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Abstract

The paper deals with a discrete-time consumption investment problem with an infinite horizon. This problem is formulated
as a Markov decision process with an expected total discounted utility as an objective function. This paper aims to presents
a procedure to approximate the solution via machine learning, specifically, a Q-learning technique. The numerical results
of the problem are provided.
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1. Introduction

The problem of consumption-investment initially arose in work on the portfolio problem by (Samuelson, 1969). Samuel-
son considers an investor who consistently wants to increase wealth at each point in time and, wishes to allocate this
wealth between investment and consumption. The objective is then to maximize the investor’s utility consumption, where
the investor chooses on the best consumption-investment strategy for allocating the total investment among various assets.
See (Mendelssohn & Sobel, 1980; White, 1993; Cruz-Suárez, Montes-de-Oca, & Zacarı́as, 2011 and Vitoriano & Parlier,
2017).

The main objective of this study is to propose a procedure based on machine learning techniques to approximate the
investment strategy in a consumption-investment problem. Machine learning is the study of computer algorithms that
automatically improve through experience. Machine learning algorithms build a mathematical model based on sample
data, known as training data, to make predictions or decisions without being explicitly programmed to do so. The Q-
learning technique belongs to this class of algorithms, and it is a reinforcement learning algorithm that was introduced by
Watkins in 1989 (Watkins, 1989). Q-learning is an asynchronous dynamic programming method that allows the controller
learn to act optimally in Markovian domains. (Watkins & Dayan, 1992) prove that Q-learning converges to the optimum
action values with unit probability. Therefore, Q-learning is an adequate technique to implement in the solution of the
consumption-investment problem. In closely related studies, (Weissensteiner, 2009) investigated the optimal consumption
problem with a finite planing horizon and the simulation of scenarios were obtained via a geometric Brownian motion.

Now, this work proposes using Q-learning combined with classic value iteration algorithms for Markov decision processes
in discrete time with the Robbins-Monro stochastic approximation method (Robbins & Monro, 1951), defining and opti-
mizing an auxiliary function, and, discretizing the elements of interest, achieving an approximation of the optimal policy.
To this end, a logarithmic function is assumed for the utility of consumption, see (Liang & Ma, 2019), and the states
of the system satisfy a discrete dynamic system (see (5), below). Moreover, we consider state space and a continuous
action space, and dedicate a section to the process of discretizing such spaces so they can be adapted to Q-learning. The
conditions that guarantee the existence of a solution are covered, for both the original problem and the convergence of the
Q-learning approach. In is presented a consumption investment problem with finite horizon and a numerical solution via
Q-learning approach is provided.

The paper is organized as follows. Section 2 states the problem, considering the source of the law of capital transition
through the Langevin equation. Section 3 illustrates the process of discretization of state and action spaces. Section 4
presents the Q-learning method. Finally, in Section 5, the theory is implemented in a numerical example, see (Cruz-
Suárez, Montes-de-Oca, & Zacarı́as, 2011).
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2. Problem Statement

Let {Wt, t ≥ 0} be a Brownian motion with respect to a filtered probability space (Ω,F ,P, (Ft)t≥0), where Ft = σ{Ws : 0 ≤
s ≤ t}. Consider {Yt, t ≥ 0} a stochastic process defined on {Ft : t ≥ 0} that satisfies the following stochastic equation:

Yt = Y0 − µ

∫ t

0
Ysds + σ

∫ t

0
dWs, t ∈ [0,T ], (1)

where µ, σ,T ∈ R+, with initial condition Y0 = y ∈ R . Expression (1) is known as the Langevin equation. {Yt, t ≥ 0} is
the Ornstein-Uhlenbeck process with state space R, see (Mikosch, 1998). Equation (1) can be rewritten as

dYt = −µYt dt + σ dWt, (2)

where µ and σ are parameters that are commonly called the drift and diffusion coefficients, respectively, of process {Yt},
for details see p. 136 in (Mikosch, 1998).

