9 1 6
[7] 1 13 5 3
[8] 11 14 1 3
[9] 1 13 5 15
[10] 13 1 7 4
[11] 5 11 8 9
[12] 10 3 7 15
[13] 1 13 12 6
[14] 7 1 11 12
[15] 13 12 4 1
[16] 5 6 12 7

Table 9. Change points space-time

[1] [2] [3] [4]
1 33.693643 44.955163 35.315124 41.732270
2 27.795301 25.226235 28.387088 19.482977
3 28.727677 21.122882 27.775696 28.697886
4 12.478724 12.478724 12.478724 12.478724
5 12.478724 12.478724 12.478724 12.478724
6 12.478724 12.478724 12.478724 12.478724
7 12.478724 12.478724 12.478724 12.478724
8 5.701123 5.701123 5.701123 5.701123
9 4.732525 4.732525 4.732525 4.732525
10 5.701123 5.701123 5.701123 5.701123
11 4.732525 4.732525 4.732525 4.732525
12 5.701123 5.701123 5.701123 5.701123
13 4.732525 4.732525 4.732525 4.732525
14 5.701123 5.701123 5.701123 5.701123
15 4.732525 4.732525 4.732525 4.732525

The Bayes factor method detects the change points well. Its weakness is that it only detects changes up to a division of
four, but not when the amount of data is lower.

Programming was performed in R. It is shown in appendix A as program A2.

An algorithm was built to detect 3 space-time points of change in 16 positions. This algorithm is shown below:

Algorithm 2: it detects 3 space-time points of change

Input the INLA function returns the variables mp1, mp2, and mp which contain data simulated with an AR1 autoregres-
sive model and data from a Poisson family for datos A, datos B and datos.

Output the matrizrespuesta keeps the likelihoods of 5 divisions in 16 positions.

Initialize vector mp1, mp2, and mp are initialized. These contain data simulated with an AR1 autoregressive model and
data from a Poisson family for datos A, datos B and datos

n=16 means 16 positions.

for i in 1:n
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Table 10. Change points space-time

[5] [6] [7] [8]
1 33.574630 61.47789451 52.546434 44.358894
2 27.549217 27.37020690 18.324691 21.142981
3 28.777261 -0.08807506 20.678559 1.851282
4 12.478724 12.47872437 12.478724 12.478724
5 12.478724 12.47872437 12.478724 12.478724
6 12.478724 12.47872437 12.478724 12.478724
7 12.478724 12.47872437 12.478724 12.478724
8 5.701123 5.70112304 5.701123 5.701123
9 4.732525 4.73252533 4.732525 4.732525
10 5.701123 5.70112304 5.701123 5.701123
11 4.732525 4.73252533 4.732525 4.732525
12 5.701123 5.70112304 5.701123 5.701123
13 4.732525 4.73252533 4.732525 4.732525
14 5.701123 5.70112304 5.701123 5.701123
15 4.732525 4.73252533 4.732525 4.732525

Table 11. Change points space-time

[9] [10] [11] [12]
1 71.06948660 35.332035 34.663739 28.888859
2 -0.08807506 28.183967 26.321000 25.185406
3 19.83004426 27.173106 28.558468 28.850767
4 12.47872437 12.478724 12.478724 12.478724
5 12.47872437 12.478724 12.478724 12.478724
6 12.47872437 12.478724 12.478724 12.478724
7 12.47872437 12.478724 12.478724 12.478724
8 5.70112304 5.701123 5.701123 5.701123
9 4.73252533 4.732525 4.732525 4.732525
10 5.70112304 5.701123 5.701123 5.701123
11 4.73252533 4.732525 4.732525 4.732525
12 5.70112304 5.701123 5.701123 5.701123
13 4.73252533 4.732525 4.732525 4.732525
14 5.70112304 5.701123 5.701123 5.701123
15 4.73252533 4.732525 4.732525 4.732525

4 lambdas from a 1-15 Poisson process are randomly calculated and they are included in the vector vlambda.

