
International Journal of Statistics and Probability; Vol. 10, No. 2; March 2021 

ISSN 1927-7032   E-ISSN 1927-7040 

Published by Canadian Center of Science and Education 

81 

Large Sample Problems 

Jai Won Choi1, Balgobin Nandram2 

1 Statistical Consultant, Meho Inc., 9054 Mary Knoll Dr., Rockville, MD 20850. E-mail: kycho1937@yahoo.com  

2 Professor, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280. E-mail: balnan@wpi.edu 

Correspondence: Jai Won Choi, 9504 Mary Knoll Drive. Rockville, MD 20850. E-mail: kycho1937@yahoo.com 

 

Received: December 6, 2020   Accepted: January 26, 2021   Online Published: February 21, 2021,  

doi:10.5539/ijsp.v10n2p81          URL: https://doi.org/10.5539/ijsp.v10n2p81 

 

Abstract 

Variance is very important in test statistics as it measures the degree of reliability of estimates. It depends not only on 

the sample size but also on other factors such as population size, type of data and its distribution, and method of 

sampling or experiments. But here, we assume that these other fasctors are fixed, and that the test statistic depends only 

on the sample size. 

When the sample size is larger, the variance will be smaller. Smaller variance makes test statistics larger or gives more 

significant results in testing a hypothesis. Whatever the hypothesis is, it does not matter. Thus, the test result is often 

misleading because much of it reflects the sample size. Therefore, we discuss the large sample problem in performing 

traditional tests and show how to fix this problem. 

Keywords: Bayesian methods, large population, random group method, sample size, testing hypothesis, traditional 

methods 

1. Introduction 

It is very expensive to list all the people of a large population. Therefore, we take a sample to minimize survey cost. We 

use the sample to investigate certain characteristics of the US population by implementing traditional methods. For 

many surveys and experiments, the sample sizes are large. The large samples can always reject the null hypothesis. This 

result reflects not only the real significance but also the sample sizes. Therefore, we cannot perform the traditional tests 

with the samples exceeding certain size. 

Although a large sample provides more information, it also causes problems in performing statistical tests. We noticed 

this problem when we worked at the National Center for Health Statistics (NCHS). NCHS collects large probability 

samples from the U.S. population and we analyzed the data from several National Health Surveys. We have tried to use 

existing methods such as normal test or student t-test for the analysis of the data. During this trial time, we have 

encountered the large sample problems in calculating the variance and degrees of freedom. 

Variance is very important factor of the test statistic in the traditional testing and depends directly on the sample size. 

i.e., the variance becomes too small when the sample size is large. As a result of it, the test statistic becomes too big 

giving significant test results. 

A concrete example is as follows. Let 𝑋1, 𝑋2, …,𝑋𝑛 are identically independently distributed as N(𝜇, 𝜎2), where 𝜎2 is 

known and inference is required about 𝝁. We want to test the null hypothesis 𝐻0: 𝜇 ≥ 𝜇0 versus alternative 𝐻1: 

𝜇 < 𝜇0 in a random sample of size of n. We denote �̅�𝟎≤ 𝝁𝟎, where �̅�𝟎 is the observed value of the sample mean, �̅�. 

Then the p-value of the test is 

 

 

 

 

 

 

Here 𝚽(. ) is the cdf of standard normal random variables. Therefore, if n is very large and �̅�𝟎 ≤  𝝁𝟎, p-value ≈ 𝟎. 

In recent years, we have discussed a lot of experience in hypothesis testing. These tests are both non-Bayesian (as we 
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have done here and elsewhere) and Bayesian (as we have done elsewhere). Non-Bayesian test of independence for 

weighted and correlated data is discussed by Choi and McHugh (1999). Bayesian tests for independence in contingency 

tables are discussed by Nandram, Kim and Zhou (2019), Bhatta, Nandram and Sedransk (2018), Yu, Bhadra and 

Nandram (2017), Nandram, Bhatta and Bhadra (2013), Nandram, Bhatta and Sedransk (2013), Nandram and Choi 

(2007); the paper by Nandram and Choi (2007) is our pioneering work on hypothesis testing. The Bayesian test, which 

is based on the Bayes factor, uses both hypotheses directly where the non-Bayesian test, based on the p-value, mostly 

uses just the null hypothesis. This can partially help explain the problem with non-Bayesian tests. 

