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Abstract

Kimberly et al. had proposed in 2016 a bivariate function as a bivariate Conway-Maxwell-Poisson distribution (COM-
Poisson) using the generalized bivariate Poisson distribution and the probability generating functions of the follow dis-
tributions: bivariate bernoulli, bivariate Poisson, bivariate geometric and bivariate binomial. By examining this paper we
have shown that this bivariate function is constant and it double series is divergent, when it should have been 1. To over-
come this deadlock, we propose a new bivariate Conway-Maxwell-Poisson distribution which is definetely a probability
distribution based on the crossing method, method highlighted by Elion et al. in 2016 and revisited by Batsindila et al. and
Mandangui et al. in 2019. And this is the purpose of this paper. To this bivariate distribution is attached two generalized
linear models (GLM) whose resolution allows us to highlight, not only the independence between the variables forming
the couple, but also the effect of the factors (or predictors) on these variables. The resulting correlation is negative, zero or
positive depending on the values of a parameter; in particular for the bivariate Poisson distribution according to Berkhout
and Plug. A simulation of data will be given at the end of the article to illustrate the model.

Keywords: univariate Conway-Maxwell-Poisson distribution, bivariate Conway-Maxwell-Poisson distribution, general-
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1. Introduction

The COM-Poisson distribution was introduced by Conway and Maxwell in 1962 and revisited by Shmueli et al. in 2005.
It has a mass function

P(X = x/λ, ν) =
λx

(x!)ν
1

Z(λ, ν)
, x ∈ N, λ > 0, ν ≥ 0, (1)

with

Z(λ, ν) =

+∞∑
n=0

λn

(n!)ν
. (2)

It has a probability generating function gX(Z) =
Z(λz,ν)
Z(λ,ν) , and for moment generating function MX(S ) =

Z(λes,ν)
Z(λ,ν) .

1.1 Properties

The COM-Poisson distribution is a generalization of some usual distributions such as:

1. when ν = 1, then P(X = x/λ, ν) is Poisson distribution of the parameter λ,

2. when ν = 0 and 0 < λ < 1, then P(X = x/λ, ν) = λx(1 − λ) is a geometric distribution,

3. when ν→ +∞, then P(X = x/λ, ν) converge to the Bernoulli distribution of parameter λ
1+λ

.

1.2 The COM-Poisson Distribution Is a Weighted Poisson Distribution

The COM-Poisson distribution is a weighted Poisson distribution of weight function(Kokonendji et al.,2008) w(x, ν) =

(x!)1−ν and constant of normalization Eλ[w(Y)] = e−λZ(λ, ν).
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1.3 Characteristics

The COM-Poisson distribution has characteristics

Eλ(X) =
∂

∂lnλ
ln[Z(λ, ν)] (3)

and
Var(X) =

∂Eλ(X)
∂lnλ

.

Indeed, X follow the weighted Poisson distribution variable, its characteristics are equal to (Kokonendji et al.,2008)

Eλ(X) = λ

(
1 +

∂

∂λ
ln [Eλ(w(Y, ν))]

)
,

= λ
∂

∂λ
ln[Z(λ, ν)],

=
∂

∂lnλ
ln[Z(λ, ν)].

Because ∂
∂λ

= ∂lnλ
∂λ

∂
∂lnλ = 1

λ
∂

∂lnλ and λ ∂
∂λ

= ∂
∂lnλ .

Var(X) = Eλ(X) + λ2 ∂
2

∂λ2 ln [Eλ(w(Y, ν))] ,

= Eλ(X) + λ2 ∂
2

∂λ2 (−λ + ln[Z(λ, ν)]) ,

= Eλ(X) + λ2 ∂

∂λ

[
−1 +

∂

∂λ
ln[Z(λ, ν)]

]
,

= Eλ(X) + λ2 ∂

∂λ

[
1
λ

Eλ(X)
]
,

= Eλ(X) + λ
∂

∂λ
[Eλ(X)] − Eλ(X),

=
∂Eλ(X)
∂lnλ

.

1.4 Overdispersion and Underdispersion

The COM-Poisson variable is(Kokonendji et al.,2008) overdispersed when ν ∈ [0, 1[ and is underdispersed, when ν > 1.

