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Abstract

In observational studies, the existence of confounding variables should be attended to, and propensity score weighting
methods are often used to eliminate their effects. Although many causal estimators have been proposed based on propen-
sity scores, these estimators generally assume that the propensity scores are properly estimated. However, researchers
have found that even a slight misspecification of the propensity score model can result in a bias of estimated treatment
effects. Model misspecification problems may occur in practice, and hence, using a robust estimator for causal effect is
recommended. One such estimator is a subclassification estimator. Wang, Zhang, Richardson, & Zhou (2020) presented
the conditions necessary for subclassification estimators to have

√
N-consistency and to be asymptotically well-defined

and suggested an idea how to construct subclasses.

In this paper, we propose a subclass construction algorithm, a causal subclassification tree, that satisfies the conditions of
Wang et al. (2020). We also explain the connection between our algorithm and Wang et al. (2020)’s suggested method
and show that their method does not satisfy their conditions. We performed simulation experiments in a similar setting
as in Kang and Schafer (2007). The simulation results show that the causal subclassification algorithm improves the
performance of weighting estimators for causal effects, especially when the propensity model and/or outcome model is
misspecified. It should also be noted that when machine learning methods such as random forest and XgBoost are used to
estimate propensity scores, the doubly robust estimator with the causal subclassification tree shows the best performance
when both models are misspecified. We also compared our method to Wang et al. (2020)’s suggested method through the
simulation and found that the causal subclassification tree has almost the same bias but a smaller variance compared to
Wang et al. (2020)’s suggested method.

Keywords: causal inference, subclassification estimator, decision tree, robust inference

1. Introduction

One of the main purposes of observational studies is to estimate the causal effect of an intervention or a treatment on the
outcome. The ideal setting to estimate causal effect is a randomized control trial (RCT). However, in practice, treatments
or interventions cannot be assigned randomly. Typical examples are advertisement placement in marketing and smoking
status in epidemiology. There are various reasons that make random assignment difficult, ranging from practical to
ethical. Particularly in observational studies, treatments or interventions often depend on covariates because controlling
confounding variables is difficult. In cases where the outcome is also affected by covariates, if we do not pay enough
attention to assignment mechanisms, the estimated effect of the treatment may be biased.

The most commonly used technique for removing the effects of confoundings is the propensity score, proposed by Rosen-
baum and Rubin (1983). Causal effect estimation methods using the propensity score include matching (e.g., Rosenbaum
& Rubin, 1985; Rosenbaum, 1989; Abadie & Imbens, 2006), subclassification (e.g., Rosenbaum & Rubin,1984; Rosen-
baum, 1991; Hansen, 2004), weighting (e.g., Rosenbaum, 1987; Robins, Hernán, & Brumback, 2000; Hirano, Imbens,
& Ridder, 2003), and regression (e.g., Heckman, Ichimura, & Todd, 1997;). In recent years, there has been growing in-
terest in individual causal effects. BART(Hill, 2011), Causal Forest (Wager & Athey, 2018), Generalized Random Forest
(Athey, Tibshirani, & Wager, 2019) and R-Learner (Nie & Wager, 2020) have been proposed as methods for estimating
heterogeneous causal effects.

When we estimate causal effects using the propensity score model, we need to be careful to avoid model misspecification
of the propensity score. For example, Kang and Schafer (2007) pointed out the instability of the IPW estimator (Hirano
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et al., 2003) and the Doubly Robust estimator (Robins, Rotnitzky, & Zhao, 1994) caused by misspecification of the
propensity score model. In practice, it may be difficult to get an exact specification of the true propensity score model;
however, we need to consider this aspect when using the model.

One popular approach to address the model misspecification problem is subclassification, which involves grouping units
into K subclasses based on their estimated propensity scores. For example, Rosenbaum and Rubin (1984) recommended
using K = 5 as the number of subclasses. Unlike the IPW estimator, the ordinal subclassification estimator (cf. Rosen-
baum & Rubin, 1983) does not depend on the estimated propensity score itself, but uses the rank information of the
estimated propensity score. Therefore, the subclassification estimator is robust with respect to propensity score outliers
or slight model misspecification for propensity score.

However, to use a subclassification estimator in practice, it is necessary to determine a method for subclass construction
(i.e., we need to choose the lower and upper bounds of the propensity score in each subclass). A commonly used approach
to determine the propensity score cut-off points of subclasses is to use quantiles of estimated propensity scores with a
fixed number of subclasses, 5 to 10. A problem with this approach is that the length of each subclass does not converge
to 0 even if the sample size N goes to infinity, and hence, the subclassification estimator is asymptotically biased. To
avoid this problem, Wang et al. (2020) proposed conditions between sample size and number of subclasses at which the
subclassification estimator becomes

√
N-consistent and asymptotically well defined. They also proposed a theoretical

guideline to construct subclasses and suggested constructing subclasses such that each subclass contains at least one
observation from treatment and control groups. However there are two concerns. One is about the variance of the
subclassification estimator obtained by their suggested method. When the number of samples in each subclass becomes
small, then the variance of causal estimators in each subclass may become large, so the subclassification estimator may
have large variance. The other concern is whether the suggested method satisfies their theoretical guideline.

In this paper, we propose a new subclass construction algorithm that satisfies Wang et al. (2020)’s conditions for a
subclassification estimator to become

√
N-consistent and asymptotically well-defined. Additionally, we show that our

algorithm includes Wang et al. (2020)’s suggested method as a special case, and prove that their method does not satisfy
their conditions that the subclassification estimator becomes asymptotically well-defined.