We discuss the random group methods (RGM) to solve such large sample problems. RGM is a simple approach in using 

the traditional tests. RGM is to divide a large sample randomly into smaller samples to avoid the large sample problem 

and enable us to use existing methods. We perform the traditional test for each of the smaller samples. If the 90 % of 

these tests are significant at a given significant level (e.g., 5% significance level), then we call it 90% significant also 

for the entire original sample. In order to do so, we need to pass through the two processes. First, we calculate the size 

of the small samples. Second, we show the reason why the significant rate of small samples also represents at least the 

same rate for the original sample. These are shown in Section 2. 

We have searched the literature for the large sample problem. We can find short mention in the text book by DeGroot 

and Schervish (2002). They gave three suggestions (p529-530) for large samples. First, one can make the significance 

level much smaller than traditional p = 0.01 or 0.05 to fit the large samples. This idea is somewhat similar as ours, but 

only reversing the process. Second, replace the single value of mean in the null hypothesis by an interval. Third, 

regarding it as one of the estimation problems rather than the problem of testing a hypothesis. There is no benchmark 

for the first suggestion. 

Another reference is the text book by Petruccelli, Nandram, and Chen (1999). On page 300, they stated “virtually any 

null hypothesis will be rejected if there are enough data, i.e., with enough data, the test statistic will produce a small 

p-value” regardless of real significance. 

In both references, they gave only a brief mention of this problem. They recognized the large sample problems in 

testing a hypothesis, but did not give any solution. 

We raised this question whenever we attended meetings or seminars. People have already recognized this problem for a 

long time, but avoided to discuss the question. The reason is very clear: There is no solution. But we felt now is the time 

to discuss this problem, and motivate them to do more research on this important topic. 

We have done many works at NCHS that use large samples from NCHS surveys. We have written many papers. Some 

of them are Nandram and Choi (2002a, 2002b, 2006, 2010). In these papers, we tried to analyze the various topics on 

small area estimation, non-ignorable nonresponse problems and many others topics. In these, we used a Bayesian 

approach to avoid large sample problems. But now we feel strongly to present the large sample problem as many 

researchers abuse hypothesis testing. 

We will divide this paper into seven sections. Section 2 show the two processes. Process One describes how to divide a 

large sample to smaller size. Process Two shows how the percent of the significant tests of small samples implies the 

same percent of the original sample before dividing. Section 3 shows how to divide the entire universe of samples into 

three sizes. Section 4 introduces the three statisticians who used small samples. Section 5 illustrates the large sample 

problems with the Table 1. Section 6 gives a few examples of large samples. Finally, Section 7 gives a concluding 

remark. 

2. Random Groups 

Let 𝒙𝒏 = 𝑥1, 𝑥2, …. , 𝑥𝑛 be the random variables of size n from f(x|α,β), α,β are the parameters of inrerest. 
When n is a large number, we want to divide the sample into h smaller samples to be able to use a traditional method for 

testing hypothesis. 

Process One: the size of small samples 

Start from the initial number m, 1<m<n, the smallest number enables us to perform a traditional test. Let 𝑡𝑚 be the test 

statistic 

T( 𝑓𝑚| 𝑥𝑚, m) = 𝑡𝑚,                                   (1) 

where 𝑓𝑚  f(𝒙𝒎   | α′,β′), 𝒙𝒎  = 𝑥1 , 𝑥2, ... , 𝑥𝑚 and α′,β
′

  are the estimates from  f(𝑥𝑚  | α,β). The 

test statistic 𝑡𝑚 provides the probability 𝑝𝑚 

Note that the test statistic 𝑡𝑚 is also a function of sample size m of the given random variable 𝒙𝒎. 

Gradually increasing sample size from m to (m + k) until the inequality (3) below is achieved. Here, the test statistic of 
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the new sample size (m + k) is 

T(𝑓(𝑚+𝑘) | 𝑥(𝑚+𝑘), (m + k)) = 𝑡(𝑚+𝑘),                            (2) 

where 𝑓(𝑚+𝑘)  = f( 𝒙(𝒎+𝒌)  | α′,β′) , where 𝒙(𝒎+𝒌) = 𝑥1, 𝑥2,  … 𝑥(𝑚+𝑘) , 

and α′,  𝛽′ are the estimates from f(𝑥(𝑚+𝑘)| α,β).  The test statistic 𝑡(𝑚+𝑘)  provides the probability 𝑝(𝑚+𝑘). 

