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Abstract 

Generalisation of Receiver operating characteristic (ROC) curve has become increasingly useful in evaluating the 

performance of diagnostic tests that have more than binary outcomes. While parametric approaches have been widely 

used over the years, the limitations associated with parametric assumptions often make it difficult to modelling the 

volume under surface for data that do not meet criteria under parametric distributions. As such, estimation of ROC 

surface using nonparametric approaches have been proposed to obtained insights on available data. One of the common 

approaches to non-parametric estimation is the use of Bayesian models where assumptions about priors can be made 

then posterior distributions obtained which can then be used to model the data. This study uses Polya tree priors where 

mixtures of Polya trees approach was used to model simulated three-way ROC data. The results of VUS estimation 

which is considered a suitable inference in evaluating performance of a diagnostic test, indicated that the mixtures of 

Polya trees model fitted well the ROC surface data. Further, the model performed relatively well compared to 

parametric and semiparametric models under similar assumptions.   

Keywords: non-parametric estimation, mixtures of finite polya trees, receiver operating characteristics, volume under 

surface 

1. Introduction 

Generalisation of Receiver operating characteristic (ROC) curve in assessing how diagnostic tests perform can be a 

challenging task (Koech, 2018) especially since the tests more than two outcomes leading to multiple true class rates 

and false class rates. Non- parametric approaches can be used in modelling the volume under surface which can be used 

in measuring the accuracy of a diagnostic test. Ferguson (1983), West (1990) and Escobar & West (1995) are some of 

the notable scholarly works that have underpinned the use of non-parametric methods in in estimating the accuracy of 

diagnostic test. They have suggested that when observations on some random variable follow a distribution which is 

assumed to be is a random sample function of a non-parametric scholastic process (Dirichlet process), then the random 

measure’s conditional distribution can be calculated. The assumption in this case are derived from Bayesian viewpoint.  

Studies, such as Choi et al. (2006) have proposed Bayesian parametric multivariate ROC methodology as alternative to 

Gaussian estimation of diagnostic tests owing to the limitations of normality assumptions in cases especially rare 

diseases that have not been well studied. This argument follows some authors such as Hall and Zhou (2003) who faulted 

the normality assumptions in estimation of diagnostic tests as they developed multivariate distribution-free methods for 

estimation in biomedical studies. Studies by Erkanli et al. (2006) examined the use of non-parametric methods for 

binary outcome tests based on truncated Dirichlet process mixture model while Branscum et al. (2006) estimated the 

accuracy of diagnostic test when true infection status of a disease is unknown based on the mixture of finite Polya trees 

model. Similarly, Hanson et al (2008) estimated several ROC curves using the mixtures of Polya trees (MFPT) in 

estimation of multivariate serologic data.  

Lavine (1992, 1994) and Hanson (2006) are considered as notable pioneers of computation based on finite Polya tree 

priors. On the other hand, Branscum et al. (2008) and in Hanson et al. (2008). According to Lavine (1992), Polya trees 

form a class of distributions for measure-valued random element (random probability measure). This can be considered 

as an intermediate between Dirichlet processes and tailfree processes (Tail-free processes can be defined as stochastic 

processes that can possess trajectories on the space relating to specified probability distributions). Polya trees offers 

better approach to Dirichlet processes since they can allow construction of probability 1 to a set of continuous or 

absolutely continuous probability measures, whereas their advantage over more general tailfree processes is their much 

greater tractability. Hanson (2006) also noted that Polya tree priors have the advantage in that some sampling situations 
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results in posterior mixtures of Dirichlet processes, can only lead to only one posterior Polya tree.  