For approximation purposes, we require a partition of the interval [0,T ]. Discretizing (2) on the interval [0,T ] using the
Euler-Maruyama approximation method, we establish the following recursive formula, see (Higham, 2001):

Yt+1 = Yt − µYt∆t + σ∆Wt+1 (3)

where ∆Wt+1 := Wt+1 −Wt. For simplicity, we use the step interval ∆t = 1, so that ∆Wt+1 has a normal distribution with
mean zero and variance one (∆Wt+1 ∼ Nor(0, 1)).

Taking the exponential of (3) and setting xt := eYt then yields

xt+1 = x(1−µ)
t eσ∆Wt+1 .

Finally, with δ := 1 − µ < 1 and ξt := exp(σ∆Wt+1), we obtain

xt+1 = xδt ξt, t = 0, 1, 2, ..., (4)

where ξt has a log-normal distribution with mean exp( 1
2σ

2) and variance exp(σ2)[exp(σ2) − 1], with initial condition
x0 = x := ey.

2.1 Consumption Plan

We now present a controlled version of the previous problem (Cruz-Suárez, Montes-de-Oca, & Zacarı́as, 2011). First,
suppose that an investor’s wealth is governed by the law defined by difference equation (4), where xt is the current wealth
at time t, for t = 0, 1, 2, ..., δ < 1, and {ξt} is a sequence of independent and identically distributed random variables with
density function ∆. Suppose that the investor wants to optimally manage his or her current capital xt, dedicating part of
this capital to consumption at and the remainder, h(xt) − at, to investment. In particular, consider the production function
h(x) := xδ with x ∈ X := [0,∞) called the state space. The transition law is thus given by

xt+1 = (h(xt) − at) ξt = (xδt − at) ξt, (5)

and X0 = x := ey is known. Loans are not allowed. Therefore, at ∈ [0, xδt ] denotes consumption at time t, A(xt) := [0, xδt ]
is the admissible action space at time t, and A := [0,+∞) is the admissible action set.

The dynamics described in this consumption-investment system are as follows: if the system is observed at time t, the
state considered is xt = x ∈ X = [0,+∞) and action at = a ∈ A(x) is applied. A reward r(a) is then obtained and the
system moves to the next state, xt+1 ∈ X, by means of transition law (5). This process is repeated as discounted rewards
accumulate at each time point t up to a horizon N according to a performance criterion. We denote K := {(x, a) | x ∈ X, a ∈
A(x)} as the set of admissible state-action pairs.

Definition 1 A consumption plan is a sequence π = {πn}
∞
n=0 of stochastic kernels πn over the set of controls, given the

history
hn = (x, a0, x1, a1..., xn−1, an−1, xn),

for each n = 0, 1, ... . That is, for n ≥ 0, πn is a stochastic kernel if it satisfies the following properties:

a) πn(· | hn) is a probability measure on X, for each hn ∈ K × X.

b) πn(B | ·) is a random variable for each B ∈ B(X), where B(X) denotes the Borel σ-algebra of X. The set of all plans
is denoted by Π.
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We thus have an initial capital X0 = x = ey ∈ X, a plan π ∈ Π, and a utility consumption U : A→ R defined as

U(a) := Log(a), ∀ a ∈ A. (6)

The performance criterion used to evaluate the quality of the plan π ∈ Π is given by

V(π, x) := Eπ
x

[ ∞∑
t=0

αt Log(at)
]
, ∀x ∈ X, (7)

where Eπ
x[·] is the expectation operator when x ∈ X is the initial condition and policy π ∈ Π is applied. Future utilities of

consumption are discounted according to a discount factor α ∈ (0, 1).

The investor’s objective is to maximize the discounted consumption utility for all plans π ∈ Π, that is,

V(π∗, x) = sup
π∈Π

V(π, x) := V∗(x), ∀x ∈ X. (8)

In this case, π∗ is the optimal policy, and V∗ is the optimal value function. Then, the optimal control problem consists in
determining the optimal policy π∗ ∈ Π.

2.2 Existence of Solution

The production function and the consumption utility function satisfy certain usual conditions, see (De La Fuente, 2000).

Let C2(X,Y) denote the set of functions l : X → Y with a continuous second derivative for Euclidean spaces X and Y .