At the sample size of (m + k - 1) , the inequality of |𝑝𝑚 - 𝑝(𝑚+𝑘−1)| < p is not changed. At the sample size (m + k), the 

inequality is reversed as 

|𝑝𝑚 - 𝑝(𝑚+𝑘)| > p,                                  (3) 

where the change of inequality in (3) arises when the sample seize m increased exactly to (m + k). Here we choose one 

p, a significant probability, (0 < p < 1). Choose p conservatively so that smaller sample size is not too large for the 

traditional testing. Note that the inequality of the two test statistics from (1) and (2), we have 𝑡𝑚 <  𝑡(𝑚+𝑘) , which 

gives the inequality of two significant probabilities, 𝑝𝑚  > 𝑝(𝑚+𝑘), where  ( 1< (m+k) < n). 

The sample size (m + k) is the change point from 𝑝𝑚 to 𝑝(𝑚+𝑘) at the probability p to achieve the inequality (3). In 

this case, the size of small samples is (m + k). 

If we still have |𝑝𝑚 − 𝑝(𝑚+𝑘)| < p, the inequality is not reversed, at (m + k), further increase from (m + k) to (m + k + r), 

(1< r < (n-m- k) < n. As in (1), forming the test statistic, 

T(𝑓(𝑚+𝑘+𝑟) | 𝒙(𝒎+𝒌+𝒓), m+k+r) = 𝑡(𝑚+𝑘+𝑟 ).                       (4) 

The test statistic 𝑡(𝑚+𝑘+𝑟) provides the significant probability 𝑝(𝑚+𝑘+𝑟): r is an increasing positive integer until the 

inequality (5) is achieved. 

|𝑝𝑚 − 𝑝(𝑚+𝑘+𝑟)| > p.                                 (5) 

In this case, (m + k + r) is the size of the small samples. 

Once (3) or (4) reversed the inequality, then (m + k) or (m + k + r) is the size of the small samples. Once we found the 

number (m + k) or (m + k + r), we divide the large sample of size n into the h random groups of the size (m + k) or (m + 

k + r), Here, (1 < r < (m+k+r) < n). 

If the size of the small sample, (m + k), is taken, we divide  𝒙 𝒏 = 𝑥1, 𝑥2, …. , 𝑥𝑛, into the h smaller samples 

of 𝑥𝑖(𝑚+𝑘) = 𝑥1, 𝑥2... , 𝑥𝑖(𝑚+𝑘),  i = 1, 2, ...,h. The small samples are the same size: i.e.  𝒙(𝒎+𝒌) =  𝒙𝒊(𝒎+𝒌), for all 

i, and the original large sample of size n = h (m + k). However, the contents of the h small samples are different. Each 

sample 𝒙𝒊(𝒎+𝒌) provides the different test statistic 𝑡𝑖(𝑚+𝑘) , which in turn gives different significant probability 

𝑝𝑖(𝑚+𝑘), i = 1, 2, …, h. 

Below shows Process Two, the percent of the significant tests among the small samples also implies that at least the 

same significant percent for the original sample of size n. 

Process Two: Significance of the sample of size n 

Take a probability 𝝅, 0 < 𝝅 < 1, for the significant level of test (say 0.01 or 0.05). Note that here probability 𝝅 is 

different from the p used in the process one. To count the number of small samples satisfying the condition (𝑝𝑖(𝑚+𝑘) < 

𝝅), using indicator function I. We have 

                           R(m+k) =  ∑
I(pi(m+k) ≤ 𝜋)

ℎ

ℎ
𝑖=1 ,                                                                        (6) 

where I(pi(m+k) ≤π) = 1 if pi(m+k) < 𝝅 and 0 otherwise, i = 1, …, h, and  

𝑅(𝑚+𝑘) x 100 is the % of the counts satisfying 𝑝𝑖(𝑚+𝑘) < 𝝅 among the h small samples at the significant probability 

𝝅. 