According to Hanson and Johnson (2002) MFPT can be considered as a more robust method for data driven models in 

in statistical modelling which includes evaluating the diagnostic testing. Regression models such as generalized linear 

models (Hanson, 2006) can be implemented under MFPT. The flexibility offered by the Polya tree priors allows for 

modelling of continuous distributions (Ferguson, 1974) which overcomes some of the notable limitations associated 

with parametric frequentist approaches (Heckerling, 2001). Li and Zhou (2009) estimation of ROC surface using both 

nonparametric and semiparametric approaches indicated that both approaches were robust in estimating the accuracy of 

three-way diagnostic outcomes. However, they noted that accuracy improved under their nonparametric approach and 

pointed out that the limitation of normality assumption for semiparametric approach as rare diseases and epidemics 

often do not follow Gaussian distributions. This view was corroborated by Inácio et al. (2012) who suggested that 

normality assumption under parametric models often fail to capture multimodality, nonstandard features, or skewness 

within data. As such, they proposed Bayesian nonparametric approach based on MFPT to estimate receiver operating 

characteristic surface.  

Some of the merits of MFPT in estimating ROC surface as Inácio et al. (2012) suggested include the ability to broaden 

class of models as it may apply to large number of diseases, any population and varied diagnostic measures. More so, 

MFPT accommodates various forms of data where parametric distributions can be incorporated in computing larger 

non-parametric models. The ability of generalization under MFPT makes it robust and can allow for deeper insights into 

data which are becoming increasingly available in the age of data analytics and increase in computational power among 

available data analytics software and hardware solutions. Nevertheless, it would be reasonable to note that computation 

of MFPT and other non-parametric models can be difficult (Hanson, 2006) while implementation of the models may yet 

not be available within the statistical softwares available in markets. This poses significant challenge when working 

with such models. However, the possibility of computation of MFPT for ROC data motivated the current study. The aim 

of the study was to estimate receiver operating characteristic surface using MFPT based on simulated data.  

2. Methods 

The nonparametric model developed is based on finite Polya tree priors (Freedman, 1963; Fabius, 1964; Ferguson, 1973) 

for the distributions 𝐹1, 𝐹2 and 𝐹3 corresponding to the three classes of outcomes in a three-way diagnostic test. To 

obtain the nonparametric estimator of ROC surface, all the distribution functions in (𝐹1, 𝐹2 and 𝐹3) shall be replaced 

with their empirical counterparts. The estimator shall be constructed as: 

𝑅𝑂𝐶𝑆(𝑝1,  𝑝3) = {
𝐹2̂ (𝐹3

−1̂ (1 − 𝑝1)) − 𝐺2̂ (𝐹1
−1̂(𝑝3)) , 𝑖𝑓 𝐹1

−1̂(𝑝3) ≤  𝐹3
−1̂(1 − 𝑝1),

0                                                                                                otherwise.
                        (1) 

Where 𝐹1̂ , 𝐹2̂and 𝐹3̂are the nonparametric distribution functions for outcomes of the three-way diagnostic test, 

respectively. The model to be used is a specified hierarchical model involving the specification of independent mixture 

of finite Polya tree priors for 𝐺𝑖, (i=1, 2, 3) conditional on hyperparameters.  

The general non-parametric model is 

𝑌1𝑖~ 𝐹1 , 𝑌2𝑗~ 𝐹2 , and 𝑌3𝑘~ 𝐹3 

𝐹𝑖|𝑐𝑖 , 𝜃𝑖~FPT𝑗(𝐹 𝜃𝑖
, 𝑐𝑖), 

𝜃𝑖~𝑝( d𝜃𝑖) 

Random 𝐹𝑖is centred at 𝐹 𝜃𝑖
= 𝑁(𝜇𝑖 , 𝜎𝑖) where𝜃𝑖 = 𝑁(𝜇𝑖 , 𝜎𝑖). Let 𝜒𝑖 = {𝑋𝑖,𝑗,𝑘} denote the set of branch probabilities 

for 𝐹𝑖. The mixing parameters 𝜇𝑖 have independent normal priors𝑁(𝑎𝜇𝑖
, 𝑏𝜇𝑖

) whereas 𝜎𝑖 have Gamma (𝑎𝜎𝑖
, 𝑏𝜎𝑖

) 

which are independent gamma priors. The parameters are all with fixed hyperparameters. In this study, the finite Polya 

trees levels are represented by Ji. Similarly, the weight parameter 𝑐𝑖 was also fixed. The likelihood function is 

proportional to 

∏ 𝑓1(𝑦1𝑖|χ1, θ1) ∗
𝑛1
𝑖=1 ∏ 𝑓2(𝑦2𝑗|χ2, θ2)

