
International Journal of Statistics and Probability; Vol. 9, No. 6; November 2020
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

Confidence Interval for Change Point in Hazard Rate With
Staggered Entry

Dong-yun Kim1, Yanhong Wu2

1 National Institutes of Health,Bethesda, Maryland 20892, USA
2 Department of Mathematics, California State University Stanislaus, Turlock, CA, USA

Correspondence: Yanhong Wu, Department of Mathematics, California State University Stanislaus, Turlock, CA 95382,
USA.

Received: August 9, 2020 Accepted: August 31, 2020 Online Published: September 14, 2020

doi:10.5539/ijsp.v9n6p9 URL: https://doi.org/10.5539/ijsp.v9n6p9

Abstract

We consider the construction of a con?dence region (interval) for a change point in hazard rate of the patients survival
distribution when the patients enter the trial at random times. We show that the local- likelihood ratio process converges
weakly to a certain process and obtain the maximum distribution of the process which does not depend on the change
point, and thus can be used to construct the confidence region for the change point. We also compare the limiting density
function to the empirical density and discuss the empirical coverage probability of the confidence interval by simulation.
Stanford Heart Transplant data are used for illustration.
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1. Introduction

Assume Y1, · · · ,YN are the survival times for the N patients that follows the density

fY (y) =

λ1e−λ1y i f y < ν
λ2e−λ1ν−λ2(y−ν) i f y ≥ ν,

(1)

where 0 < λ1 < λ2, and ν is the change point. This change point problem in hazard rate was first proposed in Miller
(1960). We refer to Müller and Wang(1994) for a review and Chen and Gupta (2011) for an introduction.

For the estimation problem under model (1), Nguyen et al. (1984), Yao (1986), Pham & Nguyen (1990), and Gosh & Joshi
(1992) studied the MLE of ν and the limiting distribution of MLE. Chang,et al. (1994) considered the case with random
censoring. Comparison between unconditonal and conditional estimations are considered by Gürler & Yenigün (2011).
For the Bayes estimation, we referred to Achcar & Bolfarine(1989), Basu, et al.(1988), Gosh, et al.(1996), Groenwald &
Shoeman (2001), Gosh & Ebrahimi (2008), and Karasoy & Kadilar (2007, 2009).

The corresponding testing problems have been considered by several approaches. For the likelihood ratio approach, we
referred to Matthews & Farewell (1982), Worsley (1988), Henderson (1990), Loader (1991), and Luo, Turnbull et al.
(1997). In particular, Loader (1991) also considered the random censoring case. A score-based test was considered by
Mattews et al. (1985). A Bayes test was considered by Yao (1987).

In Kim et al. (2004), the testing problem is studied by showing the weak convergence of the log-likelihood ratio process
under C(−∞,∞). The same technique was extended to Weibull case in Williams & Kim (2011,2013a, 2013b).

For construction of confidence region or interval, one can use the MLE. Siegmund (1988) proposed to invert the log-
likelihood ratio process to obtain confidence region and then construct the confidence interval by joining all the dis-
connected intervals and concluded that there is practically no difference between the confidence region and confidence
interval. By using this approach, Loader (1991) obtained the confidence region by extending the method under model (1)
by assuming the exponential random censoring mechanism.

In this article, we extend the model to the staggered entry case with type I censor. Assume that the patients arrive for
treatment at times 0 < τ1 < τ2 < · · · , following a Poisson process with known rate γ. Let N be the total number of patients
who arrived in the time interval [0,T ] and for i = 1, ...,N. The observations areXi = min(Yi,T − τi),

δi = I{Yi ≤ T − τi},
(2)

9



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 9, No. 6; 2020

where I{A} denotes the indicator function of an event A. The log-likelihood function is

l(λ1, λ2, ν) = K1(ν)log(λ1) − λ1T1(ν) + K2(ν)log(λ2) − λ2T2(ν),

where

K1(ν) =

N∑
i=1

1 {Xi < ν, δi = 1} , K2(ν) =

N∑
i=1

1 {Xi ≥ ν, δi = 1} ,

T1(ν) =

N∑
i=1

(Xi ∧ ν) , T2(ν) =

N∑
i=1

(Xi − ν)+ ,

x ∧ ν = min(x, ν), and x+ = max(x, 0). Given ν, the maximum likelihood estimator (MLE) of λi(ν) is

λ̂i = Ki(ν)/Ti(ν)

for i = 1, 2, respectively. So the profile log-likelihood is

`(ν) = `(λ̂1(ν), λ̂2(ν), ν)

= K1(ν)
{

log
(

K1(ν)
T1(ν)

)
− 1

}
+ K2(ν)

{
log

(
K2(ν)
T2(ν)

)
− 1

}
.