The four vectors simulated by change points, corresponding to the four lambdas, are included in the vector datos which
has space for 60 data

end for

for i in 1:n

The vector datos is divided into 1 to 30 and 31 to 60 and assigned to datos A and datos B.

i) The likelihood for each vector in datos A and datos B is calculated and stored in the matrizrespuesta,

ii) The vector datos A and datos B are halved and data are assigned to datos C and datos D,

iii) The likelihoods for datos C and datos D are calculated.

iv) Steps i) and ii) are repeated for the new divisions of the data until the division of only two data.

v) The results obtained are recorded.

end for

return returns the matrizrespuesta. This matrix contains the likelihoods.
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Table 12. Change points space-time

[13] [14] [15] [16]
1 55.319548 36.493439 53.350957 37.905475
2 7.263903 27.399136 14.610914 25.226621
3 28.683089 26.696299 17.792607 28.209964
4 12.478724 12.478724 12.478724 12.478724
5 12.478724 12.478724 12.478724 12.478724
6 12.478724 12.478724 12.478724 12.478724
7 12.478724 12.478724 12.478724 12.478724
8 5.701123 5.701123 5.701123 5.701123
9 4.732525 4.732525 4.732525 4.732525
10 5.701123 5.701123 5.701123 5.701123
11 4.732525 4.732525 4.732525 4.732525
12 5.701123 5.701123 5.701123 5.701123
13 4.732525 4.732525 4.732525 4.732525
14 5.701123 5.701123 5.701123 5.701123
15 4.732525 4.732525 4.732525 4.732525

3.2 Threshold Method

For the example of the change point, the variable X1 in Table 2 of Section 2.2.1 was used. Probabilities of the a posteriori
distribution were assigned to data of X1. A threshold of 3.041631e− 07 was set, so data having a probability less than this
value were considered as change points.

The program A3 in Appendix A was developed in R. The results were given in zeros and ones:

0 0 1 1 0 1 0 0 0 1 0 1 1

The change occurs where the number 1 begins to be more constant, that is, where the a posteriori probability assigned to
the data is less than the defined threshold, indicating that a point of change exists. The latter happens in position ten and
three, with a threshold of 3.041631e-07.

An algorithm was created which detects multiple points of change by the threshold method. This algorithm is presented
below:

Algorithm 3: it detects multiple change points by the threshold method

Input cement matrix, datos matrix, treshold, regression in ml.

Output Vector menores include zeros and ones; 1 means that the a posteriori probability is less than threshold y 0 means
that the a posteriori probability is greater than threshold.

Inizialite n=13 is the amount of data.

For h in 1:n

The a posteriori probability is calculated for each data.

End For

For h in 1:n

if the a posteriori probability is less than threshold, then a 1 is stored in the vector menores else if it is greater a zero is
stored.

End For

Print menores

3.3 Cumulative Sum Method

3.3.1 With Traffic Accident Data

The algorithm of Section 2.3 was applied to the traffic accident data of Section 2.3.1, Table 3. According to the magnitude
of the change, the minimum sum was −439.6875, and it was found in the data located in the seventh position. The
maximum sum, the minimum sum and the difference were:

41



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 10, No. 3; 2021

Smax=183.875
Smin=-439.6875
Sdiff=623.5625

Confidence Level for a hundred sample bootstrap=100 X
N % = 83%.

It can be seen in Figure 3 that the change point is at value 7, where it changes from the smallest number of traffic accidents
to a higher number.

Figure 3. Graph with change point at 7

What the algorithm establishes was applied and the program A4 in appendix A was developed.

An algorithm was created with the cumulative sum method, which detects a single point of change. This algorithm is
shown below:

Algorithm 4: it detects a single change point

Input the matrix datos contain data for the analysis

Output parciales are cumulative data sums, rparciales are cumulative bootstrap sums, rSdif are the resampling differ-
ences.

Inizialite n=33 they are 33 data

m=100 is resampling of size 100 with 33 data

For i in 2:n

The cumulative sum is calculated and stored in parciales

End For

The maximumSmax=max(parciales), ,minimum Smin=min(parciales) and difference Sdif=Smax-Smin are calculated

For k in 2:n

The resampling cumulative sum is calculated and stored inrparciales

End For

It is calculated the maximum of rparciales rSmax=max(rparciales)

mimimum rSmin=min(rparciales), and difference rSdif=rSmax-rSmin

return rSdif returns the resampling difference vector.

For j in 1:m a bootstrap resampling of size 100 with 33 data is performed

The differences are calculated for each resampling diferencias[m] = remuestreo(sample(datos, 32))

End for
For j in 1:m
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If If the resampling differences are less than Sdif then the normal differences are stored in the vector respuesta.

