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Abstract

This paper considers the problem of testing independence of equations in a seemingly unrelated regression model. A
novel empirical likelihood test approach is proposed, and under the null hypothesis it is shown to follow asymptotically a
chi-square distribution. Finally, simulation studies and a real data example are conducted to illustrate the performance of
the proposed method.
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1. Introduction

The Seemingly Unrelated Regression (SUR) of Zellner (1962) is an important tool to analyze multiple equations with
correlated disturbances. SUR models have been studied extensively by statistician and econometrician and applied in
many areas, more details can be found in Srivastava and Giles (1987) and Fiebig (2001).

Due to the correlation of the model errors in regression equations, the SUR model allows one to estimate the regression
coefficients more efficiently than each of the regression equations is estimated separately with the correlation is ignored.
It is by now clear that for the traditional linear SUR model, the Generalized Least Squares (GLS) estimator is more
efficient than its Ordinary Least Squares (OLS) counterpart. They are equivalence if the error covariance of the SUR
model is diagonal. Therefore, the problem of testing independence of equations of a SUR model is important. Many
testing approaches have been proposed for this problem. Breusch and Pagan (1980) proposed a Lagrange multiplier test
statistic. Dufour and Khalaf (2002) extended the exact independence test method of Harvey and Phillips (1982) to the
multi-equation framework. Tsay (2004) constructed a multivariate independent test statistic for SUR model with serially
correlated errors.

Different to the above methods, we propose a empirical likelihood test statistic. The empirical likelihood of Owen
(1988,1990) is an effective nonparametric inference method. More references can be found in Owen (2001).

The paper is organized as follows. The empirical log-likelihood ratio test statistic is given in Section 2. Section 3 conducts
some simulation studies to illustrate the performance of the proposed method. An empirical example is also provided to
demonstrate the usefulness of this test. Finally, conclusion is given in Section 4. The Appendix provides the proofs of the
main results.

2. Test Statistic and Its Properties

Consider the following SUR model that comprises the p regression equations

Yi = Xiβi + εi, i = 1, 2, · · · , p, (2.1)

with Yi = (yi1, yi2, · · · , yin)T is a n× 1 vector of responses, Xi = (xi1, xi2, · · · , xin)T is a full-rank n× qi matrix of regressors
with xT

ik = (xik1, xik2, · · · , xikqi ), βi = (βi1, βi2, · · · , βiqi )
T is a vector of qi-dimensional unknown parameters, and εi =

(εi1, εi2, · · · , εin)T is a n × 1 error vector with Eεik = 0, k = 1, 2, · · · , n.

The model (2.1) can be rewritten in vectors and matrixces,

Y = Xβ + ε, (2.2)
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where

Y =


Y1
Y2
...

Yp

 , X =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xp

 , β =


β1
β2
...
βp

 , ε =


ε1
ε2
...
εp


so that X is a (np)× q matrix, Y and ε each have dimension (np)× 1 and β has dimension q× 1, with q =

p∑
i=1

qi. The basic

assumptions underlying the disturbances of model (2.1) are

E(εikε jl) =

{
σi j, k = l,
0, otherwise,

for 1 ≤ i, j ≤ p and 1 ≤ k, l ≤ n. Then, we have Var(εi) = Eεiε
T
i = σiiIn, and Cov(εi, ε j) = Eεiε

T
j = σi jIn, with In is the

identity matrix of order n. Therefore, the np × 1 disturbance vector ε has the following variance-covariance matrix

Ω = E(εεT) = Σ ⊗ In, (2.3)

with

Σ =


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p
...

...
. . .

...
σp1 σp2 · · · σpp

 .
We consider the problem of testing independence of p equations in model (2.1), which may be expressed as H0 : σi j = 0
for 1 ≤ i < j ≤ p, or equivalently

H0 : Σ =


σ11 0 · · · 0
0 σ22 · · · 0
...

...
. . .