The MLE of ν is obtained by maximizing `(ν) with respect to ν. This must be done numerically.

The main contribution here is to give a systematic method of constructing confidence region/interval for ν by inverting the
likelihood ratio process. For this, we need to prove the weak convergence of the local log-likelihood ratio process with a
change point

Zγ(u) = `

(
ν +

u
γT

)
− `(ν)

on D(−∞,∞) and study the distribution of the maximum of log-likelihood ratio process

`(ν̂) − `(ν) = sup
−∞<u<∞

Zγ(u).

We obtain its limit distribution that is free of the change point ν. Thus, we can construct the confidence region of the form
{ν|`(ν) ≥ `(ν̂) − c} by selecting c satisfying the designated coverage probability.

In Section 3, we use Monte Carlo simulation to compare the limiting density function to the empirical density function
constructed from the simulated data. We also discuss how to construct the confidence interval and comment on the
empirical coverage probability of the confidence interval with nominal confidence level. In Section 4, we use the Stanford
Heart Transplant data to illustrate our method. We show that the data set fits the model assumptions quite well.

2. Main Results

In notation, let→D,→p, and⇒ denote the convergence in distribution, convergence in probability, and the weak conver-
gence, respectively. D[a, b] refers to the Skorohod space consisting of all functions on [a, b] that are right-continuous on
[a, b) and possess left-hand limits at each point of (a, b].

For a fixed ν, define a local likelihood ratio process Zγ by

Zγ(u) = I1 + I2,

where for i = 1, 2,

Ii = Ki

(
ν +

u
γT

) log

Ki(ν + u
γT )

Ti(ν + u
γT )

 − 1

 − Ki (ν)
{

log
(

Ki(ν)
Ti(ν)

)
− 1

}
.

We shall split the proof of weak convergence of Zγ(u) into several steps.

First, by denoting

K̃i(u, ν) = Ki

(
ν +

u
γT

)
− Ki (ν) (3)

and

T̃i(u, ν) = Ti

(
ν +

u
γT

)
− Ti (ν) . (4)
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and applying a two-term Taylor expansion, we can rewrite

Ii = Ĩi + Ri(ν).

where
Ĩi = log(λ̂i(ν))K̃i(u, ν) − λ̂i(ν)T̃i(u, ν).

Similar to the proof for Proposition 1 in Kim, Woodroofe, and Wu (2002), we can show

sup
|ν|≤c
|Ri(ν)| →p 0

as γ → ∞ for any c.

Second,we show the weak convergence of K̃1(u, ν) given in (3). Note that given N = n, the random vectors (X1, δ1), . . . , (Xn, δn)
are a permutation of i.i.d. random vectors with a common distribution function FX(x) = P(X ≤ x) and sub-distribution
function F̃X(x) = P(X ≤ x, δ = 1) such that

FX(x) =

1 − e−λ1 x(1 − x/T ) i f 0 < x < ν;
1 − e−λ1ν−λ2(x−ν)(1 − x/T ) i f ν ≤ x < T

and

F̃X(x) =

F̃1
X(x) i f 0 < x < ν;

F̃2
X(x) i f ν ≤ x < T,

where

F̃1
X(x) =

(
1 −

1
λ1T

)
− e−λ1 x

(
1 −

1
λ1T

−
x
T

)
and

F̃2
X(x) =

(
1 −

1
λ1T

)
+ e−λ1ν

(
1
λ1T

−
1
λ2T

)
− e−λ1ν−λ2(x−ν)

(
1 −

1
λ2T

−
x
T

)
.