We call this algorithm the causal subclassification tree. In our algorithm, we use the decision tree by Breiman, Friedman,
Stone, and Olshen (1984) with the sum of variance of propensity scores or sum of variance of potential outcomes in child
nodes as the impurity measure. To achieve Wang et al. (2020)’s conditions, we impose constraints on splitting rules
controlled by two parameters: on each split leaves at least a fraction α of the available training examples on each side of
the split and, the trees fully grown to depth ` for some ` ∈ N, i.e., between ` and 2` − 1 observations of treatment and
control groups in each terminal node of the tree. Next, terminal nodes are used as strata for subclassification. In section 3,
we show that the number of leaves generated by our algorithms with ` = O(

√
N log(N)) satisfies the conditions by Wang

et al. (2020). We also proposed a method for selecting parameters (`, α) and extended our subclassification algorithm to
multi-class treatment.

Some researchers claim that when propensity scores are estimated by machine learning (ML) methods, such as random
forest, boosting, or neural networks, the resulting propensity score weighting estimator has a larger bias or RMSE in some
cases than when a logistic regression model is used for propensity score estimation (i.e., Cannas & Arpino, 2019). We
also confirm this claim, as we show in section 4. However since combining a causal subclassification tree algorithm and
weighting estimator with the ML method shows a relatively small bias and variance compared to the original weighting
estimator with ML methods, when the propensity score model is misspecified, the weighting estimator with the ML
method combined with a causal subclassification tree shows a better performance than a weighting estimator with a
logistic regression model and CBPS.

This paper is organized as follows. The rest of Section 1 describes the symbols and assumptions used in this paper.
Section 2 introduces a general subclassification estimator for causal effect and the results of Wang et al. (2020) on√

N-consistency of the subclassification estimator. In section 3, we propose the subclassification algorithm and show its
asymptotic properties. We then extend our algorithm to the case of multi-class treatment and estimation for weighted
average treatment effects. In section 4, we confirm that the weighting estimators for causal effects become robust by
applying our methods through simulation using Kang and Schafer (2007)’s settings. We end with a discussion of the
findings in section 5.

1.1 Notation for Binary Treatment

Let us consider a random sample of N observations from a population P. For each unit i, we observe a binary treatment
variable Ti ∈ {0, 1}, a p-dimensional column vector of observed pre-treatment covariates Xi, whose support is denoted by
X, and outcome Yi ∈ R. The propensity score is defined as the conditional probability of receiving the treatment given the
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covariates Xi.

Following Rosenbaum and Rubin (1983), we assume that the true propensity score is bounded away from 0 and 1:

0 < Pr[Ti = 1|Xi = x] < 1, for all x ∈ X (1)

This assumption means that all individuals in the data have a non-zero probability of receiving or not receiving treatment.

To estimate causal effects from the data, additional assumptions must be made to the data generation process. We assume
the unconfoundedness assumption,

{Yi(1),Yi(0)} ⊥⊥ Ti

∣∣∣Xi = x

where Yi(t) are potential outcomes corresponding to treatment assignment t ∈ {0, 1}.

Under the unconfoundedness assumption, Rosenbaum and Rubin (1983) showed that treatment assignment is ignorable
given the (true) propensity score π(Xi).

{Yi(1),Yi(0)} ⊥⊥ Ti

∣∣∣π(Xi)

From this result, since expectation of potential outcomes is E[Yi(t)|π(Xi),Ti = t] = E[Yi(t)|π(Xi)], the average treatment
effect can be written as the difference between the expected outcomes of the treatment group and the control group
conditions on propensity score,

E[Yi(1) − Yi(0)] = E[E[Yi(1)|Ti = 1, π(Xi)] − E[Yi(0)|Ti = 0, π(Xi)]]
= E[E[Yi|Ti = 1, π(Xi)] − E[Yi|Ti = 0, π(Xi)]]

In fact, the propensity score is a continuous quantity on (0, 1), and there is no guarantee that there will be samples with
the same propensity score. In general, the following three estimators are often used. The first is a matching method that
measures the closeness of the propensity score between samples using an appropriate distance function or kernel function,
and compares those with close distances. The second is an Inverse Probability Weighting estimator (IPW estimator,
Hirano et al., 2003) that weights samples by the reciprocal of the propensity score. The last is a stratification method that
divides the data into subclasses of 5 to 10 based on the propensity score and then compares them by subclass.

2. Subclassification Estimator

Subclassification estimators are constructed in two steps. First, the observed data are divided into subclasses based on
propensity scores, and then the averages of outcomes of treatment and control groups belonging to the same subclass are
compared (Rosenbaum & Rubin, 1984).

Let π̂min and π̂max be the minimum and the maximum of estimated propensity scores, respectively, and q̂k, k = 0, 1, . . . ,K
be the values such that π̂min = q̂0 < q̂1 < · · · < q̂K−1 < q̂K = π̂max where K is the number of subclasses. The set
of Ĉk = [q̂k−1, q̂k), (k = 1, 2, ...,K − 1) and ĈK = [q̂K−1, q̂K] forms a partition of the interval [π̂min, π̂max]. Let Nk be
the number of units in subclass k and Ntk be the number of subjects in treatment group t in subclass k for t = 0, 1 and
k = 1, · · · ,K. That is, Nk =

∑N
i=1 I(π̂(Xi) ∈ Ĉk), and Ntk =

∑N
i=1 I(π̂(Xi) ∈ Ĉk)I(Ti = t). Then the subclassification

estimator for average treatment effect τ̂S is given by

τ̂S =

K∑
k=1

Nk

N

 1
N1k

N∑
i=1

TiYiI(π̂i ∈ Ĉk) −
1

N0k

N∑
i=1

(1 − Ti)YiI(π̂i ∈ Ĉk)

 .
For subclassification estimators, setting K = 5 is recommended in Rosenbaum and Rubin (1984), and the quantiles of
estimated propensity score are used for K cut-off points. However, as is well known, if K is fixed, τ̂S may become a biased
estimator for τ (e.g., Lunceford & Davidian, 2004).