...
0 0 · · · σpp

 . (2.4)

Letting Uk = (ε1kε2k, ε1kε3k, · · · , ε1kεpk, ε2kε3k, · · · , ε2kεpk, · · · , ε(p−1)kεpk)T, k = 1, 2, · · · , n, it is obvious that there are
N =

p(p−1)
2 elements in Uk. For example, for the two equations case p = 2, we have Uk = ε1kε2k and N = 1, for the

three equations case p = 3, Uk = (ε1kε2k, ε1kε3k, ε2kε3k)T and N = 3. It is obvious that testing for diagonality of the Σ is
equivalent to testing whether EUk = 0, k = 1, 2, · · · , n. By Owen(1990), this can be done using the empirical likelihood
method. Let p1, p2, · · · , pn be nonnegative numbers summing to unity. Then the corresponding empirical log-likelihood
ratio can be defined as

l̄n = −2 max

 n∑
k=1

log(npk) :
n∑

k=1

pkUk = 0, pk ≥ 0,
n∑

k=1

pk = 1

 . (2.5)

However, ε′ik s in Uk are unknown, then l̄n cannot be used directly. To solve the problem, we can replace εik by its estimator

ε̂ik = yik − xT
ikβ̂i,

with β̂i = (XT
i Xi)−1XT

i Yi is the least-squares estimator of the coefficients contained in the ith equation of model (1.1).
Then, use ε̂ik to replace εik in Uk, the estimated empirical log-likelihood ratio is then defined by

ln = −2 max

 n∑
k=1

log(npk) :
n∑

k=1

pkξk = 0, pk ≥ 0,
n∑

k=1

pk = 1

 , (2.6)

where ξk = (ε̂1kε̂2k, ε̂1kε̂3k, · · · , ε̂1kε̂pk, ε̂2kε̂3k, · · · , ε̂2kε̂pk, · · · , ε̂(p−1)kε̂pk).

By the Lagrange multiplier technique, the empirical log-likelihood ratio can be represented as

ln = 2
n∑

k=1

log
(
1 + λTξk

)
, (2.7)

where λ = (λ1, λ2, · · · , λn)T is the solution of the equation

1
n

n∑
k=1

ξk

1 + λTξk

= 0. (2.8)
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The following theorem indicates that ln is asymptotically distributed as a χ2-distribution.

Theorem 2.1. Suppose the assumptions 1-2 given in Appendix hold, under the null hypothesis, as n→∞, we have

ln
D
−→ χ2

N ,

where χ2
N is a χ2-distribution with N =

p(p−1)
2 degrees of freedom.

Remark 2.1 For the testing problem (2.4), Breusch and Pagan (1980) proposed a Lagrange multiplier test statistic. This
is based upon the sample correlation coefficients of the OLS residuals:

LM = n
p−1∑
i=1

n∑
j=i

ρ̂2
i j,

where ρ̂i j is the sample estimate of the pair-wise correlation of the residuals. Specifically,

ρ̂i j = ρ̂ ji =

n∑
k=1

ε̂ikε̂ jk

(
n∑

k=1
ε̂2

ik)1/2(
n∑

k=1
ε̂2

jk)1/2

Under the null hypothesis, LM has an asymptotic χ2
N distribution, too.

3. Numerical Studies

3.1 Simulation Studies

In this subsection, we conducted some simulations to illustrate the finite sample properties of the proposed test procedure.
In our simulations, the data are generated from the following SUR model

yik = xik1βi1 + xik2βi2 + εi, i = 1, 2, 3, k = 1, 2, · · · , n

where xik1 ∼ N(0, 1), xik2 ∼ U(−2, 2), and xik3 ∼ N(2, 1). The parameters are set as β11 = 1, β12 = 2, β21 = 2, β22 =

3, β31 = −1, β32 = 3. The model error εik ∼ N(0, σii) and

Cov[(ε1k, ε2k, ε3k)T] =

 σ11 ρ12
√
σ11σ22 ρ13

√
σ11σ33

ρ12
√
σ11σ22 σ22 ρ23

√
σ22σ33

ρ13
√
σ11σ33 ρ23

√
σ22σ33 σ33

 .
where σ11 = 0.25, σ22 = 0.64, σ33 = 0.49.