By denoting V+(t), V−(t) as two independent copies of a random process such that

V+(t) =

0 i f t < 0;
Poisson process with rate t i f t > 0,

V−(t) =

Poisson process with rate − t, i f t > 0;
0, i f t < 0.

we have

Lemma 1. For each fixed ν, K̃1(u, ν) as in (3) converges weakly to a process of the form

K∗1(u, ν) := sgn(u)
{
V+ (λ2βu) + V− (−λ1βu)

}
in D[a, b] as γ → ∞ for each −∞ < a < b < ∞, where sgn(x) is the signum function, and

β =

(
1 −

ν

T

)
e−λ1ν. (5)

Proof. For each u > 0, by using Taylor expansion and (3),

E(K̃1(u, ν)) ≈ λ2βu

where β is as in (5). By the Poisson Convergence Theorem,

K̃1(u, ν)→D V+(λ2βu).

For u < 0,
K̃1(u, ν)→D sgn(u)V−(−λ1βu)
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following essentially the same line as for u > 0 case. Therefore, K̃1(u, ν) →D K∗1(u, ν) for each u. The convergence of all
finite dimensional distributions may be similarly established. Finally, by Theorem 15.6 in Billingsley(1968), K̃1(u, ν) is
tight. �

Third, we show the convergence of T̃i(u, ν) as defined in (4). Let FN(x) denote the empirical distribution function of
FX(x), i.e.,

FN(x) =
1
N

N∑
k=1

1{Xk ≤ x}.

Lemma 2. With β as in (5), for each fixed ν and any positive number c,

sup
|u|≤c
|T̃i(u, ν) − (−1)i+1uβ| →p 0

as γ → ∞.

Proof. Since T̃2(u, ν) = −T̃1(u, ν), we only need to show that T̃1(u, ν)→ uβ uniformly. Since

n∑
i=1

(Xi ∧ ν) = n
∫ ν

0
(1 − Fn(x))dx,

we can write

T̃1(u, ν) = n
∫ ν+ u

γT

ν

(1 − Fn(x)) dx

= n
∫ ν+ u

γT

ν

(FX(x) − Fn(x))dx + n
∫ ν+ u

γT

ν

(FX(ν) − FX(x))dx +
nu
γT

(1 − FX(ν)).

By uniform convergence of Fn(x) and E(N/ (γT )) = 1, Var(N/ (γT ))→ 0, and by continuity of FX at ν, T̃1(u, ν) converges
to uβ uniformly. �

Combining Lemmas 1 and 2 and using Slutsky’s theorem, we thus have

Theorem 1. Zγ(u) and Z∗γ(u) weakly converge to a process

Y(u) = log
(
λ1

λ2

)
K∗1(u, ν) − (λ1 − λ2)βu (6)

as γ → ∞, in D[a, b] for any −∞ < a < b < ∞ where K∗1(u, ν) is given in (4) and β in (5).

The next theorem gives the limiting distribution of the supremum of Y(u) process and its proof is given in Section 5.

Theorem 2. As x→ ∞, the distribution function of the supremum of Y(u) process can be approximated by

P
(

sup
−∞<u<∞

Y(u) ≤ x
)

= (1 − e−x)
(
1 − e−x κ (λ1/λ2)

)
(1 + o(1)) (7)

where

κ(x) =

(
1 − x + x log x
x − 1 − log x

)−sgn(log x)

. (8)

Remark. The results are given for λ1 < λ2. For λ1 > λ2, similar results hold with only minor modifications in a few places.
fY (y) in (1), FX(x), and F̃X(x) are replaced by their left-continuous versions. K1(ν) and K2(ν) are replaced by

K1(ν) =

N∑
i=1

1 {Xi ≤ ν, δi = 1} , K2(ν) =

N∑
i=1

1 {Xi > ν, δi = 1} .

3. Simulation Study

As we have seen in Theorem 1, the local likelihood ratio process Zγ(u) converges weakly to a process Y(u) whose supre-
mum has distribution function that does not depend on the change point ν; it depends only on the ratio of λ1 and λ2. In
this section we compare the theoretical density and empirical density curves generated from sup Zγ(u) , which in turn are
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based on data sets from (1) using three different ν values. Then we describe how to construct confidence interval for ν
and show actual coverage probability of the confidence intervals for various combination of change points and nominal
coverage level.

With T, λ1, λ2, and γ fixed, the data and density functions are generated in the following steps.

Step 1. Draw a random number N from Poisson (γT ).