Wang et al. (2020) proposed increasing K according to the sample size N to avoid bias that may occur when K is fixed.
That is, the number of subclasses K = K(N) is set to satisfy the following properties:

K(N)→ ∞(N → ∞) and K(N)/
√

N → ∞(N → ∞) (2)

They also proposed the Hybrid Estimator τ̂H ,

τ̂H =

K(N)∑
k=1

Nk

N

 1
N1k

N∑
i=1

ZiYiI(π̂i ∈ Ĉk) −
1

N0k

N∑
i=1

(1 − Zi)YiI(π̂i ∈ Ĉk)

 (3)
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and showed that τ̂H is
√

N-consistent estimator for τ under conditions (2). Moreover, they showed that if the condition

(K(N)) log(K(N))/N → 0. (4)

is satisfied, then τ̂H becomes asymptotically well defined :

Pr(Ntk > 0)→ 1 for all t, k.

So, to τ̂H be asymptotically well-defined, the condition is that the number of subclasses should grow slowly enough so
that all subclasses contain at least one observations from treatment and control group.

In Wang et al. (2020), they proposed using the maximal number of subclasses such that the hybrid estimator is well
defined:

Kmax = max{K : τ̂H is well defined},

and called the hybrid estimator with Kmax as the full subclassification estimator τ̂FS given by

τ̂FS =

Kmax∑
k=1

Nk

N

 1
N1k

N∑
i=1

ZiYiI(π̂i ∈ Ĉk) −
1

N0k

N∑
i=1

(1 − Zi)YiI(π̂i ∈ Ĉk)

 . (5)

Although Wang et al. (2020) provided a theoretical guideline for choosing K, they did not give a practical procedure for
finding Kmax, but suggested using the largest K such that all subclasses Ĉ1, ...ĈK contain at least one observation from
each treatment group. However, does their suggested procedure satisfy conditions (2) and (4) ?

In the following sections, we first propose a new algorithm controlled by two parameters to generate subclasses and show
the conditions for its parameters so that the number of subclasses K(N) generated by the proposed algorithm satisfies
conditions (2) and (4). We then point out that Wang et al. (2020)’s suggested procedure is a special case of our algorithm
and show that the resulting subclassification estimator with their suggested procedure does not satisfy condition (4).

3. Causal Subclassification Tree

In this section, we propose an algorithm named causal subclassification tree, which generates subclasses C1, ...,CK auto-
matically from estimated propensity scores and potential outcomes. We evaluate upper and lower bounds of the number
of subclasses K(N) generated by our algorithm, and show such K(N) satisfies conditions (2) and (4). Then, we discuss
the robustness of the subclassification estimator with our algorithm in section 3.3, and explain the advantages of our algo-
rithms in practical situations. The parameter tuning procedures and the extension of our algorithm to multi-class treatment
are described at the end of this section.

3.1 Algorithm of Causal Subclassification Tree

Let the parent node be P and the child nodes C,C′, which are generated from P. Further, let (N0P,N1P), (N0C ,N1C),
(N0C′ ,N1C′ ) be the number of samples of treatment and control groups in parent node P, child node C, and child node C′,
respectively. Then, splitting the node is controlled by parameters (`, α) as follows. For a given ` ∈ N and α ∈ (0, 0.5], the
causal subclassification tree splits the parent node P into C,C′ only when the conditions

N1C ,N1C′ ,N0C ,N0C′ ≥ `, (6)

N0C ,N0C′ ≥ αN0P, N1C ,N1C′ ≥ αN1P. (7)

are satisfied. Condition (6) controls the minimum leaf size of a tree so that each leaf contains at least ` units of each group,
and condition (7) controls the ratio of units that child nodes C and C′ contain from the parent node P. A moderate value
of α prevents extremely imbalanced child nodes

Next, we describe our splitting rules. Let the estimated propensity score for sample i be π̂i. For a split of node P to C and
C′, we define the splitting criteria ∆1(C,C′) as follows.

∆1(C,C′) =
1

|{i : π̂i ∈ C}|

∑
{i:π̂i∈C}

(π̂i − π̄C)2 +
1

|{i : π̂i ∈ C′}|

∑
{i:π̂i∈C′}

(π̂i − π̄C′ )2 (8)

where, π̄C and π̄C′ are the averages of the estimated propensity scores in the child nodes C and C′. At node P, we choose
the split that minimizes ∆(C,C′) among all the splits that satisfy condition (6) and (7). Nodes are split recursively until
no split satisfies conditions (6) and (7), i.e., each leaf has more than ` but less than 2` − 1 samples of either classes. The
procedure for the causal subclassification tree is described as follows.
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Procedure.1 Causal Subclassification Tree

Input: estimated propensity score{π̂i}
N
i=1, treatment variable {Ti}

N
i=1, minimum leaf size `, sample fraction α.

1. find the split of the node that minimizes ∆1(C,C′) among the splits satisfying conditions (6) and (7), and
apply this split to the node. Repeat this step recursively until no split satisfies (6) and (7).

2. Regard terminal nodes generated by the tree as subclasses C1,C2, ...,CK .

3. Compute subclassification estimator τ̂H , with equation (3)

This criterion (8) is the sum of the variances of the estimated propensity scores in the child nodes C and C′. Instead of this
criterion, we can also use the sum of the squared prediction error, a Gini coefficient, or information gain as the criterion.

