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Abstract

We consider the problem of estimating an unknown convex function f∗ : (0, 1)d → R from data (X1,Y1), · · · , (Xn,Yn).
A simple approach is finding a convex function that is the closest to the data points by minimizing the sum of squared
errors over all convex functions. The convex regression estimator, which is computed this way, suffers from a drawback
of having extremely large subgradients near the boundary of its domain. To remedy this situation, the penalized convex
regression estimator, which minimizes the sum of squared errors plus the sum of squared norms of the subgradient over
all convex functions, is recently proposed. In this paper, we prove that the penalized convex regression estimator and
its subgradient converge with probability one to f∗ and its subgradient, respectively, as n → ∞, and hence, establish the
legitimacy of the penalized convex regression estimator.

Keywords: convexity regression, penalized convex regression

1. Introduction

We consider the problem of estimating an unknown function f∗ : (0, 1)d → R from noisy observations (X1,Y1), · · · (Xn,Yn)
when one cannot assume any parametric form on f∗ and the only available information is the fact that f∗ is convex. We
assume that the Xi’s are independent and identically distributed (iid) (0, 1)d-valued random vectors, and

Yi = f∗(Xi) + εi

for 1 ≤ i ≤ n, where the εi’s are iid random variables with mean zero and a finite variance.

This situation arises in many practical settings. For example, the long run average waiting time per customer in a single
server queue is proven to be convex in the service rate (Weber (1983)). Various examples exist in the context of economics
and queueing systems.

When the only available information is the fact that f∗ is convex, a simple approach to estimating f∗ is finding a convex
function that is the closest to the data set (X1,Y1), · · · (Xn,Yn). In other words, we seek to find the solution to the following
problem:

Minimize
1
n

n∑
i=1

(Yi − f (Xi))2 (1)

Subject to f : (0, 1)d → R is convex.

It appears that (1) is an infinite-dimensional problem. However, we can notice that there is a convex function f : (0, 1)d →

R passing through (X1, f1), · · · , (Xn, fn) if and only if there exists a subgradient ξi ∈ Rd at each Xi for 1 ≤ i ≤ n, satisfying

f j ≥ fi + ξT
i (X j − Xi)

for 1 ≤ j ≤ n; see pp. 337–338 of Boyd and Vandenberghe (2004). Using this fact, it can be seen that (1) is equivalent to
the following finite–dimensional problem:

Minimize
1
n

n∑
i=1

(Yi − fi)2 (2)

Subject to f j ≥ fi + ξT
i (X j − Xi), 1 ≤ i, j ≤ n,

where f1, · · · , fn ∈ R and ξ1, · · · , ξn ∈ Rd; see Hildreth (1954), Kuosmanen (2009), and Seijo and Sen (2011) for the
details. In (2), fi corresponds to the value of the fitted function at Xi, and ξi is a subgradient of the fitted function at Xi for
1 ≤ i ≤ n.
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Figure 1. Xi = 0.1 + 3i/100 for 1 ≤ i ≤ 30. The solid line is the unknown function f∗ defined by f∗(x) = 1/x for x ∈ (0, 1)
and the circles are the observations Yi = f∗(Xi) + εi, the dashed line is the convex regression estimator, and the dotted line

is the penalized convex regression estimator with λn = 0.01. The εi’s follow iid standard normal distributions

We refer to the solution to (2) as the convex regression estimator, and this estimator has gained a great deal of attention
from numerous researchers. Hanson and Pledger (1976) established consistency for the case when d = 1, Groeneboom
et al. (2001) computed the rate of convergence for the case when d = 2, Seijo and Sen (2011) studies consistency for the
case when d > 1, and Mazumder et al. (2019) proposed an efficient algorithm for solving (2). One can note that (2) is a
convex quadratic program with n(d + 1) decision variables and n2 linear constraints, so one can solve (2) by using convex
programming solvers.