In order to examine the empirical size of the proposed empirical likelihood (EL) test and the Lagrange multiplier (LM)
test statistic, we set ρ = (ρ12, ρ13, ρ23) = (0, 0, 0), and n = 30, 50, 100, 150, 200, 300, 400, 1000 replications were run and
the rejection rate under a given significance level α(0.01, 0.05, 0.10) was computed as the empirical size of the test, and
the results are reported in Table 3.1. From the results, we can see that the empirical size of the proposed EL test is quite
large for small samples. The size distortion of the LM test is smaller than that of the EL test for small samples. The sizes
of both the EL test and the LM test converge to the correct nominal levels when n grows, as would be expected. The fact
that the size distortion of the EL test is relatively large indicates that the approximation of the finite sample distribution in
small samples using the asymptotic χ2 is relatively poor. The phenomenon was also reported by Dong and Giles (2007),
Liu et al. (2008) and Liu et al. (2011) in other testing problems. According to Owen (2001), this may be improved by
using Fisher’s F-distribution, or Bartlett correction, or bootstrap sample.

To assess the power of the EL and the LM tests, we took the values of ρ to be each of the following values, (0.1,0,0),
(0,0.5,0), (0,0,-0.9), (0.2,0.3,0), (-0.5,0,0.4), (0,-0.5,-0.8), (0.1,-0.2,0.1), (0.1,0.2,0.8), (-0.5,0.4,-0.6), and n = 30, 50.
Results are presented in Table 3.2. we can see that the power of the EL is bigger than that of the LM test for significance
levels of 10%, 5%, and 1%.
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Table 3.1. Empirical sizes of EL and LM tests

n α = 0.01 α = 0.05 α = 0.10
EL LM EL LM EL LM

30 0.067 0.008 0.142 0.048 0.215 0.095
50 0.032 0.014 0.106 0.040 0.155 0.096

100 0.021 0.009 0.067 0.049 0.121 0.090
150 0.013 0.012 0.053 0.050 0.107 0.104
200 0.011 0.009 0.053 0.047 0.119 0.096
300 0.011 0.012 0.047 0.047 0.111 0.102
400 0.011 0.009 0.053 0.051 0.104 0.095

Table 3.2. Power comparison of the EL test with the LM test

n ρ α = 0.01 α = 0.05 α = 0.10
EL LM EL LM EL LM

30 (0.1,0,0) 0.092 0.011 0.183 0.061 0.258 0.126
(0,0.5,0) 0.594 0.286 0.765 0.579 0.832 0.691
(0,0,-0.9) 1.000 1.000 1.000 1.000 1.000 1.000
(0.2,0.3,0) 0.307 0.096 0.508 0.289 0.606 0.406
(-0.5,0,0.4) 0.858 0.578 0.96 0.858 0.977 0.924
(0,-0.5,-0.8) 1.000 1.000 1.000 1.000 1.000 1.000
(0.1,0.2,-0.1) 0.183 0.036 0.308 0.144 0.419 0.231
(0.1,0.2,0.8) 0.993 0.963 0.997 0.998 0.999 0.998

(-0.5,0.4,-0.6) 0.936 0.898 0.978 0.959 0.986 0.989
50 (0.1,0,0) 0.062 0.019 0.158 0.086 0.247 0.154

(0,0.5,0) 0.800 0.659 0.923 0.874 0.962 0.934
(0,0,-0.9) 1.000 1.000 1.000 1.000 1.000 1.000
(0.2,0.3,0) 0.460 0.258 0.616 0.512 0.741 0.655
(-0.5,0,0.4) 0.988 0.941 0.996 0.991 0.997 0.994
(0,-0.5,-0.8) 1.000 1.000 1.000 1.000 1.000 1.000
(0.1,0.2,-0.1) 0.226 0.062 0.396 0.232 0.489 0.360
(0.1,0.2,0.8) 0.999 1.000 1.000 1.000 1.000 1.000