We can use the following splitting criteria ∆2(C,C′) instead of ∆1(C,C′), which uses potential outcomes Y(1) and Y(0):

∆2(C,C′) =
1

|{i : π̂i ∈ C}|

∑
{i:π̂i∈C}

{
Ti

(
Yi − ȲC(1)

)2
+ (1 − Ti)

(
Yi − ȲC(0)

)2
}

+
1

|{i : π̂i ∈ C′}|

∑
{i:π̂i∈C′}

{
Ti

(
Yi − ȲC′ (1)

)2
+ (1 − Ti)

(
Yi − ȲC′ (0)

)2
}

where ȲC(t) and ȲC′ (t) are defined as

ȲC(1) =
1

|{i : π̂i ∈ C,Ti = t}|

∑
{i:π̂i∈C}

TiYi,

ȲC(0) =
1

|{i : π̂i ∈ C,Ti = 0}|

∑
{i:π̂i∈C}

(1 − Ti)Yi

and

ȲC′ (1) =
1

|{i : π̂i ∈ C′,Ti = t}|

∑
{i:π̂i∈C′}

TiYi,

ȲC′ (0) =
1

|{i : π̂i ∈ C′,Ti = 0}|

∑
{i:π̂i∈C′}

(1 − Ti)Yi,

which are the averages of the observed potential outcomes in child nodes C and C′, respectively. Athey and Imbens
(2016) pointed out that, when splits and outcomes are not independent, the subclassification estimator may have a bias.
This problem can be avoided by applying the Double-Sample Tree (Wager & Athey, 2018) to the procedure. 1. Double-
sample tree is a technique to achieve honesty (Wager & Athey, 2018) by dividing its training subsample into two halves
I and J . It uses the J−sample to place the splits, while holding out the I-sample to make the within-leaf estimation.

Procedure.2 Causal Subclassification Tree (Double-Sample)

Input: estimated propensity score {π̂i}
N
i=1, outcomes {Yi}

N
i=1, treatment variable {Ti}

N
i=1, minimum leaf size k¢sample

fraction α.

1. Divide data randomly into disjoint sets of size |I| = bN/2c and |J| = dN/2e.

2. Find the split of the node that minimizes ∆2(C,C′) among satisfying conditions (6) and (7), and apply this
split to the nodes with all observations from I-data, and X- or T-observations from J-data, but without
outcomes Y-observations from J-data. Repeat this step recursively until no split satisfies (6) and (7) for
I-data.

3. Regard terminal nodes generated by the tree as subclasses C1,C2, ...,CK .

4. Compute subclassification estimator τ̂H , with equation (3), using I-data.
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Remark 1. Here, ` and α are parameters for controlling the tree so that extreme division is not generated. These
parameters are also used for Wager and Walther (2015) and Causal Forest (Wager & Athey, 2018) for generating α-
regular tree.

3.2 Properties of the Numbers of Subclasses Generated by Causal Subclassification Tree

In this section, we discuss the asymptotic behavior of the number of subclasses K(N) generated by the causal subclassifi-
cation tree. The following theorem shows its upper and lower bounds.

Theorem 1 The number of subclasses K(N) generated by the causal subclassification tree with parameter (`, α) satisfies
the following inequality.

2log min{N1 , N0 }
2`−1 / logα−1

≤ K(N) ≤ 2log max{N1 , N0 }
` / log(1−α)−1

(9)

where N is the number of observations and N1 and N0 are the number of observations in the treatment and control groups,
respectively. Thus, N1 + N0 = N.

Proof.

By assumption (1), the propensity score is 0 < p(x) < 1 for any x ∈ X, so that as N → ∞, it holds N0,N1 → ∞.

Let dmin and dmax be the minimum and the maximum depth of the causal subclassification tree with sample size (N1,N0)
and parameters (`, α). Because a child node contains at least 100α% units of its parent node by condition (7), the following
inequality holds,

min{N1,N0}α
dmin ≤ 2` − 1

Additionally, because the child node contains at the most 100(1 − α)% units of its parent node, it holds

` ≤ max{N1,N0} (1 − α)dmax .

Thus, we have the following inequality:

log
min{N1,N0}

2` − 1

/
logα−1 ≤ dmin

dmax ≤ log
max{N1,N0}

`

/
log(1 − α)−1

where we use logarithm base as 2, because two leaves are generated from one split. The number of terminal nodes in a
tree is larger than 2dmin and smaller than 2dmax . Therefore, the inequality (9) holds.

Theorem 2 For α ∈ (0, 0.5], and ` =
√

N/ log(N), the number of subclasses K(N) generated by causal subclassification
tree satisfies condition (2) and (4);

K(N)→ ∞, K(N)/
√

N → ∞ and K(N) log(K(N))/N → 0

as N → ∞.

Proof. By assumption (1), N0/N → P(W = 0) , 0, N1/N → P(W = 1) , 0. So, N j = O(N). The lower bound in (9) is
shown to be

2log min{N1 ,N0 }
2`−1 / logα−1

= 2log min{N1 ,N0 }
2
√

N/ log(N)−1
/ logα−1

= 2log min{N1 ,N0 } log(N)
2
√

N−log(N)
/ logα−1

= O(
√

N log(N)),

and the upper bound is also shown to be

2log max{N1 ,N0 }
` / log(1−α)−1

= 2log max{N1 ,N0 }√
N/ log(N)

/ log(1−α)−1

= 2log max{N1 ,N0 } log(N)
√

N
/ log(1−α)−1

= O(
√

N log(N)).
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Thus, by inequality (9),
K(N) = O(

√
N log(N))

and conditions (2) and (4) hold.

According to theorem 2, if we set ` =
√

N/ log(N), then K(N) satisfies conditions (2) and (4). Therefore, the subclassi-
fication estimator obtained by the causal stratification tree is an

√
N-consistent estimator for τ and is asymptotically well

defined.

3.3 Properties of Causal Subclassification Tree

In this section, we first explain the connection between the causal subclassification algorithm and Wang et al. (2020)’s
strategy : using the largest K such that all subclasses Ĉ1, ...Ĉk contain at least one observation from each treatment group.
Their strategy to generate subclasses can be considered as a special case of our algorithm with a small enough parameter
α and parameter ` = 1. When we set ` = 1, the number of units from both/either of the treatment or control groups in
each subclass is 1, so this is one of the possible implementations of their strategy. However, if we set ` = 1 for any sample
size N, because the lower and upper limits of the number of subclasses K(N) are given by inequality (9),

2log min{N1,N0}/ logα−1
≤ K(N) ≤ 2log max{N1,N0}/ log(1−α)−1

,

the order of K(N) becomes O(N). If K(N) = O(N), the condition (2) for
√

N−consistency is satisfied, but the condition (4)
is not satisfied, because K(N) log(N)/N → ∞. This result holds for any criterion function of the causal subclassification
tree, so the subclassification estimator with Wang et al. (2020)’s strategy does not satisfy condition (4) and it is not
guaranteed to be asymptotically well-defined.

