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Abstract 

As the concept of methodology has advanced, varied methods of estimating residuals have been developed including 

regression method, Bartlett’s method and Anderson-Rubin’s method. The study utilized estimation maximization 

approach together with other methods of estimating residuals under the structural equation model. The results showed 

that the strength of the existing methods in structural equation modelling are the weaknesses of the estimation 

maximization method, and vice versa. It was, therefore, found that from the comparative model fit information that the 

Bartlett’s based method gave better residual parameter estimates compared to the Regression based and the Anderson 

Rubin based methods. However, the estimation maximization method gave better residual parameter estimates than the 

other three existing methods; the Regression, Bartlett’s and the Anderson Rubin based methods. 
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1. Introduction 

Structural equation models (SEM) have been successfully utilised in different research areas, including educational 

studies (Miranda & Russell, 2011; Saçkes, 2014), clinical psychology (Little, 2013; Löfholm et al., 2014), 

developmental psychology (Geiser et al., 2010), organizational studies (Binnewies et al., 2010; Kiersch & Byrne, 2015; 

Mahlke et al., 2016), and Multi-Trait Multi-Method (MTMM) analysis (Carretero-Dios et al., 2011). Observed variables 

in SEM research are most frequently not weighed on a continuous but rather on a discrete scale (i.e., categorical 

dependent variables), imposing additional challenges for the estimation process. Varied methods utilized in SEM to 

estimate estimators could be viewed based on Maximum Likelihood (ML) covariance method as well as 

component-based approach such as Partial Least Squares (PLS) and Generalized Structured Component Analysis 

(GSCA). The frequentist approach (such as ML, PLS, GSCA) and the Bayesian method such as Markov Chain Monte 

Carlo (MCMC) are other methods used in SEM.  

Methods such as the covariance based were developed for modelling, evaluating as well as validating. On the other 

hand, the component-based methods were meant to achieve how to compute and predict (Tenenhaus, 2008). In simple 

sense, the main difference is that covariance based was designed to test models while the component-based methods 

were meant to provide succinct meaning to variances as well as predict (Hulland et al., 2010; Tenenhaus, 2008). 

Meanwhile the frequentist technique usually identifies values of parameters which are due to measured data whereas the 

Bayesian methods look at estimate obtained from a parameter which are theoretical depictions of relations that rely on 

measured data. Again, adding to the varied reasons and dimensions of ML, PLS, GSCA, as well as MCMC usually 

varies in terms of how robust they appear due to different data scenarios. This is attributable, but not limited, to the size 

of the sample, variables considered, misspecifying the model as well as the kind of measurement-manifest observation 

link. 

Inference and deductions made from outcomes of modelling generally rely on the methods adopted and implemented in 

SEM. It remains though to point out whether hypothetical model normally presents correct information based on an 

application of a study or simulated study that has the capacity to shed light on the effect of misspecified parameter 

among methodologies of estimations (Asparouhov & Muthén, 2010; Hwang, et al., 2010). Moreover, the degree upon 
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which parameters could be affected as a result of misspecifying a given model relies on the architectural makeup of the 

sample utilized (Henseler, 2010; Tanaka, 1987) and overall complexity of the model (Tanaka, 1987). In SEM concept, 

manifest variables could either be modelled as the cause of those measured observations (Bollen & Lennox, 1991), or as 

a representation of the unified values of those measured observations (Curtis & Jackson, 1962).  

It is a necessity in specifying SEM to mirror the right conceptual links; however, the estimation methodologies more 

often differ in terms of how they perform based on the kind of association described. Developing indicator models were 

often deemed unsuitable for classical maximum likelihood method but for recently (Chin, 1998; Ringle et al., 2009). In 

recent studies, ML has been found to sometimes over-estimate parameters when the sample size is small. Ringle et al. 

(2009) opined contrary to the aforementioned notion that PLS could possibly under-estimate parameters under 

contemplative models. Meanwhile, owing to the amenable nature of GSCA to contain either developing or 

contemplative items it is on record as an effective method, though the assertion widely relies on conceptually motivated 

anticipations of the methodology without evidence from experimental studies (Hwang & Takane, 2004). 

Many estimation methodologies as well as modifications of these methods have been researched upon and utilized in 

SEM, bordering on ML, plus ML which are robust standard errors, GLS and WLS (Muthén & Muthén, 1998-2010). 