Step 2. Fix ν and draw a random sample Y1, . . . ,YN from fY (y) as in (1).

Step 3. Draw a random sample U1, . . . ,UN from the Unif (0, 1).

Step 4. For i = 1, . . . ,N, obtain Xi and δi as in (2).

Step 5. Calculate `(ν̂) − `(ν) with the MLE ν̂.

Step 6. Repeat steps 1 through 5 many times.

For example, we set T = 1, λ1 = 1, λ2 = 2, and γ = 5, 000. Limiting density in Figure 1 was directly calculated from the
probability approximation formula (7).

For comparison, we generated 10,000 random samples for each of the change points ν = 0.3, 0.5, and 0.7 and obtained
the density curve of `(ν̂) − `(ν). They are shown together with the (approximated) limiting density function. The plot
shows that the densities are quite similar in shape and all three are close to the theoretical density function. Besides,
Kolmogorov-Smirnov goodness-of-fit tests indicate that the densities are not significantly different at 5%.

To construct a confidence interval for ν from a given random sample, fix a suitable confidence level 1 − α and find the
100(1−α)th percentile from (7). Then follow Steps 1 through 4 described above for a fixed ν to generate a random sample
of (average) size 5,000 and do:

Step 5′. Cover a sufficiently large interval (ν̂ ± 0.2, for example) containing the MLE ν̂ with a fine set of grid points
ν1, . . . , νJ and for each j = 1, . . . , J, calculate ` j = `(ν̂) − `(ν j).

Step 6′. Find JL = inf1≤ j≤J{ j : ` j ≥ p1−α and ` j+1 < p1−α} and JR = sup1≤ j≤J{ j : ` j < p1−α and ` j+1 ≥ p1−α}. Then find CL

by linearly interpolating two points (νJL , `JL ) and (νJL+1, `JL+1) and finding the point crossing the horizontal line at p1−α.
Do the same for CR using (νJR , `JR ) and (νJR+1, `JR+1). Report (CL,CR) as the 100(1 − α)% confidence interval.

Table 1 shows the empirical coverage probabilities for 90%, 95%, and 99% confidence intervals based on 10,000 replica-
tions for each of change points ranging from 0.4 to 0.7. Standard errors for 90%:0.003; 95%:0.002; 99%:0.001. Appar-
ently the coverage probabilities for 90% confidence intervals are all higher than the nominal level; in particular, the 90%
interval covers the true change point 92.3% of the time when ν = 0.4 and 91.9% when ν = 0.45. The excessive coverage
probability of 90% confidence interval is partially due to the approximation error caused by Theorem 2 in that (7) holds
when x is large. Also, the jagged nature of the log-likelihood function seems to contribute to the excessive coverage.

Table 1. Coverage Probability for 90%, 95%, and 99% Confidence

nominal/ν 0.40 0.45 0.50 0.55 0.60 0.65 0.70
0.90 0.923 0.919 0.917 0.913 0.916 0.912 0.909
0.95 0.954 0.955 0.956 0.956 0.956 0.956 0.956
0.99 0.989 0.989 0.992 0.992 0.991 0.993 0.992

4. Example: Stanford Heart Transplant Data

To illustrate the results that we developed in this paper, we consider the heart transplant data as reported in Crowley
& Hu(1977). Out of 103 patients who participated in the Stanford Heart Transplantation Program, we consider the 69
patients who received heart transplantation. Of those, 45 patients died between the operation and the closing date on April
1, 1974, and 24 patients were alive by the closing date so their lifetimes are Type I censored. The published data contain
the calendar dates for the transplant operation and dates of death as well as censoring indicator.

Recall that two underlying assumptions for our method are: (i) that patients enter the treatment following a Poisson
process, and (ii) the patients’ survival time after the treatment (subject to Type I censoring) are distributed as in (2).
We regard the surgery dates as the treatment times, and the first assumption can be easily checked by comparing the
distribution of inter-arrival times to the exponential distribution. The usual Kolmogorov-Smirnov test results in a p-value
of 0.65 so the first assumption seems reasonable. Also, the heart transplant data seem to fit the second assumption equally
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Figure 1. Simulated density function

well, with a p-value of 0.9 from the Kolmogorov-Smirnov test.