If 90% of 𝑝𝑖(𝑚+𝑘) are 𝑝𝑖(𝑚+𝑘) < 𝝅 among the h small samples, we define it  90% significant for all h groups at 

significant probability 𝝅. Also, we claim that the 𝑝𝑛 of the original sample of size n is also 90% significant at the 

same probability 𝝅 for the entire sample of 𝑥𝑛.  

Lemma. Suppose a large sample of size n is divided into h samples of sizes (m + k). If 90% of the h small samples are 

significant or 𝑝𝑖(𝑚+𝑘) < 𝜋 at the 𝜋 = 0.05, then the test statistic 𝑝𝑛 for the original sample of size n, is also at least 

90% significant or 𝑝𝑛 < 𝝅 at the probability 𝝅.=0.05. Appendix A shows the sketch of the proof.  

3. Dividing all Samples Into Three Sizes 

We may roughly divide the universe of all the samples into three sizes: 
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1. Small size (n<5); 

2. Middle size 5<n<100; 

3. Large size (100<n). 

The boundary of these divisions is somewhat arbitrary. They can be readjusted by the equation (3). 

We assume the test statistic depends only on the sample size of the random variables x. We discuss the size of the small, 

middle, and large samples separately. We have problems only for the sample of too small (n<5) and too large (100<n). 

The middle size 5<n<100, 

We can apply the existing methods (e.g., t-test or normal test) if the change of the inequality (3) occurs in this interval. 

Any sample falling in this interval can be tested with the traditional method, and one test is enough. 

Large samples (100 < n). 

This is the only place we can apply the method developed in Section 2. Take the sample size n = 400. We randomly 

divide a large sample of 400 into smaller sizes of (m + k) = 40 forming the h = 10 random groups. Then we calculate its 

mean and variance of each and apply traditional method to each for testing a hypothesis. If 90% out of 10 tests, 9 tests, 

are significant at 𝝅 = 0.05, we define the overall test with the sample of n=400 is also 90% significant at the same 𝝅 

= 0.05. 

If there are too many groups to handle for a large sample (say n= 10 millions), then we have 250,000 random groups of 

40. We may use only a simple random sample of the 100 groups out of 250,000 groups. Performing the same test for all 

100 groups, only 95 were significant at 𝝅 = 0.05. We can conclude that it is true that the 250,000 groups also 95% 

significant at the same 𝝅 = 0.05. Furthermore, this is also true for the large sample of n = 10 million. Note that the 

estimates from a simple random sample provide the unbiased estimates. 

Small samples (n<5) 

Test result may be unreliable if the sample size is too small. For the small sample, we do not have enough information 

to make proper inference based on the assumed distribution. For the small sample, e.g., n<5, the size of n is too small to 

form a distribution. One may use one of the distribution free methods or nonparametric methods such as Fisher’s exact 

test, the sign test or U test. 

If we have n = 2, (space between n and = ) for example, the similarity between two persons or two companies. Choi and 

Nandram (2000) discussed this problem comparing two persons. We need more research in this area for statistical 

inference. 

4. Three Statisticians Used Small Samples: Fisher, Bayes, and Gosset 

In the early years in the 1900s, the only tool was the pen, and the early researchers calculated the mean and variance 

manually. One example is Fisher’s tea tasting. Another example is Gosset’s student t-test to choose better combinations 

in tasting beer. Another method for small sample is Bayesian method. Assuming the distribution of a small sample, we 

can generate as many samples as needed from this distribution for the statistical inference. If this assumption is correct, 

this is a good approach. 

R. A. Fisher (1890-1962, Figure 1) 

Fisher studied Mathematics at Cambridge University from 1909. Among many accomplishments, he began to publish 

the papers related to the maximum likelihood estimation during 1912 – 1922 years laying the foundation of current 

statistics. He developed the design of experiment at Rothamsted Experiment Station. He used the terms “variance” and 

“analysis of variance” for the first time. Fisher used small sets of data in his studies not exceeding more than he could 

calculate with his pen or pencil. For example, a few plots were used for his agricultural experiments at Rothamsted. 