Meanwhile, it is a notable fact that these methodologies are not effective when subjected to certain assumptions. For 

instance, ML as well as WLS basically fails to give definite parameters where the sample is not large (Hoogland & 

Boomsma, 1998; Hu et al., 1992; Olsson et al., 2000). The higher the degree of precision to produce an estimate under 

MLR the more generally it is restricted to estimates of standard errors rather than coefficient of the structural or 

measurement pathway. GLS is to a large extent unaffected by model misspecifications that may lead to overwhelming 

fitness (Olsson et al., 1999). By reacting to these hindrances as well as related estimation methodologies, more 

estimation methods have been utilized in estimating under SEM, such as PLS (Wold, 1975), standard structured 

component modelling (Hwang & Takane, 2004; Kline, 2011), as well as MCMC (Hastings, 1970). According to Hoyle, 

(2000) the commonest method of estimating parameters in SEM is maximum-likelihood. Studies on ML are across wide 

range of fields as well as data conditions and their challenges are on record. One of the conditions under which ML 

performs abysmally is when the sample is not large (Kline, 2011). 

Over the period, advances have been made in the methods used in SEM. Even more pronounced are the different 

methodologies that have been established such as LS, WLS, PLS, GSCA as well as MCMC approaches. However, it is 

imperative to underscore the fact that these different methods are yet to be comprehended as their performance in terms 

of using real life data is normally challenging to predict (Henseler, 2012; Hwang et al., 2010 & Malhotra et al., 2010). 

Some estimation methods, besides what has been described earlier in this study, were developed for specific use in SEM 

whenever assumptions underpinning ML were violated, particularly robust ML and WLS (Henseler, 2012; Hwang et al., 

2010; Malhotra et al., 2010). It is worth noting that it is almost impossible to compare and examine the performance of 

all the aforementioned different estimation methods in one study. Therefore, the current study will mainly focus on 

differential performance of the regression, Bartlett’s, Anderson-Rubin and the EM methods to estimating residuals 

emanating from both measurement and manifest variables in SEM.   

2. Materials and Method 

In order to apply residual estimators in estimating the residuals of both measurement and latent variables, a recursive 

model with a mediation component was adopted from Hildreth (2013). 

 

Figure 1. Adopted hypothesized model  
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From Figure 1 above, the structural parameter 11 , 21  and 21 represents the expected changes in 1  and 2  due to unit 

increases 1  and 1 respectively. Thus, 11 , 21  and 21 are the structural coefficients. The notations 1  and 2  are the 

exogeneous latent components while 1 is the endogenous latent component of the structural model. However, 𝑥1, 𝑥2, 

𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, and 𝑦6 are the measurement components with their respective coefficients; 𝜆1, 𝜆2, 𝜆3, 𝜆4, 

𝜆5, 𝜆6, 𝜆7, and 𝜆8 as well as their respective error terms; 𝛿1, 𝛿2, 𝛿3, 𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5, and 𝜀6. 

2.1 Residual Estimators 

Three residual estimators, comprising regression, Bartlett’s and the Anderson-Rubin methods, in SEM have been 

proposed in the past. This study therefore incorporates the EM method in SEM framework.  

2.1.1 Regression Method 

The weight, W, of a matrix which is commonly preferred relies on the study accomplished Thurstone (1935). He 

applied the least squares method in the derivation of W. This was later named as the regression method. Thus, W was 

considered so that 𝜖 

𝑇𝑟 [𝐸{(𝐿𝑖 − 𝐿̂𝑖)(𝐿𝑖 − 𝐿̂𝑖)
′
}]                       (1) 

1

r LL zzW                           (2) 

From (1) LL is the (𝑚 + 𝑛) × (𝑚 + 𝑛) population covariance matrix for iL  so that 
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where 
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Where at the 𝑖𝑡ℎ of 𝑁 independent values, iz  is a vector of (𝑝 + 𝑞) × 1 measured variables, iL  is a vector of 

(𝑚 + 𝑛) × 1 measurement errors for 
iz , and    p q m n  

  is a matrix of (𝑝 + 𝑞) × (𝑚 + 𝑛) of coefficients 

associating iz  to iL  so that 0  . Also,    m n m n

LL

  
   and    p q p q

vv

  
   are covariance matrices. Also, 𝛬𝑦 is 

the coefficient matrix relating 𝑦𝑖 to 𝜂𝑖, 𝛬𝑥 represents the coefficient matrix relating 𝑥𝑖 to 𝜉𝑖, and 𝛬 represents the 

coefficient matrix relating 𝑧𝑖  to 𝐿𝑖 . Again, Β and Γ are the coefficient matrices for the observed and construct 

variables respectively. Thus, Φ,Ψ, vv , LL  and zz  are the covariance matrices which are assumed to be positive 

definite (non-singular) and symmetric.  