One of the drawbacks of the convex regression estimator is that it tends to overfit the data set near the boundary of
the domain, so its subgradient gets large near the boundary. The main reason of this undesirable situation is that (2) is
formulated in a way that only the sum of squared errors is minimized. Thus, one way to remedy this situation is adding a
penalty term to the objective function of (2), which leads to the following formulation:

Minimize
1
n

n∑
i=1

(Yi − fi)2 +
λn

n

n∑
i=1

‖ξi‖
2 (3)

Subject to f j ≥ fi + ξT
i (X j − Xi), 1 ≤ i, j ≤ n,

where f1, · · · , fn ∈ R, ξ1, · · · , ξn ∈ Rd, λn ≥ 0 is the smoothing constant, and ‖(z1, · · · , zd)‖ , (z2
1 + · · · + z2

d)1/2 for
(z1, · · · , zd) ∈ Rd; see Chen et al. (2020) for the formulation and Bertsimas and Mundru (2020) for an efficient numerical
algorithm that solves (3).

The solution to (3), which we refer to as the “penalized convex regression estimator,” exhibits nice numerical behavior
such as bounded subgradients near the boundary of the domain. For example, Figure 1 shows an instance of the penal-
ized convex regression estimator, compared to that of the convex regression estimator. The figure shows how the convex
regression estimator overfits data near the boundary of the domain, forcing the subgradient to be large, whereas the penal-
ized convex regression estimator has bounded subgradients throughout the domain. Thus, when estimating both f∗ and its
subgradient, one may prefer the penalized convex regression estimator. Despite its appealing numerical performance, the
statistical foundation of the penalized convex regression estimator has not been established so far.

The goal of this paper is to establish strong consistency of the penalized least squares estimator and its subgradient
uniformly over any compact subset of (0, 1)d. Specifically, Theorems 1 and 2 state that the penalized least squares
estimator and its subgradient converge almost surely to f∗ and the subgradient of f∗, respectively, as n → ∞ uniformly
over any compact subset of (0, 1)d. This paper is the first to establish the consistency of the penalized convex regression
estimator and its subgradient, thereby legitimizing the penalized convex regression estimator as an estimator of f∗.

In Section 2, we summarize notation and definitions. In Section 3, we describe our main results rigorously. We prove
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of the main results in Section 4. We observe the numerical performance of the penalized convex regression estimator in
Section 5. Section 6 includes some concluding remarks.

2. Notation and Definitions

For z ∈ Rd, zT denotes its transpose.

We say f : (0, 1)d → R is differentiable at x ∈ (0, 1)d if there is a vector ∇ f (x) ∈ Rd satisfying

f (x) − f (y) − ∇ f (x)T (x − y)
‖x − y‖

→ 0

as y→ x. We call ∇ f (x) the gradient of f at x.

For a convex function f : (0, 1)d → R, we call ξ ∈ Rd a subgradient of f at x ∈ (0, 1)d if ξT (y − x) ≤ f (y) − f (x) for all
y ∈ (0, 1)d. We call the set of all subgradients at x the subdifferential at x, and denote it by ∂ f (x).

3. Main Results

To define the penalized convex regression estimator more rigorously, we first need to establish the existence of the solution
to (3). Proposition 1 asserts that the solution to (3) exists uniquely.

Proposition 1 The solution to (3) exists uniquely.

Proof. (3) is a minimization problem of a continuous and coersive function over a non–empty closed domain, so the
solution to (3) exists due to Proposition 7.3.1 and Theorem 7.3.7 on pp 216–217 of Kurdila and Zabarankin (2005). The
solution is unique because the objective function of (3) is strictly convex. 2

It should be noted that (3) computes the penalized convex regression estimator only at the Xi’s. More specifically, if
( f̂1, · · · f̂n, ξ̂1, · · · , ξ̂n) is the solution to (3), then f̂i is the penalized convex regression estimator computed at Xi. To define
the penalized convex regression estimator at x , Xi, we set

ĝn(x) = max
1≤i≤n
{ f̂i + ξ̂T

i (x − Xi)} (4)

for x ∈ (0, 1)d. The penalized convex regression estimator ĝn, defined by (4), will be the subject of study in this paper. In
order to establish the consistency of ĝn and its subgradient, we need to make the following assumptions.

A1. λn ≥ 0 for all n and λn → 0 as n→ ∞.

A2. X1, X2, · · · are iid (0, 1)d–valued random vectors.

A3. Given X1, X2, · · · , ε1, ε2, · · · are iid random variables with a mean of zero and a finite variance.

A4. f∗ : (0, 1)d → R is convex and E[supξ∈∂ f∗(X1) ‖ξ‖
2] < ∞.