The empirical distribution function in Figure 2 strongly indicates the presence of a change point in the hazard at an early
stage after the surgery. Not surprisingly the risk of death is quite high initially (steep slope at the beginning of the curve),
then it quickly diminishes. From the data it is estimated that the change occurs approximately at 68 days, and the hazard
rates before and after the change point are estimated to be λ̂1 = 0.0075, λ̂2 = 0.00075, which correspond to 132 days and
1320 days, respectively.

We can also formally test for a change point. Following the test procedure described in Kim et al. (2002), we first rescale
the whole observed interval to [0,1] and the rescaled change point is 0.0298. The test statistic depends on the interval that
is being tested, and for a particular interval [0.001, 0.03], the observed test statistic 6.622 is greater than the critical point
3.520, indicating that the test is significant at 1%. Notably, practically any subinterval containing the estimated change
point is found to be highly significant.

To compute the confidence interval for the change point, we need the critical value of the distribution of the supremum of
Y(u). From Theorems 1 and 2, we see that

P{`(ν̂) − `(ν) ≤ c} ≈ (1 − e−c)
(
1 − κ (λ1/λ2) e−c)

and for a given α, we can select the critical point c from the equation

(1 − e−c)
(
1 − κ (λ1/λ2) e−c) = 1 − α.

Since the upper 5% critical point is 3.37, by inverting `(ν̂) − `(ν) and reading off the two end points of the region that fall
below the critical value (see Figure 3), we obtain a 95% confidence interval (65.5, 82.5) in days. Using the same method,
90% and 99% confidence intervals are computed as (65, 80), and (64, 90), respectively.
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5. Proof of Theorem 2

Suppose λ1 < λ2. Let u∗ = u(1 − ν/T ). Since ν < T, sgn(u) = sgn(u∗) and essential properties remain unchanged under
the simple transformation, with abuse of notation we may write

Y(u) = log
(
λ1

λ2

) [
sgn(u)

{
V+

(
uλ2e−λ1ν

)
+ V−

(
−uλ1e−λ1ν

)}]
+ u (λ2 − λ1) e−λ1ν.

First consider the case u ≥ 0. For each positive integer i, let Wi denote the “interarrival time”, or the uncensored lifetime
of patients associated with the Poisson process K∗1(u, ν) as in (4). Then Wi is exponentially distributed with parameter
λ2e−λ1ν and

Xi = λ2e−λ1νWi ∼ Exp(1).

Define A1 = {u : 0 ≤ u < W1} and

Ak = {u :
k−1∑
i=1

Wi ≤ u <
k∑

i=1

Wi}

for k ≥ 2. Note that for u ∈ Ak,
Y(u) = u(λ2 − λ1)e−λ1ν + (k − 1) log(λ1/λ2),

so

sup
u∈Ak

Y(u) = (λ2 − λ1)e−λ1ν
k∑

i=1

Wi + (k − 1) log
(
λ1

λ2

)
.

Therefore, by denoting δ = λ2/λ1, we have

U+ := sup
u≥0

Y(u) = sup
k≥1


(
1 −

1
δ

) k∑
i=1

Xi + (k − 1)
(

1
δ

) .
15
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Similarly, for u < 0,

U− := sup
u<0

Y(u) = sup
k>1

(1 − δ)
k−1∑
i=1

X
′

i − (k − 1) log
(

1
δ

)
,

where X′i are independent copies of Xi. Thus,

sup
u

Y(u) = max {U+,U−} .

To find the distribution function of U−, Let

S n =

n∑
i=1

{
(1 − δ) X

′

i + log δ
}
.

Denote
τ+ = inf{n : n ≥ 1, S n > 0}, τ− = inf{n : n ≥ 1, S n ≤ 0},

and for x > 0,
τx = inf {n : S n > x} ,

Rx = S τx − x as the overshoot, and R∞ = limx→∞ Rx. Also, let Pξ(.) denote the probability measure when the failure rate
of Xi is ξ. By changing measure from P1(.0 to Pδ(.), the renewal theorem implies that as x→ ∞,

P1(U− < x) = P1 (τx = ∞)