𝑛2
𝑗=1 ∗ ∏ 𝑓3(𝑦3𝑘|χ3, θ3)𝑛3

𝑘=1                      (2) 

For equation (2), the 𝑓𝑖 is a density function corresponding to distribution functions 𝐹𝑖. Furthermore, the 𝐹𝑖(𝑦|χ𝑖 , θ𝑖) 

represents the cumulative distribution function while Markov Chain Monte Carlo (MCMC) methods can be used to 

approximate the joint posterior distribution for the 3 classes. The computation of the ROC surface plot can be computed 

given the likelihood function (Equation 2). MCMC with simple Metropolis–Hastings steps was used to fit the MFPT 

model for ROC surface where updating of the mixing parameters μi and σi followed random walk process.  

All the analysis was implemented using R Statistical Computing program. Data was simulated for the three classes 

obtained from different populations drawn using normal random sample generators. For the distributions 𝐹1, 𝐹2 and 

𝐹3 the corresponding random variables were 𝑌1𝑖 ~𝑁(1,1.5), 𝑌2𝑗  ~𝑁(2,1.5) and 𝑌3𝑘 ~𝑁(3,1.5), where sample sizes 
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𝑛1 and 𝑛2, and 𝑛3were set to 16, 8 and 16 respectively. The random variables 𝑌1𝑖 represent the first group of test 

outcomes (non-diseased or healthy subjects) while 𝑌2𝑗 represent the second group of test outcomes (intermediate or 

transition subjects) who are at high risk of developing a condition. Further, the random variables 𝑌3𝑘  represent the last 

group of test outcomes (diseased or with condition subjects) such as in the case of Alzheimer’s disease where the 

progression of the disease increases over time. An individual tested for Alzheimer’s disease may be diagnosed as negative 

then falls in 𝑌1𝑖 or high risk  𝑌2𝑗 or 𝑌3𝑘  when a patient demonstrates apparent characteristics and symptoms of the 

disease.  

It was also assumed that the Polya Tree is centred on normal distribution, 𝑃𝑇~𝑁(0,1) distribution, by taking each J=4 

levels of the partitions where 𝑛𝑖 ≈ 2𝐽  (Hanson & Johnson, 2002). It was further assumed that 𝛼, the precision 

parameter of the Polya Tree prior, 𝛼 = 1, and was considered as random. It was also assumed that the precision 

parameter followed gamma distribution, with hyperparameters for prior distribution being Γ(𝑎0, 𝑏0). The posterior 

distribution of the baseline as well as the precision parameters were implemented using Metropolis-Hastings steps as 

indicated earlier. The number of grid points for which the evaluation of the density estimate was considered, was set to 

ratio proportionate to the simulated sample size, that is, 2:1:2. That is, it was assumed 100, 50 and 100 for n1, n2 and 

n3 respectively. This constituted the simulated case of a three-way diagnostic test. The posterior parameters for the 

three simulated test outcomes indicate that posterior estimates; means and standard deviations converged or are 

stationary after 1000 iterations, then the distributions of the three test outcomes by plotting the data using histograms 

were analysed. 

3. Analysis of Data and Results 

3.1 Posterior Inference of Parameters for 𝑌1𝑖 𝑌2𝑗, and 𝑌3𝑘 

The study sought to examine the properties of the fitted Non-parametric distribution (that is under MFPT). More 

specifically, the posterior inference of parameters under non-parametric Bayesian density estimation was considered. 