1.5 Approximation of Z(λ, ν)

We have the following approximations (Shmueli et al,2005)

1- When there is an integer N such as for n > N, λ
nν < 1, then Z(λ, ν) '

n∑
y=0

λy

(y!)ν ,

2- When λ is higher, then Z(λ, ν) =
exp(νλ

1
ν )

λ
(ν−1)

2ν (2π)
(ν−1)

2
√
ν

{
1 + 0

(
λ−

1
ν

)}
.

In the section (2), we will present the bivariate COM-Poisson distribution according to Kimberly et al.(2016) and in the
section (3), the new bivariate COM-Poisson distribution. Finally, in the section (4), a simulation of the data will be carried
out to illustrate the model.

2. The Bivariate COM-Poisson Distribution According to Kimberly et al. (2016)

In this section, we will present only a few salient points of this study and for details see the article by Kimberly et
al.(2016). Let (0, 0), (0, 1), (1, 0) and (1, 1) the values of a bivariate Bernoulli variable of probabilities p00, p01, p10 and
p11 with p00 + p01 + p10 + p11 = 1.

Let following the multinomial expressions (Johnson et al., 1997; Kimberly et al.,2016)(
a

b1 b2 · · · bk

)
=

a!
k∏

i=1
bi!
,with

k∑
i=1

bi = a, bi ∈ N(i = 1, k),
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and

(A + Bt1 + Ct2 + Ft1t2)n =

n∑
a,b,c,d=0;a+b+c+d≤n

(
n

a b c d

)
Aa(Bt1)b(Ct2)c(Ft1t2)d,

=

n∑
a,b,c,d=0;a+b+c+d≤n

(
n

a b c d

)
AaBbCcFn−a−b−ctn−a−b−c

1 tn−a−b
2 , (4)

We have the following result

2.1 Proposition

By posing t1 = t2 = 1, A = λp00; B = λp10; C = λp01 and F = λp11, with λ > 0, we have the identity

n∑
a=n−x−y

(
n

a, n − a − y, n − a − x, x + y + a − n

)
pa

00 pn−a−y
10 pn−a−x

01 px+y−n+a
11 ≡ 1.

Indeed,

the left side of the expression (4) noted G is equal to

G = λn(p00 + p01 + p10 + p11)n = λn.

And the right part denoted D is equal to

D =

n∑
a,b,c,d=0;a+b+c+d≤n

(
n

a b c d

)
Aa(B)b(C)c(F)n−a−b−c,

= λn
n∑

a,b,c,d=0;a+b+c+d≤n

(
n

a b c d

)
pa

00 pb
10 pc

01 pn−a−b−c
11 .

Given that G = D, we have the following result
n∑

a,b,c,d=0;a+b+c+d≤n

(
n

a b c d

)
pa

00 pb
10 pc

01 pn−a−b−c
11 ≡ 1.

By posing

x = n − a − c and y = n − a − b, we have:

b = n − a − y, c = n − a − x and n − a − b − c = x + y + a − n

the final result is given by
n∑

a=n−x−y

(
n

a, n − a − y, n − a − x, x + y + a − n

)
pa

00 pn−a−y
10 pn−a−x

01 px+y−n+a
11 ≡ 1.

2.2 Corollary

The following mass function proposed by Kimberly et al.(2016)

Pr(Y = y, X = x) =
1

Z(λ, ν)

∞∑
n=0

λn

(n!)ν
×

×

n∑
a=n−x−y

(
n

a, n − a − y, n − a − x, x + y + a − n

)
pa

00 pn−a−y
10 pn−a−x

01 px+y−n+a
11 , (5)

as a bivariate COM-Poisson distribution is not a probability.

Indeed, we have

Pr(Y = y, X = x) =
1

Z(λ, ν)

∞∑
n=0

λn

(n!)ν
= 1,

and it double series
+∞∑

x,y=0
Pr(Y = y, X = x) is divergent. This bivariate function is therefore not a probability because this

double series should have been 1.
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3. The New Bivariate COM-Poisson Distribution

3.1 Definition: The Crossing Method

Let us consider two random variables X and Y which follow univariate COM-Poisson distribution of mass functions

P(X = x/λ1, ν1) =
λx

1

(x!)ν1

1
Z(λ1, ν1)

, x ∈ N, ν1 ∈ R+, λ1 ∈ R∗+,

and

P(Y = y/λ2, ν2) =
λ

y
2

(y!)ν2

1
Z(λ2, ν2)

, y ∈ N, ν2 ∈ R+, λ2 ∈ R∗+.