= 1 − Eδe−S τx

≈ 1 − e−xEδe−R∞ ,

where

Pδ(R∞ < y) =

∫ y
0 Pδ

(
S τ+

> x
)

dx

EδS τ+

.
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Write

κ (λ1/λ2) = Eδe−R∞ =
1

EδS τ+

∫ ∞

0
e−yPδ

(
S τ+

> y
)

dy

=
1 − Eδe−S τ+(

δ−1 − 1 + log δ
)

Eδτ+

,

by noting EδS τ+
= (δ−1 − 1 + log δ)Eδτ+. By changing measure and Corollary 8.39 in Siegmund(1985),

Eδe−S τ+ = P1 (τ+ < ∞) ,

Eδτ+ = 1/Pδ (τ− = ∞).

we have

κ (λ1/λ2) =
(1 − p+) (1 − p−)
(δ−1 − 1 + log δ)

where
p+ = P1 (τ+ < ∞) , p− = Pδ (τ− < ∞) .

By Theorem 24.5 in Billingsley(1986),

p+ = P
(
sup
n≥0

S n > 0
)

=
log δ
δ − 1

.

On the other hand, by writing τ′+ = inf {n > 0 : −S n > 0}, we have

p− = Pδ
(
τ′+ < ∞

)
= E1e−S τ+ = E1eS τ− =

∫ ∞

0
e−(δ−1)xe−xdx = 1/δ.

Finally, we get
P1(U− < x) ≈ 1 − κ (λ1/λ2) e−x

where κ(x) is as in (8).

To find the distribution function of U+, denote

τ∗x = inf
{
n > 0 : S +

n > x
}

where S +
n =

∑n
i=1

{(
1 − δ−1

)
Xi − log δ

}
. Then

P1 (U+ ≤ x) = P1

(
τ∗x−log δ = ∞

)
= 1 − Eδ−1 exp

(
−S +

τx−log δ

)
= 1 − exp

(
−x + log δ

)
Eδ−1 exp

{
−

(
1 − δ−1

)
X1

}
,

by the memoryless property of the exponential distribution. Therefore,

P1 (U+ ≤ x) = 1 − e−x.

By independence of U+ and U−,

P
(

sup
−∞<u<∞

Y(u) ≤ x
)
≈

(
1 − e−x) (1 − κ(λ1/λ2)e−x) .

If on the other hand λ1 > λ2, U+ is changed to

U∗+ = max

sup
k≥1

(
1 −

λ1

λ2

) k−1∑
i=1

Xi + (k − 1) log
(
λ1

λ2

)
, 0

 ,
which is similar to U−. Applying the same method to U∗+, we see

P
(
U∗+ ≤ x

)
= 1 − κ (λ1/λ2) e−x

17
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where κ(x) is in (8). On the other hand, U− is changed to

U∗− = sup
k≥1

(
1 −

λ2

λ1

) k∑
i=1

X′i + (k − 1) log
(
λ1

λ2

)
and the approximated distribution of U∗− is the same as the approximated distribution of U+, i.e., P(U∗− ≤ x) ≈ 1 − e−x so

P
(

sup
−∞<u<∞

Y(u) ≤ x
)
≈ (1 − e−x)

(
1 − κ (λ1/λ2) e−x) .

6. Conclusion

In this communication, we presented a method of constructing confidence region (interval) for a change point in hazard
rate with staggered entry by using log-local likelihood ratio process. By using the weak convergence, we are able to
calculate the limit distribution and use it to obtain the confidence region given confidence level. There are many possible
extensions for staggered entry. We only mention some recent development. For estimations under regression models for
hazard rate, we refer to Pons (2002), Na et al.(2005), Dupuy (2006), Goodman et al. (2011) and Li et al. (2013). For
nonparametric estimations or under nonparametric models, we refer to Antoniadis et al. (2000), Wu et al.(2003) and
Gijbels & Gürler (2003). Kosorok & Song (2007) considered a model where the change is caused by a covariate crosses
a threshold. More general models under censoring mechanisms are considered in Zhao et al.(2009), Rabhi & Asgharian
(2017), and Wang et al. (2019). Sequential tests for possible multiple change points are considered in He et al. (2012)
and Zhang et al. (2014). Computing intensive techniques using Monte Carlo and Bootstrap technique are considered by
Achcar & Loibel (1998), Pham & Nguyen (1990, 1993).
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