The results for the fitted distribution for the test outcomes 𝑌1𝑖 , has the Posterior Inference of Parameters 𝜇 𝑌1𝑖
=  1.173 

and 𝜎 𝑌1𝑖
 =  1.786. The acceptance rate for the Metropolis Step = 0.7350577 to 0.7764615. Likewise, the test outcomes 

𝑌2𝑗 were fitted whereby it had posterior inference of parameters 𝜇𝑌2𝑗
=  2.18 and 𝜎𝑌2𝑗

 =  1.70 while the acceptance 

rate for the Metropolis Step = 0.78 0.85. Finally, the test outcomes 𝑌3𝑘  where its posterior Inference of Parameters were 

𝜇𝑌3𝑘
 =  3.22 and 𝜎𝑌3𝑘

 =  1.41 while the acceptance rate for the Metropolis Step = 0.70 to 0.77. The results can be 

summarized in table 1 below.  

Table 1. Posterior Inference of Parameters for 𝒀𝟏𝒊 𝒀𝟐𝒋, and 𝒀𝟑𝒌  

𝒀𝟏𝒊 

𝜇 𝑌1𝑖
 𝜎 𝑌1𝑖

 𝛼 

1.22 1.97 1.00 

Acceptance Rate for Metropolis Step = [0.73 0.78] 

𝒀𝟐𝒋 

𝜇 𝑌2𝑗 𝜎 𝑌2𝑗 𝛼 

2.18 1.70 1.00 

Acceptance Rate for Metropolis Step = [0.78 0.85] 

𝒀𝟑𝒌 

𝜇 𝑌3𝑘
 𝜎 𝑌3𝑘

 𝛼 

3.22 1.41 1.00 

Acceptance Rate for Metropolis Step = [0.70 0.77] 

 

Further, to analyse the properties of the posterior parameters, the parameters plots for the fitted distribution for each of 

the three simulated test outcomes were computed. The plot posterior parameters for 𝑌1𝑖 were summarized by time 

series MCMC scans and fitted histogram line for the parameter values for mean and standard deviation namely 𝜇 𝑌1𝑖
 

and 𝜎𝑌1𝑖
. Figure 1 gives a summary of the parameter plots.  
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Figure 1. Posterior parameters for 𝒀𝟏𝒊 under Non-parametric Bayesian density estimation 

It was evident that the chains for both parameters were desirably stationary at the true parameter values. The plots of the 

mean of the parameters and standard deviation for the 1000 iterations of the sampler produced near- smooth plots. 

Similarly for 𝑌2𝑗 the fitted posterior parameters 𝜇 𝑌2𝑗 and 𝜎𝑌2𝑗 were plotted. A summary of the plots is represented 

by MCMC scans and fitted histogram line for the parameter values. Figure 2 gives a summary of the parameter plots.  

 

Figure 2. Posterior parameters for 𝒀𝟐𝒋under Non-parametric Bayesian density estimation 

It was concluded from the time series trace plots that the parameter estimates for 𝑌2𝑗  were all reasonably convergent to 

the true parameter values. The parameter curve plots also depicted desirable degree of smoothness and predicted the 

true parameter values.  

As well, the parameter plots for the fitted posterior parameters 𝜇 𝑌3𝑘
 and 𝜎𝑌3𝑘

 for 𝑌3𝑘  were computed. Similar to 

previous test outcomes parameter plots; the plots for MCMC scans and fitted histogram line for the parameter values 

were computed. Figure 3 gives a summary of the parameter plots. 
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Figure 3. Posterior parameters for 𝒀𝟑𝒌 under Non-parametric Bayesian density estimation 

It was evident that the MCMC chains were convincingly stationary at the true parameter estimates for posterior 

parameters 𝜇 𝑌3𝑘
 and 𝜎𝑌3𝑘

for 𝑌3𝑘. Further, the plots of the parameter estimates; mean and standard deviation show 

definite smoothness. Overall, the posterior parameters for the three simulated test outcomes indicate that posterior 

estimates; means and standard deviations converged or are stationary after 1000 iterations. 