The couple (X,Y) follows the bivariate COM-Poisson distribution if and only if it mass function is equal to (Elion et al.,
2016; Batsindila et al., 2019 and Mandangui et al.,2019)

P(X = x,Y = y/λ1, ν1, λ2, ν2) =
λx

1

(x!)ν1

λ
y
2

(y!)ν2

1
Z(λ1, ν1)

1
Z(λ2, ν2)

, (6)

x, y ∈ N, ν1, ν2 ∈ R+, λ1, λ2 ∈ R∗+,

under the conditions

lnλ1 = t′β1 (7)

and

lnλ2 = t′β2 + ηx. (8)

X is the response variable of the model (7) and Y that of the model (8), with t′ = (t1, t2, ..., tp) the vector of predictors
variables or factors. The expression (8) leads to the fact that P(Y = y/λ2, ν2) = P(Y = y/X = x) is a conditional
probability.

One has the following relation

P(X = x,Y = y/λ1, ν1, λ2, ν2) = P(X = x/λ1, ν1) × P(Y = y/X = x);

P(X = x/λ1, ν1) is the marginal distribution. This bivariate distribution is definetely a probability distribution.

When η = 0, the variables X and Y are independent.

When ν1 = ν2 = 1, the bivariate COM-Poisson distribution is identical to the bivariate Poisson distribution according to
Berkout and Plug(2004).

3.2 Characteristics

A simple application of proposition 1 from the work of Batsindila et al.(2019), gives us the following results

Eλ2 (Y) = et′β2+λ1(eη−1) Z(λ1eη, ν1)
Z(λ1, ν1)

(9)

Var(Y) =

(
e2λ1(eη−1) Z(λ1, ν1)

Z(λ1eη, ν1)
− 1

)
(10)

Cov(X,Y) = Eλ1 (X)Eλ2 (Y)(eη − 1). (11)

The expressions (8) and (11) confirm that the variables X and Y are independent if and only if the parameter η = 0. The
resulting correlation is negative, zero or positive depending on whether the value of the parameter η is negative, zero or
positive in particular for the bivariate Poisson distribution according to Berkhout and Plug(2004).

Remarque 1. The variable X follow the COM-Poisson distribution, its characteristics have been given in the subsection
(1.3)
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3.3 Ratio of Successives Probabilities and Estimation of Parameters λ1, ν1, λ2, ν2

Let

px−1 = P(X = x − 1/λ1, ν1) =
λx−1

1

((x − 1)!)ν1

1
Z(λ1, ν1)

, x ∈ N∗, ν1 ∈ R+, λ1 ∈ R∗+.

The ratio of successives probabilities of the COM-Poisson distribution is equal to (Shmueli et al.,2005)

px−1
px

= xν1
λ1
, which has logorithm

ln
[

px−1

px

]
= −lnλ1 + ν1lnx. (12)

we have by symmetry,

ln
[

py−1

py

]
= −lnλ2 + ν2lny. (13)

When the plot of the set data
{(

lnx, ln
[

px−1
px

])
/x > 1

}
is adjusted by a straight line, then the random variable X follow

a COM-Poisson distribution(Shmueli et al.,2005). Thanks to the distribution of large numbers, successive probabilities
px(py) can be replaced by successives frequencies fx( fy) associated with x(y). In this case, the expression ln

[
fx−1
fx

]
which

is called log-ratio successives frequencies, will be used as a replacement for ln
[

px−1
px

]
, the response variable with lnx the

explanatory variable in the model (12). Although the basic assumtions of homoscedasticity and independence of theses
log-ratio are not established(Cf. Shmueli et al.,2005), the regression lines of (12) and (13) allow to calculate the estimators
of λ1, ν1, λ2, ν2 noted respectively λ̂1, ν̂1,λ̂2, ν̂2.

3.4 The Log Likelihood Estimation of Parameter β1, β2 et η

Let consider the distributions P(X = x/λ1, ν̂1), P(Y = y/λ2, ν̂2) and generalized linear models (7) and (8), we will
calculate the maximum likelihood estimators of the parameters β1, β2 and η in order to be able to highlight, not only the
independence between the variables X and Y but also the effect of factors on these variables.