Lady’s tasting tea is an example for small sample. It is a randomized experiment reported in the Chapter Two of Fisher’s 

book, the Design of Experiments (1935). He used 8 cups, putting tea first in 4 cups and cream first in 4 cups randomly. 

He asked Ms. Muriel Bristol to identify which, tea or cream, was the first in his randomized blind test. The test used 

was Fisher’s exact test, a nonparametric test on the 2 x 2 table. It is useful test for a small sample. Here he used only 8 

cups and calculated 70 combinations of 4 cups out of 8 cups. This could be the maximum numbers he could calculate at 

the time of no calculator or computer. 

Thomas Bayes (1702–1761, Figure 2), Bayesian method 

Bayes was born in London, England, a nonconformist Presbyterian minister and mathematician, graduated from 

University of Edinburgh. Nonconformists could not go to Oxford or Cambridge at the time.Two years after his death, 

Richard Price edited and corrected “An Essay Towards Solving a Problem in the Doctrine of Chances”, prior to 
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publication in 1763. He was the first to use the probability inductively calculating the probability given the prior 

probability. It has been used widely recently with the improvement of computing technologies. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Fisher’s Young Portrait 

 

Figure 2. Bayes’ Portrait 

William Sealy Gosset (1876-1937) introduced the Student's t-distribution for small samples. Gosset reported 

"Student's test of statistical significance" in Biometrika,1908, under the pen name Student. He graduated from Oxford 

influenced by Karl Pearson and W.A. Spooner. It is useful for establishing confidence limits for the mean estimated 

from smaller samples. He was a chemist and brewer at Guinness Brewery. Pioneered in small sample experimental 

design, he was testing means to make a better brew. 

In recent years, data size exploded and there is no way to analyze the data without a computer. For example, Affordable 

Health Care needs to control the cost of the plan. To do so, they need to know the number of doctor visits. National 

Health Interview Survey (1990) used a sample of about 12,000 people from the U.S. population of about 300 million 

and it reported that people visited doctors’ office an average of 4 times a year excluding hospital inpatients, 48,000 

visits in all. To complete cost calculation, need not only number of visits but also the related information such as whom 

and why they visited, and how much they paid for their visits and medications. The final data could be increased to 

millions. In this case, even if a small fraction of it, its data size will be prohibitively large. No current methods would 

work with such a huge sample size. Section 2 is useful tool in this case. Choi (2011) discussed this problem for testing 

hypothesis under the large sample situation and Nandram and Choi (2002b) studied these doctor visits. 

5. Discussion of Table 1 Showing Large Sample Problems 

The following is a hypothetical example showing a danger for large samples. Suppose a drug company submitted 

application to FDA to get approval of a medication. When its test result shows no significance, FDA rejects it. Then the 

drug company increased the sample size to obtain the significant test result. When they reapplied with the new 

significant result, FDA approved it. Here, the only thing changed is the sample size, keeping all others same. It has 

nothing to do with the efficacy of the drug. 

Here we show that test score Z depends on the variance of the effective proportion p of clinical trial and a null 

hypothesis (say, p=0). This variance of p in turn depends on the sample size n. Table 1 shows the standard deviations S 
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and the normalized test scores Z for the sample sizes n = 5, 10, 20, 40,100, 400, 500, and 1000, and the proportions p = 

0.1, 0.2, 0.4, 0.5, 0.6, 0.6, 0.8, and 0.9. If we take p = 0.1 on the first column and sample sizes n = 5, 10, 20, 40,100, 400, 

500, and 1000, we have 

S = 0.134, 0.095, 0.067, 0.047, 0.030, 0.015, 0.013, 0.009, and 

Z = 0.745,1.054, 1.491. 2.108, 3.333, 6.666, 7.454, 10.540. 

Here we see that, when n is increasing from 5 to 1000, the standard deviation S is decreasing from 0.134 to 0.009, while 

the normal test scores Z is increasing from 0.745 to 10.540. 

Table 1 below also shows that, no matter what the size of proportion p is, if n 

is greater than 40, all the test result Z is significant (i.e. Z > 1.65) at 𝝅 = 0.05. The numbers of Zs of red color are less 

than 1.65. Here nothing is changed except the sample size for the given p. 