(-0.5,0.4,-0.6) 0.992 0.991 1.000 1.000 1.000 0.999

3.2 A Real Example

Baltagi and Griffin (1983) considered the following gasoline demand equation

ln
Cas
Car

= α + β1 ln
Y
N

+ β1 ln
PMG

PGDP
+ β1 ln

Car
N

+ u,

where Gas/Car is motor gasoline consumption per auto, Y/N is real per capita income, PMG/PGDP is real motor gasoline
price and Car/N denotes the stock of cars per capita. This panel consists of annual observations across 18 OECD countries,
covering the period 1960-78. The data for this example can be found in package plm of the open source software R.
Baltagi (2008) (P 244) considered the problem of testing the independence of the first two countries: Austria and Belgium.
The observed values of Breusch-Pagan (1980) Lagrange multiplier test statistic and the Likelihood Ratio test statistic for
this problem are 0.947 and 1.778, respectively. The observed value of the proposed empirical likelihood test statistic is
2.343. All the three test statistics are distributed as χ2

1 under the null hypothesis, and do not reject the null hypothesis.

4. Conclusion

This paper proposes a novel approach for the independence test for the disturbances of the SUR models based on the
empirical-likelihood method. The proposed test statistic under the null hypothesis is shown to has an asymptotic chi-
square distribution. Compared to the Lagrange multiplier test statistic, the simulation experiment demonstrates that the
proposed method performs satisfactorily. Furthermore, our approach can be applied to the case that the model errors of
one equation of SUR model are correlated.
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Appendix: Proof of the main results

We begin with the following assumptions required to derive the main results. These assumptions are quite mild and can
be easily satisfied.

Assumption 1. E(xikεik) = 0 for 1 ≤ i ≤ p, 1 ≤ k ≤ n.

Assumption 2. E(XT
i Xi) is nonsingular, 1 ≤ i ≤ p.

In order to prove that main results, we first introduce several lemmas.

Lemma 1 Under the assumptions 1-2 and the null hypothesis, we have

1
√

n

n∑
k=1

ξk
D
−→ N(0,Ω),

with σ2
k = σkk and

Ω =


σ2

1σ
2
2 0 · · · 0

0 σ2
1σ

2
3 · · · 0

...
...

. . .
...

0 0 · · · σ2
p−1σ

2
p

 .
Proof: By the result of Tsay (2004), we can obtain Lemma 1.

Lemma 2 Under the assumptions 1-2 and the null hypothesis, we have

1
n

n∑
k=1

ξkξ
T
k

p
−→ Ω.

Proof: Firstly, we consider 1
n

n∑
k=1

ε̂ikε̂ jkε̂skε̂lk, one element of 1
n

n∑
k=1
ξkξ

T
k . Let eik = xT

ik(βi − β̂i), by the definition of ξk, we

have
1
n

n∑
k=1

ε̂ikε̂ jkε̂skε̂lk = 1
N

n∑
k=1

(eik + εik)(e jk + ε jk)(esk + εsk)(elk + εlk)

= 1
n

n∑
k=1

εikε jkεskεlk +
15∑
i=1

Ii.

We let I1 = 1
n

n∑
k=1

eike jkeskelk, By Lemma 3 in Owen (1990), we have

|I1| = 1
n

n∑
k=1
|xT

ik(βi − β̂i)xT
jk(β j − β̂ j)xT

sk(βs − β̂s)xT
lk(βl − β̂l)|

≤ ‖βi − β̂i‖‖β j − β̂ j‖‖βs − β̂s‖‖βl − β̂l‖
1
n

n∑
k=1
‖xik‖‖x jk‖‖xsk‖‖xlk‖

≤ ‖βi − β̂i‖‖β j − β̂ j‖‖βs − β̂s‖‖βl − β̂l‖ max
1≤i≤p,1≤k≤n

‖xik‖
4

= Op(n−1/2)Op(n−1/2)Op(n−1/2)Op(n−1/2)op(n2)
= op(1).