Although the subclassification estimator with fixed ` does not satisfy the condition (4), if we increase ` in the order of√
N/ log(N), the resulting subclassification estimator becomes asymptotically well-defined. We choose `, which mini-

mizes the loss function introduced in section 3.5 by cross-validation from the range[ √
min{N1,N0}

2 log(min{N1,N0})
,

3
√

max{N1,N0}

2 log(max{N1,N0})

]
.

By theorem 1 and theorem 2, the subclassification estimator with causal subclassification tree algorithm with our strategy
satisfies conditions (2) and (4), therefore it is

√
N−consistent and asymptotically well defined.

We would like to mention/emphasize here that, unlike conventional methods that automatically choose cut-off points of
propensity score estimates based on quantiles, the causal subclassification tree chooses cut-off points that minimize crite-
ria such as ∆1 or ∆2. This is because the choice of cut-off points affects the performance of the resulting subclassification
estimator, and we would like to control it as much as we can by defining criteria that reflect our thought of ”good per-
formance” and choosing cut-off points based on such a performance. For example, if we use quantiles of the estimated
propensity score, it is difficult to explain why we use such cut-off points or answer whether there are any better cut-off

points. For these practical reasons, data-driven cut-off point determination is important in data analysis.

If we use a causal subclassification tree, because the criterion function ∆ is needed, then the resulting subclasses satisfy
the properties that are led by ∆. For example, if we use ∆1 as a criterion function in the causal subclassification tree,
we can obtain subclasses that have a small variance of estimated propensity scores in each subclass, or if we use ∆2 as a
criterion function, subclasseses such that the variance of observed outcomes in each subclass is small are generated. In
addition, if we use ∆3 as a criterion function,

∆3(C,C′) =
1

|{i : π̂i ∈ C}|

∑
{i:π̂i∈C}

Ti log
N1C

NC
+ (1 − Ti) log

N0C

NC
(10)

+
1

|{i : π̂i ∈ C′}|

∑
{i:π̂i∈C′}

Ti log
N1C′

NC′
+ (1 − Ti) log

N0C′

NC′
(11)

we can generate subclasses that minimize the likelihood of distribution of treatment variables T . Therefore, from these
discussions, one of the attractive properties of using the causal subclassification tree is that researchers can change the
arbitrary criterion function with intention using properties so that subclasses may be satisfied.

3.4 Subclassification Estimator for Weighted Average Treatment Effect

In practical situations, we may want to estimate not only the average treatment effect, but also the weighted average
treatment effects. For example, we are often interested in the average treatment effect on the treated (ATT), average
treatment effect on the untreated (ATU), or the treatment effect on the overlap (ATO, Li, Morgan, & Zaslavsky, 2018). In
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this section, we introduce subclassification estimators for the weighted average treatment effect. The IPW estimator for
average treatment effect on the treated(ATT), E[Yi(1) − Yi(0)|Ti = 1], is given by

τATT =
1

N1

N∑
i=1

TiYi −

N∑
i=1

π̂i

1 − π̂i
(1 − Ti)Yi

/ N∑
i=1

π̂i

1 − π̂i
(1 − Ti)

The subclassification estimator for ATT can be obtained by replacing 1/π̂i with subclassification weight 1/ p̂i as follows:

τ̂S
ATT =

1
N1

K∑
k=1

N1k

 1
N1k

∑
{i∈Ck}

TiYi −
1

N0k

∑
{i∈Ck}

(1 − Ti)Yi




Here,
(

1
N1k

∑
{i∈Ck}

TiYi −
1

N0k

∑
{i∈Ck}

(1 − Ti)Yi

)
is the difference in the average of the potential outcomes in the treatment

and control groups on subclass Ck. Therefore, the subclassification estimator for ATT can be considered as a weighted
mean of causal effects of subclasses with sample sizes of the treatment group. This shows that a subclass with a high
probability of receiving treatment is assigned a large weight.

Similarly, the subclassification estimator for the Average Treatment effect on the Untreated (ATU), E[Yi(1)−Yi(0)|Ti = 0],
is given by

τ̂S
ATU =

1
N0

K∑
k=1

N0k

 1
N0k

∑
{i∈Ck}

TiYi −
1

N0k

∑
{i∈Ck}

(1 − Ti)Yi


 ,

and the subclassification estimator for the Average Treatment effect on the Overlap (ATO, Li et al. (2018)) is given by

τ̂S
ATO =

K∑
k=1

N0kN1k

Nk

 1
N1k

∑
{i∈Ck}

TiYi −
1

N0k

∑
{i∈Ck}

(1 − Ti)Yi



/ K∑

k=1

N0kN1k

Nk

3.5 A Tuning Algorithm for Parameter (`, α)

We discuss three parameter tuning methods for (`, α). All of them use a cross-validation method for choosing parameters,
and to choose ` and α such that K(N) satisfies condition (2) and (4), we explore a range[ √

min{N1,N0}

2 log(min{N1,N0})
,

3
√

max{N1,N0}

2 log(max{N1,N0})

]
for the parameter ` and (0, 0.5] for the parameter α, where N1 and N0 are the sample sizes of treatment and control
groups. For example, when the sample size N = 1000 with (N0,N1) = (200, 800), we explore [2,6] for the parameter
` as candidates. The first method involves finding the minimizer of the cross-validation prediction error of the causal
stratification tree. The second method involves finding the minimizer of the measure of covariates imbalance, for example,
Imai and Ratkovic (2014)’s imbalance measure:

Imbalance =


 1

N

N∑
i=1

wiXi

T  1
N

N∑
i=1

XiXT
i

−1  1
N

N∑
i=1

wiXi

T 
1/2

,

or the one by Wang and Zubizarreta (2019):

Imbalance =

∥∥∥∥∥∥∥
∑N

i=1 wiTiXi∑N
i=1 wiTi

−
1
N

N∑
i=1

Xi

∥∥∥∥∥∥∥ /sd(X)

where wi are the inverse of estimated propensity scores. These two approaches are intuitive. However, it is well known
that if the model for propensity score contains all variables that affect potential outcomes including confoundings, then
the mean square error of IPW estimator becomes smaller than in the case when the propensity score model contains
only confounding variables (Brookhart et al., 2006).. Hence, we consider a measure Γ that uses a variance of potential
outcomes, defined as follows:

Γ =
1
N

K∑
k=1

NkΓk
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where Γk is

Γk =
1

N1k

N∑
i=1

Ti(Yi(1) − Ȳk(1))2I(π̂i ∈ Ck)

+
1

N0k

N∑
i=1

(1 − Ti)(Yi(0) − Ȳk(0))2I(π̂i ∈ Ck), and

Ȳk( j) =

N∑
i=1

TiYi( j)I(π̂i ∈ Ck)/N j, j = 0, 1.

Here, Γk is the sum of the variances of observed outcome of each group in the subclass Ck. We find a parameter (`, α) that
minimizes Γ by cross validation.

3.6 Extension to Multi-class Treatment Regimes

We extend the causal subclassification tree to causal inference with multi-class treatments. Let Ti be the treatment that
takes one of the K integer values, i.e., Ti ∈ T = {0, 1, 2, ...,K − 1}, where K ≥ 2, and Yi(t), t = 0, 1, ...,K − 1 are potential
outcomes corresponding to treatment t. Following Imbens (2000), we define the generalized propensity score as

πk
i = πk(Xi) = Pr(Ti = k|Xi)

where all conditional probabilities sum to 1, i.e.,
∑K−1

k=0 π
k(Xi) = 1. We may use a multinomial logistic regression model

to estimate the generalized propensity scores.

In causal inference with multi-class treatment regimes, we are interested in difference of effects between two different
treatments t and t′, τ(t, t′) = E[Yi(t) − Yi(t′)]. An IPW estimator for τ(t, t′), proposed by Feng, Zhou, Zou, Fan, and Li
(2012), is defined as

τ̂(t, t′)IPW =

∑N
i=1 I(Ti = t)Yi/π

t
i∑N

i=1 I(Ti = t)/πt
i

−

∑N
i=1 I(Ti = t′)Yi/π

t′
i∑N

i=1 I(Ti = t′)/πt′
i

.

However, this estimator becomes unstable when there are some misspecification in the propensity score model. Thus, we
propose a new subclassification method that extends the causal subclassification tree algorithms to multi-class treatment
regimes.

Let π̂i = (π̂0
i , π̂

1
i , ..., π

K−1
i )T be the estimated generalized propensity scores. We can extend the causal subclassification tree

to multi-class treatment regimes only by replacing ∆1 in (8) with the following ∆3:

∆3(C1,C2) =

2∑
j=1

1
|{i : êi ∈ C j}|

∑
{i:π̂i∈C j}

(
π̂i − π̄C j

)T (
π̂i − π̄C j

)
.

Then, just as in the binary treatment case, we define the weights for each treatment t as follows.

wit =

K(N)∑
k=1

Nk

Ntk
I(π̂i ∈ Ĉk) =

K(N)∑
k=1

1
p̂tk

I(π̂i ∈ Ĉk)

where Nk is the number of units in subclass Ck, and Ntk is the number of units that received treatment t in subclass Ck. A
subclassification estimator for τ(t, t′) is defined by replacing 1/πt

i and 1/πt′
i with wit and wit′ , respectively, as

τ̂H(t, t′) =

N∑
i=1

witTiYi

/ N∑
i=1

wit −

N∑
i=1

wi′ (1 − Ti)Yi

/ N∑
i=1

wit′ .

4. Simulation Studies

We apply the causal subclassification tree to the simulation data in almost the same settings as Kang and Schafer (2007),
where propensity score models were slightly misspecified. In the controversial paper, Kang and Schafer (2007) conducted
a set of simulation experiments to study the performance of propensity score weighting methods. They found that the
misspecification of a propensity score model can affect the performance of various weighting methods. In particular, they
showed that although the doubly robust estimator of Robins et al. (1994) provides a consistent estimate for the treatment

48



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 10, No. 1; 2021

effect if either the outcome model or the propensity score model is correct, the performance of the doubly robust esti-
mator can deteriorate when both models are slightly misspecified. In this section, we describe the simulation experiment
performed with the data generated in Kang and Schafer (2007)’s model. We then examine whether the subclassification
estimator with the causal subclassification tree can improve the empirical performance of propensity score weighting
estimators and full subclassification estimator constructed by Wang et al. (2020)’s procedure.

Our data-generating process is as follows. There are four pretreatment covariates Xi = (Xi1, Xi2, Xi3, Xi4) each of which is
independently, identically distributed as N(0, 1). The true outcome model is a linear regression with these covariates and
the error term is an independently and identically distributed standard normal random variate:

yi = 210 + 5Ti + 27.4Xi1 + 13.7Xi2 + 13.7Xi3 + 13.7Xi4 + εi

where εi ∼ N(0, 5). The mean outcome of the treated observations is 210, which is the quantity of interest to be estimated.
The true propensity score model is a logistic regression, with Xi being the linear predictor such that the mean probability
of receiving the treatment equals 0.5,

πi = expit(−Xi1 + 0.5Xi2 − 0.25Xi3 − 0.1Xi4).