Assumption 1 In the context of the previous problem, the production and utility functions satisfy the following conditions:

a) h ∈ C2((0,∞), (0,∞)),

b) h is a concave function on X,

c) h′ > 0 and h(0) = 0,

d) U ∈ C2((0,∞),R) is strictly increasing and strictly concave, and

e) U′ is an invertible function, U′(0) = ∞, and lima→∞U′(a) = 0.

The following definitions will be subsequently used.

Definition 2 A measurable function ϑ : X→ R is said to be a solution to the optimality equation if it satisfies

ϑ(x) = sup
a∈A(x)

{
Log(a) + α

∫
X
ϑ(y)Q(dy|x, a)

}
, (9)

where Q is the corresponding transition law induced by (5) according to Section 1.2 in (Hernández-Lerma & Laserre,
1996); in other words, for B ∈ B(X),

Q(B|x, a) = Eπ
x

[
IB((xδ − a)ξ)

]
, (10)

where IB(·) is the indicator function of set B.

Definition 3 The value iteration functions are defined as

ϑn(x) = sup
a∈A(x)

{
Log(a) + α

∫
X
ϑn−1(y)Q(dy|x, a)

}
(11)

for all x ∈ X and n = 1, 2, ..., with ϑ0(x) = 0.

Remark 1 Under certain assumptions (Hernández-Lerma & Laserre, 1996), one can show that, for each n = 1, 2, ..., there
exists a stationary policy fn ∈ F := { f : X→ A | f (x) ∈ A(x)} such that the maximum is attained in (11), that is,

ϑn(x) = Log( fn(x)) + α

∫
X
ϑn−1(y)Q(dy|x, fn(x)), x ∈ X.

Lemma 1 For logarithmic utility and transition law (5), the following conditions are satisfied:

a) The optimal value function V∗ is a solution to the optimality equation (9).

b) For every x ∈ X, ϑn(x)→ V∗(x) as n→ ∞.
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Proof. See (Cruz-Suárez, Montes-de-Oca & Zacarı́as, 2011).

We approach the solution of the control problem with a discrete-time machine learning technique, in particular, a Q-
learning method, see (Watkins & Dayan, 1992; Powell, 2011; Bertsekas, 2019). To this end, in the next section, we
present a discretization procedure in state-action space.

3. Discretization of State and Action Spaces

Approximate solutions using the Q-learning method require discretization of the state and action spaces X and A, respec-
tively, and discretization requires a new set of states and actions. We therefore first consider a common finite truncated
space of the original state space, namely, I := X̄ = [0, x].

We must partition the interval I into a finite number η of subintervals. We define ρ := x/η and call ρ the grid size. Each
subinterval is a subset Ii that consists of the nonempty intervals of the form

Ii = (iρ, (i + 1)ρ] ∩ I, i = 0, 1, 2, ..., η.

We choose a representative element from each Ii and let Ĩ be the set of all representative elements. For any x ∈ X, we let
σx be the element Ii, (i = 0, 1, 2, ..., η) to which x belongs. We also use σ̃x to denote the representative element of the set
σx. For convenience, we take the right end of each subinterval Ii as the representative elements.

Thus, the discretized state space is given by

X̃ := {x̃i ∈ X : x̃i = iρ for i ∈ {1, 2, ..., η}}. (12)

For the discretization of the action space A, we first simulate a finite number kmax of random values of ξ. Then, the
simulated actions ak are generated from transition law (5), such that ak ≥ 0 and ak < xδ, because borrowing is not
allowed. For simplicity, these computerized realizations are rounded. We round these values ak and assign them to ar

k.

Set z1 := Min{ar
k} and z2 := Max{ar

k}, for k ∈ {1, 2, ..., kmax}, and consider r1 := Round{z1} and r2 := Round{z2}.

Finally, we obtain the discretized admissible action space, as follows:

Ã(x̃i) =
{
ã j ∈ A(x̃i) | ã j = r1 + j/100

}
, f or j = 0, 1, ..., (r2 − r1)100, i ∈ {1, 2, ..., η}.

Let Û : Ã→ R, be the utility function defined as

Û(ãi) := Log(ãi), ∀ ãi ∈ Ã. (13)

The law transition Q(·|·) is a stochastic kernel on X, given K.