Bollen and Arminger (1991) and Sanchez et al, (2009) made use of matrices with weight to develop residual estimates. 

2.2.2 Bartlett’s Method 

Again, a desired option for choosing a weighted matrix is known as Bartlett's method attributed to Bartlett (1937) who 

proved the utilization of the weighted matrix through the principles of weighted least squares. 

For this method, W is picked so that it yields 

     𝑇𝑟 [Ε {[Σ𝑣𝑣
−1 2⁄ Λ(𝐿𝑖 − 𝐿̂𝑖)][Σ𝑣𝑣

−1 2⁄ Λ(𝐿𝑖 − 𝐿̂𝑖)]
′
}]                  (5) 

which can be minimized (McDonald and Burr, 1967). Thus, the weighted matrix is given by 

 
1

1 1

b vv vvW


                                 (6) 

Bollen and Arminger (1991) utilized the estimator in Equation (6) above which was subsequently well established by 

Raykov and Penev (2001). 
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2.2.3 Anderson-Rubin Method 

Anderson and Rubin (1956) came up with the third alternative of W, which comes across at the less known choice, by 

extending the earlier work done by Bartlett’s. Again, this method relies on the principles of weighted least squares by 

assuming orthogonality of the factor model. Thus, this method minimises Equation (6) based on the fact that 

Ε[𝐿̂𝑖𝐿̂𝑖
′ ] = Ι                               (7) 

which provides the weight matrix. 

         
1 1

ar vvW A                            (8) 

for  2 1 1

vv zz vvA        . In real sense, orthogonality of the factor model is almost impossible to achieve in SEM since 

the expectation is that there exists correlation among the factors. For purposes of this study, the weight matrices, for 

samples, rW , bW , and arW  were utilized for estimating the residuals (Hildreth, 2013). 

2.2.4 The EM Algorithm 

In contrast to the aforementioned residual estimators, the EM method gives ML estimates in terms of the covariance 

matrices as well as average vector, in the initial step, which is thereafter utilized for modelling subsequently. Estimation 

maximization is often accessible in packages that are commercialized as well as few free software (Schafer & Graham, 

2002). The EM technique, which was officially introduced by Dempster et al. (1977), is a double phase iterative method. 

For the first phase, the E or Expectation phase, the estimations are done to obtain sufficient statistics by summing both 

the variables as well as their products. A number of equations are then utilized to compute every missing observation 

and its contribution to the sufficient statistics obtained before. Further, the second phase, the M or maximization, utilizes 

the E phase by estimating an updated covariance matrix through a standard formula as well as the sufficient statistics. 

Subsequently, the covariance matrix is moved forward to the succeeding E phase, and then the double phase practice 

would be redone till the difference amidst the covariance matrices contained in the adjacent iteration is supposed to be 

trivial.    

Let us consider for a model with all the data Y, and related density  /f Y  , for  1,..., d   is the unknown parameter. 

Then  ,obs misY Y Y , for obsY been the observed part of Y whilst misY  represents missing values. Thus the EM finds the 

value of  ,    which can maximize  /obsf Y  , in that, the MLE for   rooted on obsY  as the observed data. 

Subsequently, the EM begins from a starting value of  0
 ,and for  t  to be the estimate for   for the 𝑖𝑡ℎ iteration. 

Thus the iteration (𝑡 + 1) of EM is given by 

E phase: Finding the expected complete-data log-likelihood for   as  t : 

  
       / / / ,
t t

mis obs misQ L Y f Y Y dY                          (9) 

for    / log /L Y f Y   

M phase: Determining  1t


  such that the expected log-likelihood is maximized as follows 

 
       1

/ /
t t t

Q Q   


  for all                      (10) 

The M phase of the EM method can easily be implemented across many areas as the method of computations is similar 

to ML estimation in  /L Y . Likewise, the E phase of the EM method can be implemented easily across numerous 

areas as it relies on standard complete-data concept for means of conditional distributions. 