A5. f∗ is differentiable over (0, 1)d.

Our results are presented below.

Theorem 1 Assume A1–A4. For any δ > 0,

sup{|ĝn(x) − f∗(x)| : x ∈ [δ, 1 − δ]d} → 0

with probability one as n→ ∞.

Theorem 2 Assume A1–A5. For any δ > 0,

sup{‖ξ − ∇ f∗(x)‖ : ξ ∈ ∂ĝn(x), x ∈ [δ, 1 − δ]d} → 0

with probability one as n→ ∞.
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4. Proofs of the Main Results

In this section, we prove Theorems 1 and 2.

4.1 Proof of Theorem 1

The proof consists of 10 steps.

Step 1: Since f∗ is convex,

1
n

n∑
i=1

(ĝn(Xi) − Yi)2 +
λn

n

n∑
i=1

‖∇ĝn(Xi)‖2 ≤
1
n

n∑
i=1

( f∗(Xi) − Yi)2 +
λn

n

n∑
i=1

‖∇ f∗(Xi)‖2,

which implies

1
n

n∑
i=1

(ĝn(Xi) − f∗(Xi))2

≤
2
n

n∑
i=1

εi(ĝn(Xi) − f∗(Xi)) +
λn

n

n∑
i=1

‖∇ f∗(Xi)‖2 −
λn

n

n∑
i=1

‖∇ĝn(Xi)‖2

≤
2
n

n∑
i=1

εi(ĝn(Xi) − f∗(Xi)) +
λn

n

n∑
i=1

‖∇ f∗(Xi)‖2. (5)

Step 2: We next prove that

1
n

n∑
i=1

ĝn(Xi)2 ≤ C (6)

for some constant C and n sufficiently large a.s.

To see why this is true, let θ : (0, 1)d → R be defined by θ(x) = 0 for any x ∈ (0, 1)d. Then

1
n

n∑
i=1

(ĝn(Xi) − Yi)2 +
λn

n

n∑
i=1

‖∇ĝn(Xi)‖2 ≤
1
n

n∑
i=1

(θ(Xi) − Yi)2 +
λn

n

n∑
i=1

‖∇θ(Xi)‖2. (7)

Since ∇θ(x) = (0, · · · , 0) ∈ Rd for all x ∈ (0, 1)d, (7) implies

1
n

n∑
i=1

(ĝn(Xi) − Yi)2 ≤
1
n

n∑
i=1

Y2
i . (8)

Thus, (8) and the Cauchy-Schwarz inequality imply

1
n

n∑
i=1

ĝn(Xi)2 ≤
2
n

n∑
i=1

Yiĝn(Xi) ≤ 2

√√
1
n

n∑
i=1

Y2
i

√√
1
n

n∑
i=1

ĝn(Xi)2,

and hence,
1
n

n∑
i=1

ĝn(Xi)2 ≤
4
n

n∑
i=1

Y2
i .

By the strong law of large numbers (SLLN),

1
n

n∑
i=1

ĝn(Xi)2 ≤ 4E[ f∗(X1)2] + 1

for n sufficiently large a.s., proving (6).

Step 3: We use Step 2 and the SLLN to show that for any subset of (0, 1)d, say A, with a nonempty interior, there exists a
constant CA satisfying

inf
x∈A
|ĝn(x) − f∗(x)| ≤ CA (9)

a.s. for n sufficiently large.
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To establish (9), suppose, on the contrary, we have

inf
x∈A
|ĝn(x) − f∗(x)| >

√
2(C + E[ f∗(X1)2] + 1)/P(X1 ∈ A)

with a positive probability. This implies

lim inf
n→∞

1
n

n∑
i=1

n∑
i=1

(ĝn(Xi) − f∗(Xi))2

≥ lim inf
n→∞

1
n

n∑
i=1

(ĝn(Xi) − f∗(Xi))2I(Xi ∈ A)

≥ lim inf
n→∞

1
n

n∑
i=1

I(Xi ∈ A) lim inf
n→∞

∑n
i=1(ĝn(Xi) − f∗(Xi))2I(Xi ∈ A)∑n

i=1 I(Xi ∈ A)

≥ P(X1 ∈ A)2(C + E[ f∗(X1)2] + 1)/P(X1 ∈ A)
= 2(C + E[ f∗(X1)2] + 1) (10)

with a positive probability. (10) contradicts the fact that

lim inf
n→∞

1
n

n∑
i=1

(ĝn(Xi) − f∗(Xi))2 ≤ lim inf
n→∞

2
n

n∑
i=1

ĝn(Xi)2 + lim inf
n→∞

2
n

n∑
i=1

f∗(Xi)2 ≤ 2(C + E[ f∗(X1)2]

a.s. for n sufficiently large by (6) and the SLLN. Hence, (9) follows.