Define the function Q̂ : X̃ × Ã × X̃→ [0, 1] according to (Chow & Tsitsiklis, 1991) by letting

Q̂(x̃ j | x̃i, ã) :=
Q(x̃ j | x̃i, a)∑η
j=1 Q(x̃ j | x̃i, a)

, (14)

where Q is as in (10), that is, the probability function obtained by normalizing a lognormal density function ∆. Thus, {ξt}

is a sequence of independent and identically distributed random variables. Therefore,

Q̂(x̃ j | x̃i, ã) =
δ x̃δ−1

j

x̃δi − ã
∆

( x̃δj
x̃δi − ã

)
1

S (ã, x̃i)
(15)

for ã < x̃δi , where

S (ã, x̃i) =

η∑
j=1

δ x̃δ−1
j

x̃δi − ã
∆

( x̃δj
x̃δi − ã

)
,

which is interpreted as the probability of the transition to state x̃ j when the current state is x̃i and action ã is chosen.
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4. Q-learning

4.1 Development of the Q-Learning Method

Bellman’s optimality equation, see (Gosavi, 2015) yields

J∗(x̃i) := max
ã∈Ã(x̃i)

Log(ã) + α

η∑
j=1

J∗(x̃ j) Q̂(x̃ j | x̃i, ã)

 (16)

for all x̃i ∈ X̃, where J∗(x̃i) denotes the ith element of the objective function vector associated with the optimal policy.

Definition 4 For x̃i ∈ X̃, ã ∈ Ã(x̃i) we define the Q-factors function as follows:

Q(x̃i, ã) := Log(ã) + α

η∑
j=1

J∗(x̃ j) Q̂(x̃ j | x̃i, ã). (17)

Then,
J∗(x̃i) = max

ã∈Ã(x̃i)
Q(x̃i, ã).

Therefore, we can write the following equation which is known as the version of the Bellman optimality equation for
Q-factors:

Q(x̃i, ã) = Log(ã) + α

η∑
j=1

Q̂(x̃ j | x̃i, ã) max
b̃∈Ã(x̃ j)

Q(x̃ j, b̃) (18)

for x̃i ∈ X̃, ã ∈ Ã(x̃i).

4.2 Value Iteration for Q-factors

Our value iteration algorithm, Algorithm 1, is a classic approximation algorithm that has been applied to Q-factors, see
(Bertsekas, 2005; Almudevar, 2014; Gosavi, 2015).

Notation The iterated approximations of the optimal policy π∗ ∈ Π generated by the Q-learning method for each x̃ ∈ X̃
are denoted by π̃k(x̃), k = 0, 1, 2, ... .

Algorithm 1: Value iteration for Q-factors

Initialization k = 0, specify ε > 0 (or define kmax number of iterations), Q0(x̃i, ã) = 0 for each x̃i ∈ X̃;
repeat

for x̃i ∈ X̃ and ã ∈ Ã(x̃i) do

Qk+1(x̃i, ã)←− Log(ã) + α

η∑
j=1

Q̂(x̃ j | x̃i, ã) max
b̃∈Ã(x̃ j)

Qk(x̃ j, b̃);

Jk+1(x̃i)←− max
ã∈Ã(x̃i)

Qk+1(x̃i, ã);

Jk(x̃i)←− max
ã∈Ã(x̃i)

Qk(x̃i, ã) ;

end
k ←− k + 1;

until ||Jk+1 − Jk || < ε(1 − α)/2α, (or if k ≥ kmax);
return π̃∗(x̃i) ∈ argmax

b̃∈Ã(x̃i)
Qε(x̃i, b̃), (or Qkmax (x̃i, b̃)).