End for

The confidence Interval is calculated:

Nconfianza=100*sum(respuestas)/length(respuestas)

Other tests applied with traffic accident data

The Buishand, Pettitt and standard normal homogeneity tests were performed on the same traffic accident data. For all
tests, the result was the change point at position 7. It was used in R the trend library in Pohlert (2020), using the following
code:

library(trend)
data < −c(74, 60, 26, 24, 94, 22, 78, 270, 223, 104, 188, 56, 36
, 351, 49, 171, 68, 42, 229, 36, 206, 146, 69,
113, 278, 208, 41, 136, 80, 140, 37, 83)
y < −ts(data, start = c(1900), f req = 1)
x < −ts(data, start = c(1900), f req = 1)
buishand ranges test
br.test(y,m = 20000)
pettit test
pettitt.test(x)
standard normal homogeneity test
snh.test(x,m = 20000)

3.3.2 With Coronavirus Data

The coronavirus data from Section 2.3.2 in Table 4 were used. The infection data are shown in a bar graph, in Figure 4.
The bar graph shows how the number of infections decreases and increases again. Increases or changes occurred at May

Figure 4. Graph of contagion

4, May 11 an May 18, for the first, second and last group, respectively. This is observed in the CUSUM cumulative sums
graph shown in Figure 5. For each cumulative sum, the statistics and the percentage are those shown in Table 13.

Figure 5. Data groups 1, 2 and 3

The R program applied for the analysis of coronavirus data, was the same as that used for the traffic accidents data.

With the CUSUM method only one change point is detected, however changes are detected even when the database is
small, which is the case with the coronavirus data.
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Table 13. Statistics and percentage

Group 1 Group 2 Group 3
Sdiff=1627.375 Sdiff=1798.714 Sdiff=1259.6
Smax=0 Smax=0 Smax=0
Smin=-1627.375 Smin=-1798.714 Smin=-1259.6
ConfidenceL=89% 83% 61%

4. Conclusion

Programs were developed for the Bayes factor, thresholds, and CUSUM methods. In the case of the Bayes factor method,
the purpose was to numerically detect the points of change and compare the results with those of the a priori distributions
used. For the threshold and CUSUM methods, the objective was to detect the change points. Coronavirus, car traffic, and
regression (cement) databases were used, as well as a database simulated with a Poisson process.

Pettitt, standard normal homogeneity, and Buishand ranges methods were used. The R Trend package, which contains
these methods, was applied to detect the change points.

It can be concluded that the threshold and CUSUM methods detect change points well. The difference is that the threshold
method allows to detect multiple points of change in a regression.

The CUSUM method only detects a point of change, as do Pettitt, standard normal homogeneity, and Buishand ranges
methods. Using the CUSUM method, changes are detected even when the database is small, as happened with the
coronavirus data.

The Bayes factor method detected the change points well. Its weakness is that it can only detect changes up to a division
of four, but when the amount of data in the division is lower, the change points are no longer detected.
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Appendix A

Program A1

rm(list = ls())
library(poisson)
library(INLA)
vector < −hpp.event.times(2, 15, num.sims = 1, t0 = 0)
plot(vector)
vector1 < −hpp.event.times(1, 15, num.sims = 1, t0 = 0)
vector2 < −hpp.event.times(4, 15, num.sims = 1, t0 = 0)
vector4 < −hpp.event.times(6, 15, num.sims = 1, t0 = 0)
datos < −c(vector, vector1, vector2, vector4)
plot(datos, type = ”l”)
datosA = datos[1 : 30]
datosB = datos[31 : 60]
datos
datosA
datosB
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vec res = rep(0, 20)
f actor b < − f unction(datosA, datosB, datos){
p1 < −data. f rame(”num” = seq(1, length(datosA), 1), ”datosA” = datosA)
p2 < −data. f rame(”num” = seq(1, length(datosB), 1), ”datosB” = datosB)
mp1 < −inla(num f (datosA,model = ”ar1”), data = p1, f amily = ”poisson”)
mp2 < −inla(num f (datosB,model = ”ar1”), data = p2, f amily = ”poisson”)
mid f < −data. f rame(”num” = seq(1, length(datos), 1), ”datos” = datos)
mp < −inla(num f (datos,model = ”ar1”), data = mid f , f amily = ”poisson”)
respuesta < −as.numeric(mp1$mlik[1, 1]) + as.numeric(mp2$mlik[1, 1])
−as.numeric(mp$mlik[1, 1])
return(respuesta)
}