Step 4: We use Step 2, Step 3, and the convexity of ĝn to show that for any δ > 0, there is a constant Cδ satisfying

sup
x∈[δ,1−δ]d

|ĝn(x)| ≤ Cδ (11)

a.s. for n sufficiently large. (11) follows from similar arguments to the proofs of Lemmas 3.2 and 3.3 on page 1644 of
Seijo and Sen (2011).

Step 5: We note that (11) and Robert and Varberg (1974) imply that, for any δ > 0, there is a constant C̃δ satisfying

|ĝn(x) − ĝn(y)| ≤ C̃δ‖x − y‖ (12)

for all x, y ∈ [δ, 1 − δ]d and n sufficiently large a.s.

Step 6: For δ > 0, let

Fδ = { f : [δ, 1 − δ]d → R such that f is convex, | f (x)| ≤ Cδ, | f (x) − f (y)| ≤ C̃δ‖x − y‖ for all x, y ∈ [δ, 1 − δ]d}.

By Steps 4 and 5, ĝn restricted to [δ, 1 − δ]d belongs to Fδ for n sufficiently large a.s.

For any ε > 0, there is a finite number of functions f1, · · · , fr in Fδ with r = r(ε) satisfying, for any f ∈ Fδ,

sup
x∈[δ,1−δ]d

| f (x) − fi( f )| < ε (13)

for some i ∈ {1, · · · , r}; see, for example, Theorem 6 of Bronshtein (1976).

Step 7: We will utilize (6) and (13) to show that

lim sup
n→∞

1
n

n∑
i=1

εi(ĝn(Xi) − f∗(Xi)) ≤ 0 a.s. (14)

To fill in the details, let ε > 0 be given and set Aδ = [δ, 1 − δ]d and Bδ = (0, 1)d \ [δ, 1 − δ]d. Note that

1
n

n∑
i=1

εi(ĝn(Xi) − f∗(Xi))

=
1
n

n∑
i=1

εi(ĝn(Xi) − f∗(Xi))I(Xi ∈ Aδ) +
1
n

n∑
i=1

εi(ĝn(Xi) − f∗(Xi))I(Xi ∈ Bδ)

= I + II, say.
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By the Cauchy–Schwarz inequality and (6), we have

II ≤

√√
1
n

n∑
i=1

ε2
i I(Xi ∈ Bδ)

√√
1
n

n∑
i=1

(ĝn(Xi) − f∗(Xi))2

≤

√√
1
n

n∑
i=1

ε2
i I(Xi ∈ Bδ)

√√
2
n

n∑
i=1

ĝn(Xi)2 +
2
n

n∑
i=1

f∗(Xi)2

≤

√
E[ε2

1I(X1 ∈ Bδ)]
√

2C + 2E[ f∗(X1)2] (15)

for n sufficiently large a.s. By taking δ small enough so that (15) ≤ 2ε, we can ensure

II < 2ε (16)

for n sufficiently large a.s.

On the other hand, we note that

I =
1
n

n∑
i=1

εi(ĝn(Xi) − f∗(Xi))I(Xi ∈ Aδ)

=
1
n

n∑
i=1

εi(ĝn(Xi) − f j(Xi))I(Xi ∈ Aδ) +
1
n

n∑
i=1

εi( f j(Xi) − f∗(Xi))I(Xi ∈ Aδ)

for any j ∈ {1, · · · , r(ε)}, and hence,

I ≤
1
n

n∑
i=1

εi(ĝn(Xi) − f j(Xi))I(Xi ∈ Aδ) + max
1≤ j≤r(ε)

1
n

n∑
i=1

εi( f j(Xi) − f∗(Xi))I(Xi ∈ Aδ)

for any j ∈ {1, · · · , r(ε)}.