4.3 Robbins-Monro Algorithm for Q-Factors

Recalling the Q-Factor definition in the form of the Bellman equation, we have

Q(x̃i, ã) = Log(ã) + α

η∑
j=1

Q̂(x̃ j | x̃i, ã) max
b̃∈Ã(x̃ j)

Q(x̃ j, b̃)

=

η∑
j=1

Q̂(x̃ j | x̃i, ã)
[
Log(ã) + α max

b̃∈Ã(x̃ j)
Q(x̃ j, b̃)

]
= E

[
Log(ã) + α max

b̃∈Ã(x̃ j)
Q(x̃ j, b̃)

]
.
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The expectation can be estimated using the Monte Carlo method (Ross, 2013), for instance; that is, it is possible to
estimate the Q-factors by using the Robbins-Monro algorithm scheme, see (Robbins & Monro, 1951):

Qk+1(x̃i, ã) = (1 − λk+1)Qk(x̃i, ã) + λk+1

[
Log(ã) + α max

b̃∈Ã(x̃ j)
Qk(x̃ j, b̃)

]
= Qk(x̃i, ã) + λk+1

[
Log(ã) + α max

b̃∈Ã(x̃ j)
Qk(x̃ j, b̃) − Qk(x̃i, ã)

]
,

where the function λk is the reinforcement or learning rate. We derive λk = 1/(k+1) from the Robbins-Monro algorithm.
Other reinforcement rates can also be considered, as long as they satisfy the conditions:

∞∑
k=1

λk = ∞ and
∞∑

k=1

(λk)2 < ∞.

4.4 Q-learning Modified Algorithm

The algorithm for applying Q-learning to Markov decision processes with a discounted reward through value iteration is
presented as Algorithm 2.

Algorithm 2: Q-learning modified algorithm

Initialization Specify kmax and parameters of {ξ};
for k = 0 to kmax do

Simulate ξk;
ak ←− xδ − x

ξk
such that ak ≥ 0 and ak < xδ;

ar
k ←− Round[ak];

end
Set r1 := Round{Min{ar

k}}, r2 := Round{Max{ar
k}};

for j = 0 to (r2 − r1)100 do
ã j ←− r1 + j/100 (ã j ∈ Ã(x̃));
Q0(x̃, ã j)←− 0;

end
repeat

for x = x̃i ∈ X̃ and ã ∈ Ã(x̃i) do

Qk+1(x̃i, ã j)←− Qk(x̃i, ã j) + λk

[
Log(ã j) + α max

b̃∈Ã(x̃ j)
Qk(x̃ j, b̃) − Qk(x̃i, ã j)

]
;

end
Simulate the next state x̃ j, until returning to x = x̃i;
k ←− k + 1;

until k ≥ kmax;
return π̃∗(x) ∈ argmax

b̃∈Ã(x)
Qkmax (x, b̃).

4.5 Q-learning Convergence

Definition 5 The asynchronous stochastic approximation scheme is given by the recursive formula of the Q-learning
method:

Qk+1(x̃i, ã) = Qk(x̃i, ã) + λk

[
Log(ã) + α max

b̃∈Ã(x̃ j)
Qk(x̃ j, b̃) − Qk(x̃i, ã)

]
, (19)

for k = 1, 2, ..., kmax, where kmax is the number of iterations.

Note that the following statement holds.

Remark 2 Let Θk be the index of the state-action pair visited in the kth iteration of the algorithm, and I(·) the indicator
function. We then define

Vk(x̃i, ã) :=
k∑

m=1

I
(
(x̃i, ã) = Θk

)
, for x̃i ∈ X̃ and ã ∈ [0, x̃δi ],
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that is, the indicator function will return a zero for a Q-factor that is not visited in the kth iteration, which implies that
Q-factors that are not visited in that iteration will not be updated. There is a deterministic scalar χ > 0 such that we almost
surely obtain for all x̃i ∈ C := X̃\{0} and ã ∈ [0, x̃δi ],

lim inf
k→∞

Vk(x̃i, ã)
k

≥ χ,

because C is an irreducible closed set of recurrent states. Moreover, when

Kk(z) := min

m > k :
m∑

s=k+1

Log(s)
s

> z

 ,
we obtain for any z > 0, the limit

lim
k→∞

∑VKk (z)(l)
m=Vk(l)

Log(m)
m∑VKk (z)(l

′)
m=Vk(l′)

Log(m)
m

< +∞

almost surely.