2.3 Simulation Setup 

The factor variable model comprised two variables, 𝜉1 and 𝜂1, which yields 

𝜂1 = 0.6𝜉1 + 𝜁1.                           (11) 

The accompanying covariance matrices of Equation (6) were 𝛷 and 𝛹. Meanwhile it is considered that 𝛷 = [1]  

and = [1]. Subsequent to Equation (11) are the manifest models which indicate that every latent variable connotes 

three indicators. For every indicator is linked to one and only one factor. The measurement models have their 

corresponding covariance matrix for the measurement errors 𝛴𝑣𝑣. Where 𝛴𝑣𝑣 = 𝐼 and are supposed to be uncorrelated.  

Further, the study simulated N observations for 𝑣𝑖(𝜃) so that 𝑣𝑖 (which is iid) is 𝒩(0,1). Same was done for 

simulating N observations for 𝜁𝑖(𝜃) such that 𝜁𝑖 (which is iid) is 𝒩(0,1). Also, N observations were simulated for 

𝜉𝑖(𝜃) so that 𝜉𝑖  (which is iid) is 𝒩(0,1). Subsequent to the aforementioned procedure, the study generated 𝑁 
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observations for 𝜂1𝑖 based on Equation (11). Similarly, 𝑁 observations were generated for each random variable 𝑥𝑖 
and 𝑦𝑖 based on the measurement models. It worth noting that the process above utilized three dissimilar sample sizes, 

consisting of 300, 600, as well as 1200. 

3. Results 

Determined factor scores were obtained at the preliminary stage in order to comprehend the impact of the number of 

components for each manifest observation, type of manifest observation indicator association and the estimation 

technique for the parameters in a recursive SEM, mean absolute deviation of the standard error and the overall fitness of 

the equation. The measurement observations of curious errors, manifest component and estimation methods for reasons 

of breaking down and arranging the outcome of the parameters considered here was laid out and explained under the 

circumstances for all four categories of estimators being compared.   

Table 1. Parameter Estimates and Standard Errors of Residual Estimators 

Parameter Regression Method Bartlett’s Method Anderson Rubin 

Method 

EM Method 

   0.598 (0.12) 0.599 (0.10) 0.600 (0.10) 0.600 (0.09) 

   0.648 (0.14) 0.648 (0.13) 0.649 (0.14) 0.650 (0.14) 

   0.699 (0.15) 0.701 (0.13) 0.703 (0.12) 0.700 (0.15) 

   0.636 (0.11) 0.637 (0.10) 0.639 (0.10) 0.641 (0.09)  

   0.572 (0.09) 0.573 (0.09) 0.574 (0.09) 0.578 (0.09) 

   0.504 (0.09) 0.505 (0.09) 0.507 (0.08) 0.510 (0.08) 

   0.407 (0.24) 0.418 (0.19) 0.429 (0.16) 0.432 (0.23) 

 

Table 2. Goodness-of-fit Test Indices 

Test Regression 

Method 

Bartlett’s 

Method 

Anderson Rubin 

Method 

EM Method 

 2 28.29 25.29 26.82 57.80 

RMSEA 0.040 0.026 0.034 0.023 

P-value 0.205 0.335 0.264 0.001 

SRMR 0.041 0.037 0.038 0.020 

CFI 0.989 0.994 0.992 0.984 

AIC 268.466 259.516 264.692 246.317 

Bozdogan CAIC 371.231 362.442 367.577 349.873 

Schwarz Bayesian Criterion 340.553 331.117 336.982 318.563 

From Table 1 above, it can be seen that the estimates residual (𝛿3) linked to the measurement component recorded the 

highest estimates with higher standard errors across the four estimators while computed errors (𝜁1) associated with the 

latent component recorded the lowest parameter estimates with rather higher values of standard errors. On one hand, the 

estimates obtained under the Bartlett’s method was higher than the other two known methods (regression and 

Anderson-Rubin) while the EM, on the other hand, yielded the highest parameter estimates than all the other three 

methods of estimators (Regression, Bartlett’s and Anderson-Rubin). 