3.2 Data Plot for 𝑌1𝑖 𝑌2𝑗, and 𝑌3𝑘 

Data plots for the three classes were produced to observe the distributions of the three test outcomes by plotting the data 

using histograms. Histogram of the data points and curve fits (MFPT distribution and kernel density estimate curve fits) 

were obtained for 𝑌1𝑖 𝑌2𝑗, and 𝑌3𝑘. The black continuous line represents the MFPT distribution curve fits for the 

posterior estimates while the red continuous line represents the kernel density estimate curve fits for the posterior 

estimates. The histogram of the data plot for 𝑌1𝑖 depicts that it follows some distribution, apparent in data peaks. The 

kernel density smooth curve fit shows that the MFPT model fits the data convincingly, as the peak for the 𝜇 𝑌1𝑖
lies at the 

true parameter value, that is, 𝜇 𝑌1𝑖
= 1 . Figure 4 shows summary of the result.  

 

Figure 4. Distribution of 𝒀𝟏𝒊  

As well, a histogram was used to plot the data for 𝑌2𝑗. The curve fits for MFPT and kernel density for the posterior 

distribution of the test outcomes were computed. It was also found from the plot of 𝑌2𝑗 indicates that the data assumes 

some distribution, as there were peaks in the histogram. The kernel density smooth curve fit shows that the MFPT fits 

the data considerably, as the peak for the 𝜇 𝑌2𝑗lies at the true parameter value, that is, 𝜇 𝑌2𝑗
= 2. Figure 5 shows the 
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data, MFPT and kernel density plots.  

 

Figure 5. Distribution of 𝒀𝟐𝒋  

Finally, a histogram was plotted for 𝑌3𝑘  data. On the same histogram, curve fits for MFPT and kernel density for the 

fitted distribution of the test outcomes were computed. The data plot of 𝑌3𝑘  shows that the data assumes some 

distribution, evident in the existence of peaks. The kernel density smooth curve fit shows that the MFPT fits the data 

well, as the peak lies at the true parameter value, that is, 𝜇 𝑌3𝑘
=3. Figure 6 shows the MFPT and kernel density plots for 

𝑌3𝑘.  

 

Figure 6. Distribution of 𝒀𝟑𝒌  

Overall, it was evident that for 𝑌1𝑖 𝑌2𝑗, and 𝑌3𝑘the posterior distributions of MFPT indicate that the data fits the 

distribution well. Therefore, since the properties of the parameters from the fitted non-parametric Bayesian Density 

Estimation Using MFPT distribution were desirable, random samples for inference for the ROC surface could be drawn.  

3.3 ROC Surface Estimation 

Random samples were obtained for the three test outcomes. They represent simulated test outcomes groups of 

non-diseased or healthy subjects, intermediate or transition subjects and diseased or with condition subjects. Table 2 

below provides a summary of the sample sizes and ordered means for the test outcomes drawn from the non-parametric 

distribution. 
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Table 2. Raw data for the simulated diagnostic test 

 n=Sample 

size 

𝝁= means  

D- (non diseased) 100 0.54 

Do 

(transition/suspicious) 

50 2.34 

D+ (diseased) 100 3.04 

 

From the data in table 2, ROC surface plot was obtained for the three-test outcome. The plot represents a plot for true 

positive fraction (TPF), against false positive fraction (FPF) and intermediate fraction (IDF). As such, it depicts 

trade-offs between the predictive measures as used in the three-way classification of test outcomes. Figure 7 shows a 

graphical illustration of ROC surface of the simulated diagnostic test using MFPT model.  

 

Figure 7. ROC surface plot under MFPT estimation 

It is evident that the model performs well though the ROC surface is not very smooth. It is desired that the cut of points 

chosen would minimize FPF and maximize TPF. However, the examination of ROC surface plot indicates that there are 

trade-offs, that is, FPF increases with increase in TPF while a decrease in IDF causes TPF as well as TPF . This 

highlights the challenge of trade-offs between sensitivity (probability of correctly identifying positive status or subjects 

with a condition) and specificity (probability of correctly identifying negative status or subjects without a condition). 

From the inference about the ROC surface plot, it may not provide conclusive evidence on the efficiency of MFPT 

model hence volume under the surface (VUS) can be used for further inference.  