Finally, only the non-linear transforms of covariates are observed, and they are given by Zi = (Zi1,Zi2,Zi3,Zi4) where

Zi1 = exp(Xi1/2),
Zi2 = Xi2/(1 + exp(Xi1)) + 10,

Zi3 = (Xi1Xi3/25 + 0.6)3,

Zi4 = (Xi2 + Xi4 + 20)2.

In this simulation, three propensity score weighting estimators are investigated: the Horvitz-Thompson estimator (HT,
Horvitz & Thompson, 1952), the inverse propensity score weighting estimator (IPW, Hirano et al., 2003), and the doubly
robust estimator (DR, Robins et al., 1994) given by

τ̂HT =
1
N

N∑
i=1

TiYi

π̂i
−

1
N

N∑
i=1

(1 − Ti)Yi

1 − π̂i
,

τ̂IPW =

N∑
i=1

TiYi

π̂i

/ N∑
i=1

Ti

π̂i
−

N∑
i=1

(1 − Ti)Yi

1 − π̂i

/ N∑
i=1

1 − Ti

1 − π̂i
and

τ̂DR =
1
N

N∑
i=1

{
XT

i γ̂OLS1 +
Ti(Yi − XT

i γ̂OLS)
π̂i

}

−
1
N

N∑
i=1

{
XT

i γ̂OLS0 +
(1 − Ti)(Yi − XT

i γ̂OLS)
1 − π̂i

}
,

where γ̂OLS1 =

 N∑
i=1

TiXiXT
i


−1 N∑

i=1

TiXiYiand

γ̂OLS0 =

 N∑
i=1

(1 − Ti)XiXT
i


−1 N∑

i=1

(1 − Ti)XiYi.

The true model for propensity scores is a logistic regression with Xi as covariates. Thus, the models with Zi as covariates
are misspecified for these data. Likewise, the true outcome model is a linear regression with Xi as covariates and the
models with Zi as covariates are misspecified. However, only the DR estimator uses an outcome model, because outcome
models need not be considered for HT and IPW estimators. When we use causal subclassification weights(CSW) wi1
instead of estimated propensity scores πi in each estimator, we denote them as HT-CSW, IPW-CSW, and DR-CSW.
In addition, when we use full subclassification weights (FSW, Wang et al., 2020), we denote them as HT-FSW, IPW-
FSW, and DR-FSW. To obtain full subclassification weights, following the discussion in section 3.3, we use a causal
subclassification tree with the parameter ` = 1.

To estimate the propensity score, Kang and Schafer (2007) used logistic regression with Zi as predictors, i.e., π(Xi) =

logit−1(ZT
i β), that is, the model was misspecified because the true propensity score model is a logistic regression with
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Xi as predictors. In our simulation, in addition to logistic regression, we use Covariate Balancing Propensity Score
(CBPS, Imai & Ratkovic, 2014), Random Forest (Breiman, 2001), and XgBoost (Chen & Guestrin, 2016) to estimate the
propensity score. We use the same propensity and outcome model specifications as Kang and Schafers and investigate
whether the use of causal subclassification weights p̂i instead of the estimates π̂i by LR, CBPS, RF, and XgBoost improves
the empirical performance of these estimators. For each estimated propensity score with several estimation methods, we
computed causal subclassification weights using the causal subclassification tree (Procedure.2). To train each tree, we
used the parameter-tuning algorithm in subsection 3.5, which uses potential outcomes. In other words, our simulation
study examines how replacing the reciprocal of estimated propensity score with causal subclassification weights will
improve the empirical performance of the three commonly used weighting estimators. As in Kang and Schafer’s study,
we conducted simulations under the following four scenarios:

(a) both propensity score and outcome models are correctly specified,

(b) only the propensity score model is correct,

(c) only the outcome model is correct, and

(d) both the propensity score and the outcome models are misspecified.

For each scenario, we conducted 1000 Monte Carlo simulations with a sample size of 1000 and computed the bias,
variance, and root-mean-squared error (RMSE) for each estimator. The results are presented in Table 1, 2, 3. HT and IPW
estimators do not depend on outcome models, and hence, we do not fill the values into corresponding cells in each table.
As discussed in section 3.3, HT-CSW and IPW-CSW are the same estimators, and hence, we do not write the result of
HT-CSW in each table. For each scenario, we computed the bias, variance, and RMSE for each weighting estimator on
the basis of five different estimation methods for the propensity score:

(i) the standard logistic regression with Xi being the linear predictor as in the original simulation study (LR),

(ii) the just-identified CBPS (Imai & Ratkovic, 2014) estimation with the covariate balancing moment conditions with
respect to Xi and without the score condition (CBPS(exact)),

(iii) the overidentified CBPS estimation (Imai & Ratkovic, 2014) with both covariate balancing and score conditions
(CBPS(over)),

(iv) the Random Forest with Xi as predictors (RF), and

(v) the XgBoost with Xi as predictors (XgBoost).

In the first scenario (a), the case where both models are correct, HT, IPW, and DR estimators have relatively low bias
when LR and CBPSs are used as models for propensity score regardless of whether we use the causal subclassification
tree. However, HT and IPW estimators have a larger absolute bias compared to those with CSW and FSW when RF
and XgBoost are used. Each subclassification estimator has about the same or lower variances compared to those with
estimated propensity scores themselves. Comparing CSW and FSW, both have almost the same absolute bias; however,
the variances of FSW estimators are twice as large as those of CSW. As a result, the RMSE of estimators with causal
subclassification weights are relatively smaller than those with original weights except CBPS(exact), especially when RF
and XgBoost are used, and also smaller than those of full subclassification weights. DR is not sensitive to the choice of
propensity score estimation methods because of its property.