Resampling hides real problems 

National Health Interview Survey (NHIS) (Jack and Ries,1981) had the national sample of about 12,000 people and 

National Health and Nutrition Examination Survey (NHANES III 1988-1994) was a national probability sample of 

39,695 persons aged 2 months and older (about 33,000 older than 18 years of age). We encountered large sample 

problems. For large samples, some at NCHS used the resampling methods for variance calculation: Replication or 

Balanced Half Sample (BHS) (McCarthy, 1966), Jackknife, or Bootstrap (Efron, 1982). For example, NHIS used BHS 

and generalized variance function (GVF) to calculate the variance of the NHIS data. (Choi, 1989). We had to 

manipulate the data to use BHS. The resulting variances were used to draw the GVF curve, GVF is g(x | a, b)= a + b/x, 

where x is the sample size n of the variable, and the parameters a and b are obtained by the least square estimation. The 

variances obtained from BHS and GVF cannot be used for testing a hypothesis. For example, if we test the mean, BHS 

and GVF do not give the variance of this mean, but the variance indirectly calculated by BHS with the manipulated data 

and approximation of GVF curve. This resulting variance is not related to the mean that we want to test. 

Bootstrap is to take samples from an original sample. It does not give any better information than the original sample 

itself. If the original sample is biased, a sample from the original sample is also biased. Hence, we should be careful 

when we use a sample for Bootstrap. 

Table 1. Standard deviation S and normal score Z for given sample size n and proportion p. Sample variance var(p) = 

p(1-p)/n, standard deviation S = √var(p), Normal approximation Z = p/S for the estimate p under the null hypothesis p 

= 0. The Z = 1.65 at the probability 𝜋 = 0.05. Red color numbers of Zs are smaller than 1.65 

N p=0.1 p=0.2 p=0.4 p=0.5 p=0.6 p=0.8 p=0.9 

        

n=5  S 0.13416 0.17889 0.21909 0.22361 0.21909 0.17889 0.13416 

Z 0.74536 1.11803 1.82574 2.23607 2.73861 4.47214 6.70820 

        

n=10  S 0.09487 0.12659 0.15491 0.15811 0.15491 0.12659 0.09487 

Z 1.05409 1.58114 2.58199 3.16228 3.87298 6.32456 9.48686 

        

n=20  S 0.06708 0.08944 0.10954 3.65148 0.10954 0.08944 0.06708 

Z 1.49071 2.23607 3.65148 4.47214 5.47723 8.94427 13.4164 

        

n=40  S 0.04743 0.06325 0.07746 0.07906 0.07746 0.06325 0.04743 

Z 2.10819 3.16228 5.16398 6.32456 9.74597 12.6491 18.9737 

        

n=100  S 0.03 0.04 0.04899 0.05 0.04899 0.04 0.03 

Z 3.33333 5.0000 8.16497 10.0000 12.2475 20 30 

        

n=400  S 0.015 0.02 0.02449 0.025 0.02449 0.02 0.015 

Z 6.66667 10 16.3299 20 24.4949 40 60 

        

n=500  S 0.01342 0.01789 0.02191 0.02236 0.02191 0.01789 0.01342 

Z 7.45356 11.1803 18.2574 22.3607 27.3851 44.7214 67.0820 

        

n=1000 S 0.00949 0.01265 0.01549 0.01581 0.01549 0.01265 0.00949 

Z 10.5409 15.8115 25.8199 31.6228 38.7289 63.2456 94.8683 
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6. Large Sample Examples 

Example 1 

A doctoral student presented her research results. The sample sizes of her studies were over 1,500 and her test results 

were all very significant. Our suggestion was that she could form 15 random groups of (m + k) = 100 to see how many 

of the 15 groups are significant. If the 95% of them (about 14 out of 15) are significant at 𝝅 = 0.05, she may conclude 

that it is also actually 95% significant with the original sample of n = 1,500 at 𝝅 = 0.05. Here the group size is 100 

from inequality (3) in Section 2. 

Example 2. 

We can randomly divide NHANES III sample of 33,000 people for testing hypothesis of the mean of body mass index 

(BMI). We may choose sample size according to the method in Section 2. If the small sample sizes (m + k) =100 by the 

inequality (3) in Section 2, we can form the 330 random groups from n = 33,000 people. 