Therefore,

I ≤ min
1≤ j≤r(ε)

1
n

n∑
i=1

|εi||ĝn(Xi) − f j(Xi)|I(Xi ∈ Aδ) + max
1≤ j≤r(ε)

1
n

n∑
i=1

εi( f j(Xi) − f∗(Xi))I(Xi ∈ Aδ)

≤

√√
1
n

n∑
i=1

ε2
i I(Xi ∈ Aδ) min

1≤ j≤r(ε)

√√
1
n

n∑
i=1

(ĝn(Xi) − f j(Xi))2 + max
1≤ j≤r(ε)

1
n

n∑
i=1

εi( f j(Xi) − f∗(Xi))I(Xi ∈ Aδ)

≤ ε

√√
1
n

n∑
i=1

ε2
i I(Xi ∈ Aδ) + max

1≤ j≤r(ε)

1
n

n∑
i=1

εi( f j(Xi) − f∗(Xi))I(Xi ∈ Aδ)

≤ ε(E[ε2
1] + 1) + ε (17)

for n sufficiently large a.s. by the SLLN.

By (16) and (17),

lim sup
n→∞

1
n

n∑
i=1

εi(ĝn(Xi) − f∗(Xi)) ≤ 0 a.s.,

proving (14).

Step 9: By combining A4, (5) and (14), we obtain

1
n

n∑
i=1

(ĝn(Xi) − f∗(Xi))2 → 0 (18)

as n→ ∞ a.s.

Step 10: We use (18) and Step 5 to establish Theorem 1. Let ε > 0 be given. We divide [δ, 1 − δ]d into compact subsets
S 1, · · · , S m with non-empty interior such that ∪m

i=1S i ⊃ [δ, 1 − δ]d and sup{‖x − y‖ : x, y ∈ S i} ≤ ε for 1 ≤ i ≤ m.
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By Step 5 and the fact that f∗ is uniformly Lipschitz over [δ, 1−δ]d, there is a constant C̃ satisfying ‖ĝn(x)−ĝn(y)‖ ≤ C̃‖x−y‖
and | f∗(x) − f∗(y)| ≤ C̃‖x − y‖ for all x, y ∈ [δ, 1 − δ]d.

For any x, X j ∈ S i,

|ĝn(x) − f∗(x)| ≤ |ĝn(x) − ĝn(X j)| + |ĝn(X j) − f∗(X j)| + | f∗(X j) − f∗(x)|
≤ ‖x − X j‖C̃ + |ĝn(X j) − f∗(X j)| + ‖x − X j‖C̃

≤ 2εC̃ + |ĝn(X j) − f∗(X j)|.

Hence, for any i ∈ {1, · · · ,m} and x ∈ S i,

|ĝn(x) − f∗(x)| ≤ 2εC̃ + min
X j∈S i
|ĝn(X j) − f∗(X j)|

and

sup
x∈S i

|ĝn(x) − f∗(x)| ≤ 2εC̃ +
1∑n

j=1 I(X j ∈ S i)

n∑
j=1

|ĝn(X j) − f∗(X j)|I(X j ∈ S i)

≤ 2εC̃ +
n∑n

j=1 I(X j ∈ S i)
1
n

n∑
j=1

|ĝn(X j) − f∗(X j)|I(X j ∈ S i)

≤ 2εC̃ +
n∑n

j=1 I(X j ∈ S i)

√√
1
n

n∑
j=1

(ĝn(X j) − f∗(X j))2

≤ εC′ by (18) (19)

a.s. for n sufficiently large for some constant C′. Since (19) holds for each i ∈ {1, · · · ,m}, Theorem 1 follows.

4.2 Proof of Theorem 2

Suppose there is ε > 0 and x1, x2, · · · ∈ [δ, 1 − δ]d such that

‖ξ − ∇ f∗(xn)‖ ≥ ε (20)

for ξ ∈ ∂ĝn(xn) and infinitely many n with a positive probability.

By (20), there is i ∈ {1, · · · , d} satisfying
|eT

i ξ − eT
i ∇ f∗(xn)| ≥ ε/d (21)

for ξ ∈ ∂ĝn(xn) and infinitely many n with a positive probability, where ei ∈ Rd is a vector of zeros except for 1 in the ith
entry for 1 ≤ i ≤ d.