The second simulation scenario, (b), shows the performance of various estimators when the propensity score model is
correct but the outcome model is misspecified. The results for HT and IPW are same as those of the first scenario (a)
because these estimators only depend on the model for propensity scores. For the DR estimator, DR-CSW and FSW have
relatively similar biases and smaller variances compared to DR when LR and CBPS are used for the propensity score
model. In contrast, when RF and XgBoost are used for the propensity score model, DR-CSW has a smaller bias, but a
relatively large variance. As a consequence, RMSE for all estimators with causal subclassification weights are smaller
than those with the estimated propensity score themselves. Comparing DR-CSW and DR-FSW, both have almost the
same absolute bias; however, the variances of FSW estimators are twice as large as those of CSW. As a result, all RMSE
of the DR-CSW estimator are smaller than those of DR-FSW.

The third scenario, (c), is the situation where the propensity score model is misspecified whereas the outcome models for
estimators DR is correct. Because HT and IPW estimators rely only on the propensity scores, these estimators may have
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large bias and/or variance. For LR, IPW-CSW and IPW-FSW have larger biases but smaller variances compared to the
IPW estimator (for HT estimator, HT-CSW and HT-FSW have smaller biases and variances). RMSE for IPW-CSW and
IPW-FSW are smaller than those for HT and IPW. For IPW-CSW with both, CBPS have larger bias and variance compared
to IPW. For HT and IPW estimators with RF and XgBoost, IPW-CSW have about the same or smaller bias and variance
than HT and IPW, respectively. When LR, RF, and XgBoost are used, HT-CSW and IPW-CSW have relatively smaller
RMSE, but when both CBPS are used, HT-CSW and IPW-CSW have larger RMSE. This is an interesting phenomenon.
This is because the subclassification estimator with our weights has a consistency when the order of propensity score is
correctly specified (by the properties of regression tree, i.e., Wager & Walther, 2015). LR, RF, and XgBoost are non-linear
prediction models for W, but CBPS is not. CBPS finds the solution for balancing equations for covariates of treatment
and control groups, and hence, the performances of HT and IPW estimators with LR, RF, and XgBoost are improved with
CSW but the estimators with CBPS are not. Comparing the subclassification estimators CSW with FSW without DR in
scenario (c), in short, a similar result is confirmed for scenario (a) and (b). Both of these estimators have similar absolute
biases, and FSW has larger variances than CSW.

In the final simulation scenario (d), the performance of estimator DR deteriorated because both the propensity score and
the outcome models are misspecified. The bias and RMSE for DR are the largest in all scenarios. However, for all the
propensity score estimation methods, DR-CSW and DR-FSW have relatively smaller biases and RMSE compared to DR.
Both DR and DR-CSW with RF or XgBoost have small RMSE compared to other cases; especially, DR-CSW with ML
methods achieves the smallest RMSE among the propensity score models. As in the previous scenarios, let us compare
the biases and variances of the subclassification estimators of CSW and FSW; the same result is seen, where both of these
estimators have a similar absolute bias, and FSW has a larger variance than CSW.

Summarizing the above discussions, weights that we proposed tend to improve the performance of all estimators with
original estimated propensity scores and show a robustness for model misspecification. Especially regarding RF and
XgBoost, all estimators with causal subclassification weights improve bias, variance, and RMSE dramatically than those
without CSW. If the propensity score estimates are directly used, machine learning methods, such as RF and Xgboost, are
not recommended. However, by combining them with our proposal algorithm, causal subclassification tree, these machine
learning methods overperform LR and CBPSs when models are misspecified. Furthermore, by comparing the result of
the subclassification estimator for CSW and FSW, for all scenarios, both have the same bias, but FSW has twice as large
of a variance as CSW, so for all scenarios and estimators, the subclassification estimators with CSW have smaller RMSE
than those of FSW.

4. Concluding Remarks

In observational studies, the existence of confounding variables should be attended to and propensity score weighting
methods are often used to eliminate their effects. The propensity score methods are extended for the various settings
including multiple treatment, longitudinal, or time-varying treatments. Several papers discuss the risk of misspecification
of propensity score models (e.g., Drake, 1993); however, in practice, insufficient attention has been paid for the propensity
score estimation or the instability of weighting estimators.

In this paper, we proposed a subclass construction algorithm, a causal subclassification tree, that satisfies the conditions
given by Wang et al. (2020) for the subclassification estimator to have

√
N-consistency and to be asymptotically well

defined. We also showed that Wang et al. (2020)’s suggested procedure does not satisfy condition (4). The advantage
of the causal subclassification tree is that, unlike conventional methods that do attend to the choice of cut-off points of
propensity score estimates, the causal subclassification tree chooses cut-off points that minimize criteria. By defining
criteria that reflect our thoughts about ”good performance,” we can control the performance of the causal estimator.

The simulation study showed that the proposed method improves the performance of propensity score weighting esti-
mators, especially when the propensity score model is misspecified. When both models are misspecified, doubly robust
estimators with our weights performed better than the original one, and doubly robust estimators with machine learning
methods achieve smaller RMSE than those using ordinal propensity score estimation methods. That is, doubly robust
estimators with machine learning methods combined with our algorithm have the smallest RMSE when both models are
misspecified.

We also compared the empirical performance of subclassification estimator using our algorithm and the subclassification
estimator constructed by Wang et al. (2020)s suggested procedure. The simulation result shows that from the view of
estimation bias, there is little difference in the two estimators, but from the view of the variance of estimators, the full
subclassification estimator has twice as much variance as that with a causal subclassification tree.

Lastly, we mention future work. If we use subclassification methods, the following two remaining effects for causal esti-
mators in each subclass should be considered. One is the effect of residual within-subclass confounding (e.g., Lunceford
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& Davidian, 2004), and the other is the effect of the variation of outcomes within-subclass that are affected by covari-
ates regarding outcomes and error terms. If ` is set small, the residual within-subclass confounding becomes sufficiently
small; however, the effects of the outcome variations may not be adjusted. We will now try to overcome such a problem
by combining regression methods with a causal subclassification tree to estimate leaf-wise causal effect estimation for
stabilizing the resulting estimator.
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