Hence, I1 = op(1). By the similar way, we can prove that Ii = op(1), i = 2, 3, · · · , 15. Thus,

1
n

n∑
k=1

ε̂ikε̂ jkε̂skε̂lk =
1
n

n∑
k=1

εikε jkεskεlk + op(1),

and
1
n

n∑
k=1

ξkξ
T
k =

1
n

n∑
k=1

UkUT
k + op(1).

Finally, under the null hypothesis, and by the law of large numbers, we have

1
n

n∑
k=1

ξkξ
T
k

p
−→ Ω.
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Lemma 3 Under the Assumptions 1-2, we have

max
1≤k≤n

‖ξk‖ = op(n1/2),

where ‖ · ‖ is the Euclidean norm with ‖a‖ = (a2
1 + · · · + a2

k)1/2 and a = (a1, · · · , ak)T.

Proof:
max
1≤k≤n

|ε̂ikε̂ jk | = max
1≤k≤n

∣∣∣∣[xT
ik(βi − β̂i) + εik

] [
xT

jk(β j − β̂ j) + ε jk

]∣∣∣∣
≤

(
‖βi − β̂i‖ max

1≤k≤n
‖xik‖

)
×

(
‖β j − β̂ j‖ max

1≤k≤n
‖xik‖

)
+ max

1≤k≤n
|εikε jk |

+

(
‖βi − β̂i‖ max

1≤k≤n
‖xik‖

)
max
1≤k≤n

|εik | +

(
‖β j − β̂ j‖ max

1≤k≤n
‖xik‖

)
max
1≤k≤n

|ε jk |.

By Lemma 3 in Owen (1990), we can prove that

max
1≤i≤p,1≤k≤n

‖xik‖ = op(n1/2), max
1≤i≤p,1≤k≤n

|εik | = op(n1/2), max
1≤k≤n

|εikε jk | = op(n1/2),

Combining ‖βi − β̂i‖ = Op(n−1/2) and ‖βk − β̂k‖ = Op(n−1/2), we have

max
1≤k≤n

|ε̂ikε̂ jk | = op(n1/2).

Therefore, we have
max
1≤k≤n

‖ξk‖ = op(n1/2).

Proof of Theorem 2.1. Using the same strategy as the proof of Theorem 3.2 in Owen (1991), we can prove that

‖λ‖ = Op(n−1/2). (a.1)

It follows from Lemma 3 and (a.1) that

max
1≤k≤n

|λTξk | = Op(n−1/2)op(n1/2) = op(1).

Hence, by Taylor’s expansion, we have

ln = 2
n∑

k=1

log(1 + λTξk) = 2
n∑

k=1

(
λTξk −

1
2

(λTξk)2
)

+ rn, (a.2)

with

|rn| ≤ C‖λ‖3 max
k
‖ξk‖

n∑
k=1

‖ξk‖
2 = op(1) .

Based on the equation (2.8), by Lemma 3 and (a.1), we have

λ =

 n∑
k=1

ξkξ
T
k

−1 n∑
k=1

ξk + op(n−1/2), (a.3)

and
n∑

k=1

λTξi =

n∑
k=1

(
λTξk

)2
+ op(1). (a.4)

By (a.1)-(a.4), we know that

ln =
n∑

k=1
λTξiξ

T
k λ + op(1)

=

(
1
√

n

n∑
k=1
ξk

)T (
1
n

n∑
k=1
ξkξ

T
k

)−1 (
1
√

n

n∑
i=1
ξk

)
+ op(1).

Finally, combining Lemmas 1 and 2, we have ln
D
−→ χ2

N as n→ ∞. The theorem is then proved.

Conflicts of Interest: The author declares no conflict of interest.
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