(21) implies either
eT

i ξ ≥ eT
i ∇ f∗(xn) + ε/d, (22)

or
eT

i ∇ f∗(xn) − ε/d ≥ eT
i ξ (23)

for infinitely many n with a positive probability. Suppose (22) holds. Then, there exists a subsequence xn1 , xn2 , · · · such
that xnk → x0 ∈ [δ, 1 − δ]d as k → ∞.

Note that by the definition of the subgradient, for any h > 0,

eT
i ξ ≤

ĝnk (xnk + hei) − ĝnk (xnk )
h

.

By the continuity of ĝn and Theorem 1, letting k → ∞ in both sides yields

eT
i ξ ≤

f∗(x0 + hei) − f∗(x0)
h

. (24)

By (22) and (24), we have

lim sup
k→∞

eT
i ∇ f∗(xnk ) + ε/d ≤

f∗(x0 + hei) − f∗(x0)
h
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and by the continuity of ∇ f∗(·), we have

eT
i ∇ f∗(x0) + ε/d ≤

f∗(x0 + hei) − f∗(x0)
h

(25)

for any h > 0.

By letting h ↓ 0 in (25), we obtain
eT

i ∇ f∗(x0) + ε/d ≤ eT
i ∇ f∗(x0),

which is a contradiction. Similarly, when we assume (23) holds, we can reach a contradiction. Hence, Theorem 2 is
proved.

5. Empirical Studies

In this section, we compare the numerical behavior of the penalized convex regression estimator to that of the convex
regression estimator. In Section 5.1, we assume that f∗ : (0, 1)3 → R is given by a mathematical formula. In Section 5.2,
f∗ : (1.2, 1.7)→ R is the long run average waiting time per customer in an M/M/1 queue. Our findings from the numerical
experiments are summarized in Section 5.3.

5.1 Simplified Example

We assume that f∗ : (0, 1)3 → R is given by f∗(z1, z2, z3) = z2
1 + 0.5z2

2 + 0.2z2
3 for (z1, z2, z3) ∈ (0, 1)3, The Xi’s are drawn

uniformly from (0, 1)3. The Yi’s are drawn from Yi = f∗(Xi)+εi, where the εi’s follow the normal distribution with mean 0
and standard deviation 0.1. Once the (Xi,Yi)’s are obtained, we computed the convex regression estimator by solving (2)
using CVX (Grant and Boyd (2014)). We also computed the penalized regression estimator by solving (3) with λn = 1/n
and λ = 1/(2n), respectively, using CVX. To evaluate the performance of the penalized regression estimator ĝn(·), we
computed the integrated mean square error (IMSE) between f∗ and the estimator as follows:

1
n

n∑
i=1

(ĝn(Xi) − f∗(Xi))2,

and the IMSE between the gradient of f∗ and the subgradient of ĝn as follows:

1
n

n∑
i=1

(ξ̂i − ∇ f∗(Xi))2,

where the ξ̂i’s are the subgradients of ĝn at the Xi’s, computed from (2).

We then repeated this procedure 400 times independently, generating 400 IMSE values between f∗ and ĝn and 400 IMSE
values between ∇ f∗ and the subgradient of ĝn. Using these values, we computed the 95% confidence interval of the IMSE
between f∗ and ĝn and the 95% confidence interval of the IMSE between the gradient of f∗ and the subgradient of ĝn.
The IMSE values between f∗ and the convex regression estimator is computed similarly. We reported the 95% confidence
intervals between f∗ and the estimators in Table 1 for a wide rage of n. We also report the 95% confidence intervals
between the gradient of f∗ and the subgrdient of the estimators in Table 2 for a wide range of n.