Proposition 1 The step size λk(x̃i, ã) =
Log(k)

k and the action selected in the Q-learning algorithm satisfy the following
statements:

a) The step size λk(x̃i, ã) satisfies the following conditions for all x̃i ∈ X̃ and ã ∈ [0, x̃δi ]:

∞∑
k=1

λk(x̃i, ã) = ∞,

∞∑
k=1

λ2
k(x̃i, ã) < ∞.

b) For all x̃i ∈ X̃ and ã ∈ [0, x̃δi ]

i) λk+1(x̃i, ã) ≤ λk(x̃i, ã) for some value of k onward.

ii) For any z ∈ (0, 1), supk λ[zk](x̃i, ã)/λk(x̃i, ã) < ∞.

iii) For any z ∈ (0, 1),

lim
k→∞

∑[zk]+1
m=1 λm(x̃i, ã)∑k
m=1 λm(x̃i, ã)

= 1.

Proof. Consider λk =
Log(k)

k , k = 1, 2, ...

a) Note that

lim sup
k→∞

k
k + 1

Log(k + 1)
Log(k)

> lim sup
k→∞

k
k + 1

= 1, (20)

and, therefore,
∞∑

k=1

Log(k)
k

= +∞.

Now, applying the properties of the zeta function, ζ, we can demonstrate that

∞∑
k=1

(
Log(k)

k

)2

= ζ′′(2) ≈ 1.98. (21)

Therefore, the result follows, given (20) and (21).

b) Moreover, λk satisfies the following properties:

i) λk is strictly decreasing, ∀k ≥ 1.

ii) Moreover, for z ∈ (0, 1), supk λ[zk]/λk = supk
kLog([zk])
[zk]Log(k) < ∞.

iii) Additionally, if z ∈ (0, 1), we have

lim
k→∞

∑[zk]+1
m=1

Log(m)
m∑k

m=1
Log(m)

m

= 1.
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The following proposition is a consequence of Remark 2 and Proposition 1, see (Gosavi, 2015).

Proposition 2 The sequence of policies generated by the Q-learning algorithm, {π̃k}
∞
k=1, converges to π∗.

5. Numerical Example

To exemplify Algorithm 2, we consider the performance criteria to be optimized, as follows:

V(π, x) := Eπ
x

[ ∞∑
t=1

αt Log(ãt)
]
, π ∈ Π, x ∈ X,

where the initial capital is x and α = 0.5 is the discount factor.

The transition of the system is governed by (5), where δ = 0.75 and {ξt} is such that Log(ξt) ∼ N(0, 0.5), which leads to
the normalized mass probability function on space X̃ × Ã × X̃ given by (15).

For the Q-learning method, set the step size λk(x̃i, ã) := Log(k)
k as the reinforcement rate and kmax = 1000. Table 1 and

Figure 1 summarize some results, compared with the exact solution.

(Cruz-Suárez, Montes-de-Oca, & Zacarı́as, 2011) find that the optimal policy is given by

a∗(x) = xδ(1 − αδ), x ∈ X.

Table 1. Optimal policy
x ã∗(x) a∗(x)

1.0 0.64 0.625
2.0 1.12 1.051
3.0 1.30 1.424
4.0 1.68 1.767
5.0 2.10 2.089

Figure 1. Approximate optimal policy
Table 1 shows approximate optimal actions for some of the values of x, obtained using the method described in Algorithm
2, contrasted with the exact optimal policy. Figure 1 shows further approximate optimal actions, denoted by red dots,
which exhibit a behavior similar to that of the exact optimal policy, graphed by the solid blue line.

The proposed modified Q-Learning algorithm is a good approximation for the optimal actions with the given parameters
without the need to resort to a closed solution, if there is one.

6. Conclusion

The method proposed in this work offers an alternative source of solutions to the optimal policy of a control problem.
This method is also useful when a closed solution is not available or when classical resolution tools fail to find the optimal
policy directly.
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In the optimal investment strategies that are derived in closed form, the candidate functions are usually proposed with the
general form of the solution. These functions can be very difficult to find when using more complex or unknown utility
or production functions.

Reinforcement learning methods have an advantage in terms of implementation capacity, assigning values of goodness to
state-action pairs, putting them to the test, and discarding action selections that produce adverse results.
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