vec res[1] = f actor b(datosA, datosB, datos)
vec res
datosC = datosA[1 : 15]
datosD = datosA[16 : 30]
vec res[2] = f actor b(datosC, datosD, datosA)
vec res
datosE = datosB[1 : 15]
datosF = datosB[16 : 30]
vec res[3] = f actor b(datosE, datosF, datosB)
vec res
datosG = datosC[1 : 8]
datosH = datosC[9 : 15]
vec res[4] = f actor b(datosG, datosH, datosC)
vec res
datosI = datosD[1 : 8]
datosJ = datosD[9 : 15]
vec res[5] = f actor b(datosI, datosJ, datosD)
vec res
datosK = datosE[1 : 8]
datosL = datosE[9 : 15]
vec res[6] = f actor b(datosK, datosL, datosE)
vec res
datosM = datosF[1 : 8]
datosN = datosF[9 : 15]
vec res[7] = f actor b(datosM, datosN, datosF)
vec res
datosO = datosG[1 : 4]
datosP = datosG[5 : 8]
vec res[8] = f actor b(datosO, datosP, datosG)
vec res
datosQ = datosH[1 : 4]
datosR = datosH[5 : 7]
vec res[9] = f actor b(datosQ, datosR, datosH)
vec res
datosS = datosI[1 : 4]
datosT = datosI[5 : 8]
vec res[10] = f actor b(datosS , datosT, datosI)
vec res
datosU = datosJ[1 : 4]
datosV = datosJ[5 : 7]
vec res[11] = f actor b(datosU, datosV, datosJ)
vec res
datosX = datosK[1 : 4]
datosY = datosK[5 : 8]
vec res[12] = f actor b(datosX, datosY, datosK)
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vec res
datosW = datosL[1 : 4]
datosZ = datosL[5 : 7]
vec res[13] = f actor b(datosW, datosZ, datosL)
vec res
datosAA = datosM[1 : 4]
datosBB = datosM[5 : 8]
vec res[14] = f actor b(datosAA, datosBB, datosM)
vec res
datosCC = datosN[1 : 4]
datosDD = datosN[5 : 7]
vec res[15] = f actor b(datosCC, datosDD, datosN)
vec res
To use another a priori function, it is changed in the program by the following instruction, where the a priori distribution
to use and its parameters are included, since the INLA package has the a priori distributions to use.

prec.prior < −list(prec = list(prior = ”logtgaussian”, param = c(0, 0.001)))
mp1 < −inla(num f (datosA,model = ”ar1”, hyper = prec.prior), data = p1, f amily = ”poisson”)

Program A2

rm(list = ls())
library(poisson)
library(INLA)
esp t = matrix(0, 60, 16)
matriz resp = matrix(0, 15, 16)
mlambdas = matrix(0, 16, 4)
f actor b < − f unction(datosA, datosB, datos){
p1 < −data. f rame(”num” = seq(1, length(datosA), 1), ”datosA” = datosA)
p2 < −data. f rame(”num” = seq(1, length(datosB), 1), ”datosB” = datosB)
mp1 < −inla(num f (datosA,model = ”ar1”), data = p1, f amily = ”poisson”)
mp2 < −inla(num f (datosB,model = ”ar1”), data = p2, f amily = ”poisson”)
mid f < −data. f rame(”num” = seq(1, length(datos), 1), ”datos” = datos)
mp < −inla(num f (datos,model = ”ar1”), data = mid f , f amily = ”poisson”)
respuesta < −as.numeric(mp1$mlik[1, 1]) + as.numeric(mp2$mlik[1, 1])
−as.numeric(mp$mlik[1, 1])
return(respuesta)
}

f or(i in 1 : 16){
vlambda = sample(1 : 15, 4)
vector < −hpp.event.times(vlambda[4], 15, num.sims = 1, t0 = 0)
plot(vector)
mlambdas[i, ] = vlambda
vector1 < −hpp.event.times(vlambda[1], 15, num.sims = 1, t0 = 0)
vector2 < −hpp.event.times(vlambda[2], 15, num.sims = 1, t0 = 0)
vector4 < −hpp.event.times(vlambda[3], 15, num.sims = 1, t0 = 0)
datos < −c(vector, vector1, vector2, vector4)
espt[, i] = datos
}