Table 1. The 95% confidence intervals of the IMSE between f∗ and the estimators when f∗(z1, z2, z3) = z2
1 + 0.5z2

2 + 0.2z2
3

for (z1, z2, z3) ∈ (0, 1)3

Convex Penalized Convex Penalized Convex
Regression Regression Estimator Regression Estimator

n Estimator with λn = 1/n with λn = 1/(2n)

20 0.0073 ± 0.0003 0.0091 ± 0.0003 0.0064 ± 0.0002
40 0.0053 ± 0.0002 0.0061 ± 0.0002 0.0034 ± 0.0001
60 0.0046 ± 0.0001 0.0040 ± 0.0001 0.0028 ± 0.0001

5.2 Single Server Queue

We assume that f∗(x) is the long run average waiting time per customer in an M/M/1 queue, where the service times follow
the exponential distribution with mean 1/x for x ∈ (1.2, 1.7), and the interarrival times follow the exponential distribution
with mean 1.
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Table 2. The 95% confidence intervals of the IMSE values between the gradient of f∗ and the subgradient of the
estimators when f∗(z1, z2, z3) = z2

1 + 0.5z2
2 + 0.2z2

3 for (z1, z2, z3) ∈ (0, 1)3

Convex Penalized Convex Penalized Convex
Regression Regression Estimator Regression Estimator

n Estimator with λn = 1/n with λn = 1/(2n)

20 2.73 × 108 ± 1.56 × 108 0.1945 ± 0.0019 0.1554 ± 0.0018
40 1.04 × 1015 ± 0.58 × 1015 0.1274 ± 0.0014 0.0917 ± 0.0013
60 8.43 × 1017 ± 1.97 × 1017 0.0984 ± 0.0010 0.0768 ± 0.0010

The Xi’s are drawn uniformly from (1.2, 1.7). For each Xi, Yi is generated by averaging the waiting times of the first
5000 customers in the single server queue, initialized empty and idle, with the service rate of Xi. Once the (Xi,Yi)’s
are obtained, we computed the convex regression estimator by solving (2) using CVX. We also computed the penalized
regression estimator by solving (3) with λn = 1/(20n) and λ = 1/(40n), respectively, using CVX.

We reported the 95% confidence intervals between f∗ and the estimators, using 400 iid trials, in Table 3 for a wide range
of n. We also reported the 95% confidence intervals between the gradient of f∗ and the subgrdients of the estimators,
using 400 iid trials, in Table 4 for a wide range of n.

Table 3. The 95% confidence intervals of the IMSE between f∗ and the estimators when f∗ is the long-run average
waiting time per customer in a M/M/1 queue

Convex Penalized Convex Penalized Convex
Regression Regression Estimator Regression Estimator

n Estimator with λn = 1/(20n) with λn = 1/(40n)

10 0.0850 ± 0.0103 0.0373 ± 0.0028 0.0719 ± 0.0058
20 0.0436 ± 0.0058 0.0267 ± 0.0018 0.0322 ± 0.0025
30 0.0262 ± 0.0048 0.0214 ± 0.0014 0.0172 ± 0.0016

Table 4. The 95% confidence intervals of the IMSE between the gradient of f∗ and the subgradient of the estimators
when f∗ is the long run average waiting time per customer in an M/M/1 queue

Convex Penalized Convex Penalized Convex
Regression Regression Estimator Regression Estimator

n Estimator with λn = 1/(20n) with λn = 1/(40n)

10 3.50 × 1010 ± 3.48 × 1010 16.63 ± 0.40 56.53 ± 1.33
20 1.47 × 1016 ± 2.35 × 1016 12.90 ± 0.42 16.43 ± 0.82
30 1.61 × 1017 ± 1.14 × 1017 11.21 ± 0.48 9.34 ± 0.55

5.3 Observations from Numerical Experiments

Tables 1 and 3 show that both the convex regression estimator and the penalized convex regression estimator converge
in terms of the IMSE. On the other hand, Tables 2 and 4 indicate that only the subgradient of the penalized convex
regression estimator shows convergence in terms of the IMSE, and that the subgradient of the convex regression estimator
diverges as n increases in terms of the IMSE. This phenomenon is consistent with what we observed in Figure 1; the
convex regression estimator has extremely large subgradients near the boundary of the domain, while the penalized convex
regression estimator has bounded subgradients throughout the domain.

It is also observed that the numerical performance of the penalized convex regression estimator is highly dependent on
the smoothing constant λn. Thus, the issue of how to select the smoothing constant is a promising future research topic.
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6. Conclusions

In this paper, we established consistency of the penalized convex regression estimator. Numerical experiments show that,
unlike the convex regression estimator, the penalized convex regression estimator and its gradient are convergent near the
boundary of its domain. Hence, a promising research topic for the future is a thorough examination of the behavior of the
penalized convex regression estimator near the boundary of its domain.
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