Therefore, estimation of VUS was considered to obtain the overall performance of the test under MFPT model. To 

observe the relationships in VUS, a boxplot and scatter plot were used to summarize the data graphically for the 

non-parametric VUS. The optimal cut-points are labelled with dashed lines in the scatter plot while the estimated 

summary measure and corresponding CI were provided in the legend. As well, the box plot suggested that the test 

outcomes were are ordinal in nature evident in the varying positions of the box and whiskers. Figure 8 shows a boxplot 

and scatter plot and, with observations from non-diseased or healthy subjects, intermediate or transition subjects and 

diseased or with condition subjects coloured in green, blue and red, respectively. 
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Figure 8. Boxplot and Scatter plot of VUS for the three groups  

From the simulated diagnostic test representing a group of diagnostic test outcomes, VUS for the marker or group of 

test outcomes was computed. The computed VUS was found to be 0.26 with 95% confidence interval [0.23, 0.34]. 

Furthermore, the optimal cut-points off points were calculated for the samples whereby the best lower cut-point was 

estimated to be 0.0658 while 0.204 was the upper cut-point. The upper cut off point corresponds to IDF while lower 

cut-point corresponds to TPF and FPF where the selection of the optimal cut points depicts the optimal trade-off among 

IDF, TPF and FPF quantities. As such the three quantities, IDF, TPF and FPF were found to be 0.56, 0.52 and 0.36 

respectively. The computation also suggested that the sample size of 114 was ideal for the sample size=114. That is, 

within a 5% margin of error, a sample size of 114 or more would be desirable for each test outcome group to estimate 

the VUS of the marker.  

4. Discussion and Conclusions  

The simulation study sought to examine whether the non-parametric estimator was efficient in modelling ROC and 

provide reasonable inference on performance of a three-way diagnostic test. Luo & Xiong (2012) suggestion of definite 

class ratio 2:1:2 for simulation of true-negative, intermediate, or suspicious and true-positive samples was considered. 

More specifically, the posterior parameters for MFPT estimation depicted desirable properties of stationarity at true 

values while the convergence of the MCMC chains were achieved. As such, there were high acceptance rate for the 

metropolis-hasting steps. Nevertheless, the MFPT posterior distributions depicted unsmooth fits though there was 

relative contiguity and symmetry to the kernel density fits. Further, the MFPT estimator shows the sampling 

characteristics influenced the diagnostic test performance for the three groups of diagnostic test outcomes. That is, the 

uninformative independent priors for test outcomes, 𝑌1𝑖~ 𝑁 (1, 1.5), 𝑌2𝑗~ 𝑁 (3, 1.5) and 𝑌3𝑘~ 𝑁 (3, 1.5) for the 

non-parametric model used. Comparing the results with Carvalho et al. (2013) and Koech (2018) semiparametric 

approaches, the non-parametric model appears to perform competitively. Interestingly, the MFPT model under same 

conditions as In ácio (2012) appears to be competitive and accurate. Notably, the VUS obtained was 0.26 with 95% 

confidence interval [0.23, 0.34] which is higher compared to a ‘useless test’ (1/3!) corresponding to three groups of a 

three-way diagnostic tests = 0.167. Consequently, MFPT estimator appears to have a realistic discriminative power. 

Nevertheless, the means of the groups were set to be ordinal in nature to depict a progression of a condition (in 

bioassays) for which a diagnostic test would discriminate between the three groups. It was noted that the assumptions 

would be invalid especially if three-way diagnostic outcomes are not ordinal in nature or if samples are relatively small 

or if the test outcomes overlap. However, Jokiel-Rokita & Pulit (2013) suggested that small sample sizes are common 

clinical practise especially for rare diseases for which diagnostic tests are not well developed hence the current study 

may be used for inference. 

Overall, the estimation of VUS under MFPT appears to be a promising area of discussing given that it produced 

desirable results even under assumptions of relatively small sample sizes, data with nonstandard features (multimodality 

and skewness). It is proposed that the model can be fit on data generated from other distributions such as exponential 

and gamma distributions as mixtures of distributions as long as posterior distributions can be obtained and formula for 
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ROC surface can be integrated or approximated. Also, hypervolume under surface can be estimated to deal with 

multiclass diagnostic test outcomes and tools be developed to implement ROC surface methodology for multiclass 

outcomes.  
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