f or(indice in 1 : 16){
datosA = esp t[1 : 30, indice]
datosB = esp t[31 : 60, indice]
datos = esp t[, indice]
datosA
datosB
matriz resp[1, indice] = f actor b(datosA, datosB, datos)
datosC = datosA[1 : 15]
datosD = datosA[16 : 30]
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matriz resp[2, indice] = f actor b(datosC, datosD, datosA)
datosE = datosB[1 : 15]
datosF = datosB[16 : 30]
matriz resp[3, indice] = f actor b(datosE, datosF, datosB)
datosG = datosC[1 : 8]
datosH = datosC[9 : 15]
matriz resp[4, indice] = f actor b(datosG, datosH, datosC)
datosI = datosD[1 : 8]
datosJ = datosD[9 : 15]
matriz resp[5, indice] = f actor b(datosI, datosJ, datosD)
datosK = datosE[1 : 8]
datosL = datosE[9 : 15]
matriz resp[6, indice] = f actor b(datosK, datosL, datosE)
datosM = datosF[1 : 8]
datosN = datosF[9 : 15]
matriz resp[7, indice] = f actor b(datosM, datosN, datosF)
datosO = datosG[1 : 4]
datosP = datosG[5 : 8]
matriz resp[8, indice] = f actor b(datosO, datosP, datosG)
datosQ = datosH[1 : 4]
datosR = datosH[5 : 7]
matriz resp[9, indice] = f actor b(datosQ, datosR, datosH)
datosS = datosI[1 : 4]
datosT = datosI[5 : 8]
matriz resp[10, indice] = f actor b(datosS , datosT, datosI)
datosU = datosJ[1 : 4]
datosV = datosJ[5 : 7]
matriz resp[11, indice] = f actor b(datosU, datosV, datosJ)
datosX = datosK[1 : 4]
datosY = datosK[5 : 8]
matriz resp[12, indice] = f actor b(datosX, datosY, datosK)
datosW = datosL[1 : 4]
datosZ = datosL[5 : 7]
matriz resp[13, indice] = f actor b(datosW, datosZ, datosL)
datosAA = datosM[1 : 4]
datosBB = datosM[5 : 8]
matriz resp[14, indice] = f actor b(datosAA, datosBB, datosM)
datosCC = datosN[1 : 4]
datosDD = datosN[5 : 7]
matriz resp[15, indice] = f actor b(datosCC, datosDD, datosN)
indice = indice + 1
}

matriz resp
mlambdas

Program A3

library(INLA)
cement
m1 < −inla(y x1 + x2 + x3 + x4, data = cement)
dato < −c(7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10)
m1$marginals. f ixed$x1
1 − inla.pmarginal(0,m1$marginals. f ixed$x1)
probas = seq(1, 13)
f or(h in 1 : 13){
probas[h] = inla.pmarginal(dato[h]+0.2,m1$marginals. f ixed$x1)−inla.pmarginal(dato[h]−0.2,m1$marginals. f ixed$x1)
}

menores = seq(1, 13)
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umbral = 3.041631e − 07
f or(h in 1 : 13){
menores[h] = probas[h] < umbral
}

menores

Program A4

datos < −c(74, 60, 26, 24, 94, 22, 78, 270, 223, 104, 188, 56, 36, 351, 49, 171, 68, 42, 229, 36, 206,
146, 69, 113, 278, 208, 41, 136, 80, 140, 37, 83)
promd < −mean(datos)
promd
parciales < −seq(1, 33)
parciales[1] = 0
f or(iin2 : 32){
parciales[i] = parciales[i − 1] + datos[i − 1] − promd
}

parciales
S max = max(parciales)
S min = min(parciales)
S di f = S max − S min
S di f
S max
S min
plot(parciales, type = ”l”)
remuestreo < − f unction(rdatos){
rpromd < −mean(rdatos)
rparciales < −seq(1, 33)
rparciales[1] = 0
f or(k in 2 : 33){
rparciales[k] = rparciales[k − 1] + rdatos[k − 1] − rpromd
}

rS max = max(rparciales)
rS min = min(rparciales)
rS di f = rS max − rS min
return(rS di f )
}

di f erencias = seq(1, 100)
f or(m in 1 : 100){
di f erencias[m] = remuestreo(sample(datos, 32))
}

di f erencias
respuestas < −seq(1, 100)
f or(m in 1 : 100){
respuestas[m] = di f erencias[m] < S di f
}

respuestas
di f erencias
S di f
NCon f ianza = 100 ∗ sum(respuestas)/length(respuestas)
NCon f ianza
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