We apply one of the current tests to each of 330 groups. If we have the 90% of them significant at 𝝅 = 0.01, we can 

claim at least 90% of the original sample of size n = 33,000 is also significant at the significant level 𝝅 = 0.01. 

Nowadays, we have unlimited computing power in developing deep learning or artificial intelligence (AI) technique. 

For example, Google search gives the information on Thomas John Watson Sr. (February 17, 1874 – June 19, 1956). He 

was an American businessman, served as the chairman and CEO of International Business Machines (IBM). He 

oversaw the company's growth into an international force for 42 year from 1914 to 1956, developing Watson technology. 

IBM Watson Technology is reinventing The Way We Work, Discover More facts, Data Intelligence, Cognitive 

Technology, Cognitive Innovation, and Watson Ecosystem. Even if the data size is over billions, the calculation is not a 

problem with currently available computing power. 

7. Conclusion 

We can use the traditional methods for the samples of the middle range i.e. (5< n < 100). For the samples of large n (i.e., 

n > 100), the test results are unnecessarily too significant. So following the process presented in Section 2, we need to 

form random groups in traditional testing of a hypothesis at a given significance level 𝝅.(delete m).. For the small 

samples (n<5), one may use a nonparametric statistic that does not depend on the variance (or n size). A type of new 

nonparametric method, we hope, can be developed to replace the traditional parametric testing in order to accommodate 

the small samples better. 

For the small sample i.e. (n < 5), Choi and Nandram (2000) discussed the measure of similarity between two persons 

using distances between them for each characteristic or trait. When there are at least five traits such as race, age, sex, 

height, and color of hair, the similarity of them is measured by the square root of the sum of the weighted distances of 

the five characteristics. 

It is not simple to handle large data sets. In the era of COVID-19, the counts by states are very large. For example, on 

Saturday October 23, the COVID Tracking Project announced for the US states. For Massachusetts, among the 7883 

tests, 2123 infected, and 142 deaths in the population of 6,547,629 people. The proportion of death among the tested is 

very small p = 142/7883 = 0.01. We have a test of null hypothesis 𝐻0 : 𝑝 ≤  0.05 vs 𝐻1: p >  0.05, the 0.05 or 5.0 

percent is a threshold used to open a state. 

Variance is very small as n= 7883. Hence the p-value is near 0 and reject the null hypothesis and accept the alternative 

hypothesis. Here the whatever the null hypothesis is, it does not matter. We always reject null hypothesis and accept the 

alternative hypothesis. The rejection of null hypothesis does not mean the acceptance of alternative automatically. For 

this type of large sample the RGM would not work well because we do not have the individual person’s data.   

Recently the data size has been increasing rapidly. Using the increased computing power, we can handle large data 

through AI technique. However, in the age of AI, we still use the old method for testing hypothesis that depends on the 

sample size. For large samples, we can still use the traditional tests via the RGM presented in this paper. 
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Appendix A. Sketch of the Proof of Lemma 

Take n = 200, divide 200 into 10 groups (i.e., h=10) of size 20, i.e.,(m + k = 20). The test statistic 𝑇20(𝑓𝑖20 | 𝑥𝑖20, 20) = 

𝑡𝑖20, and 𝑡𝑖20 provides 𝑝𝑖20. We count 𝑝𝑖20 < 𝝅 from these 10 random groups at 𝝅= 0.05. Now, for the original 

sample of 200. Here h=1 and 𝑇200(𝑓200 | 𝑥200, 200) = 𝑡200, and t200 provides p200. 

It is clear that 𝑡𝑖20 < 𝑡200,and 𝑝200 < 𝑝𝑖20 < 𝝅, i = 1, … ,10. Then 𝑅200 ≥ 𝑅20. For the equality hold for h=1 for 

n= 200, and (m + k) = 20. 

In general, it is true, observing 𝑡(𝑚+𝑘) ≤  𝑡𝑛 and 𝑝𝑛 ≤ 𝑝(𝑚+𝑘) < 𝝅, for any numbers h, n, and (m + k), here (1≤ h < 

n), and (1< (m+k) < n). Then the equation (6) shows that 𝑅𝑛 ≥ 𝑅(𝑚+𝑘).. 
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