From Table 2 above, the Regression method yielded fitness (CFI=0.989, SRMR = 0.041) for the study in terms of the 

estimates obtained for the parameters. For the Bartlett’s method, it was observed that the fitness (CFI=0.994, 

SRMR=0.037) were somewhat dissimilar to the fitness indices obtained under the regression method. The standardized 

root mean square residual (SRMR) stands better for purposes of comparison, particularly for a Chi-square distribution. 

Moreover, the Anderson-Rubin method yielded goodness-of-fitness (CFI=0.992, SRMR=0.038). It is worth noting that 

the AIC preferred the Bartlett’s estimator over and above the Regression and Anderson Rubin estimators with 

differential values 259.516, 268.466 and 264.692 respectively. This therefore indicates a somewhat slightly heavy tail in 

the distribution without considering EM method yet. To a very large extent, it is worth noting that most of the fitness 

figures and the estimates alike (contained in Table 1) under all the methods applied here were closer and therefore 

makes choice, a bit trivial, among the three existing estimators utilized in this study.  

It was, however, observed that when the EM method was eventually applied to change the estimation technique utilized 

in the other three estimators it yielded higher estimates. The EM method produced a fitness indices (CFI=0.984, 
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SRMR=0.020). Close examination of both  2 and RMSEA indicates a kind of not good fit, though the effect of CFI 

was pronounced but the SRMR really provided a better fitness as compared to the other three existing methods.   

Thus, it means that these methods applied here provided goodness of fitness indices which were close to show an 

obvious choice. Against this backdrop the standard errors mirroring the amount of error in estimating the parameters 

and its equivalent goodness of fitness could be utilized to further comprehend the specific residual method estimation 

that produced a better parameter estimate. This therefore supports the choice of Bartlett’s and EM as they both recorded 

minimal standard errors. Also, the comparative fitness of the EM method was compared to the other three existing 

methods. Together, the AIC, CAIC, and BIC, strongly preferred the EM method against the other three methods with 

some amount of differentials though.  

More so, the estimates shown in Table 1 demonstrate that much as the parameters were very close for the various 

estimators, there was an element of robustness in Bartlett’s and the EM method in particular. 

3.1 Discussions 

Much as Muthen (2010) utilized maximum likelihood method to analyze categorical data, the study here used 

quantitative data in looking at the asymptotic properties of structural equation models (SEM). Again, whereas 

Asparouhov and Muthén (2010b), and Muthén and Asparouhov (2012) applied Baysian estimation method to 

categorical data in assessing the asymptotic properties of SEM, the present study utilized the estimation maximization 

method which was applied to quantitative data. Depaoli & Clifton (2015) compared the Baysian and weighted least 

squares, mean and variance adjusted (WLSMV) and therefore posited that the latter was better than the former but the 

present study utilized the EM to fill the gap in terms of relying on categorical data to using quantitative data. Moreover, 

Hulland et al, (2010) and Tenenhaus 2008) argued that varied estimation methods could be used when covariances are 

considered such as frequentist approach (such as ML, PLS, GSCA) as well as the Bayesian method (such as MCMC) 

but the gap the current study filled was utilization of EM method which makes it possible to maximize the process of 

estimation in the presence of outliers. It was unclear and difficult in arriving at a definite decision, in terms of which 

residual estimator yielded better residual parameter estimates, based on the model fit indices since the strength of one 

residual estimator may be the weakness of the other. Therefore, SRMR was the key index the present study relied upon 

in picking the method with the best estimator as opposed to the choice of root mean square residual (RMS) index, used 

in other studies (Binnewies et al., 2010; Carretero-Dios et al., 2011; Kiersch & Byrne, 2015 and Mahlke et al., 2016). 

4. Conclusions 

It was worth noting that the Bartlett’s estimator was preferred to the Regression and Anderson Rubin estimators with 

differential values. This therefore indicates somewhat slightly heavy tail in the distribution without considering EM 

method yet. To a very large extent, it is worth noting that most of the fitness figures and the estimates under all the 

methods applied here were closer and therefore makes choice, a bit trivial, among the three existing estimators utilized 

in this study. The comparative fitness of the Bartlett’s method was referred to the other two existing methods (i.e the 

Regression and Anderson Rubin). Together, the EM method was strongly preferred to the other three methods with 

some amount of differentials. It is therefore worth noting that this present study’s contribution to knowledge is a 

demonstration of the fact that EM method could be a better residual estimator within the SEM concept compared to 

other existing methods. 
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