3.4.1 The Log Likelihood Function

The log likelihood function of the bivariate COM-Poisson distribution is equal to

lnP = xlnλ1 + ylnλ2 − ν̂1ln(x!) − ν̂2ln(y!) − ln

 n∑
x=0

λx
1

(x!)ν̂1

 − ln

 n∑
y=0

λ
y
2

(y!)ν̂2

 .
By the replacement in the expressions (7) and (8) we have:

lnP = xt′β1 + y(t′β2 + ηx) − ν̂1ln(x!) − ν̂2ln(y!)−

− ln

 n∑
x=0

(
et′β1

)x

(x!)ν̂1

 − ln

 n∑
y=0

(
et′β2+ηx

)y

(y!)ν̂2

 ,
after development we find

lnP = xt′β1 + yt′β2 + yηx − ν̂1ln(x!) − ν̂2ln(y!) − ln

 n∑
x=0

et′β1 x

(x!)ν̂1

 − ln

 n∑
y=0

et′β2y+ηxy

(y!)ν̂2

 .
3.4.2 Parameters Estimate β1, β2 et η

The parameters β1, β2 and η will be estimated by the maximum likelihood method. Either a sample (xi, yi) of size n values
of the couple of variables (X,Y) of probability density P.

The likelihood of observing this sample is equal to

L =

n∏
i=1

P(xi, yi, λ1, ν̂1, λ2, ν̂2)

5
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By applying the logarithm, we have:

L = lnL = ln

 n∏
i=1

P(xi, yi, λ1, ν̂1, λ2, ν̂2)

 =

n∑
i=1

lnP(xi, yi, λ1, ν̂1, λ2, ν̂2),

=

n∑
i=1

ln[P(xi; λ1, ν̂1) × P(yi; λ2, ν̂2)] =

n∑
i=1

lnP(xi; λ1, ν̂1) +

n∑
i=1

lnP(yi; λ2, ν̂2),

where the function P is defined by the expression (6). By using the expressions (7) and (8) one has

L =

n∑
i=1

lnP(xi; β1, ν̂1) +

n∑
i=1

lnP(yi; β2, η, ν̂2) (14)

We will use the function maxLik of the statistical computer software R to determine these estimators.

4. Illustration

4.1 Data and Software Used

To illustrate this method, we will simulate the COM-Poisson data using the Statistics computer software R data processing
software. Let us recall that the COM-Poisson distribution with two parameters, one canonical and the other dispersion.

The COM-Poisson data of the random variables X and Y simulated of size N = 50 are given in the table (1) and (2)

Table 1. Variable X for λ1 = 2 and ν1 = 2

X 0 1 2 3 λ1 ν1 N
Obs. 7 32 8 3 2 2 50

Table 2. Variable Y for λ2 = 3 and ν2 = 2

Y 0 1 2 3 4 λ2 ν2 N
Obs. 8 20 16 5 1 3 2 50

Table 3. Simulated data of the Poisson variable t of parameter λ = 2

t 0 1 2 3 4 5 7 N
Obs. 10 11 14 11 2 1 1 50

Table 4. Elementary statistics

Variables Mean Variance Indice of Fisher
X 1.14 0.5310204 0.4658074
Y 1.42 0.9016327 0.6349526

From the table (4), the simulated data is underdispersed because the Fisher Indices are small than 1.
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4.1.1 Parameters Estimate λ1, ν1, λ2, ν2

Table 5. Regression coefficients of model (12)

Variables Parameters S β̂ k j =
β̂

S β̂
P(> |k j|)

Intercept 0.7568 1.7238 0.439 0.737
lnx 2.5757 2.2984 1.121 0.464

Table 6. Regression coefficients of model (13)

Variables Parameters S β̂ k j =
β̂

S β̂
P(> |k j|)

Intercept -0.09317 0.78709 -0.118 0.9166
lny 3.21664 0.82861 3.882 0.0604

Hence the estimated parameters of the models (12) and (13) are (table (7))

Table 7. Estimated parameters

Variables Parameters

X λ̂1 = 0.4691654 ν̂1 = 2.5757
Y λ̂2 = 1.097648 ν̂2 = 3.21664

4.2 Parameters Estimate β1, β2 et η

Table 8. The coefficients of model (14)

Parameters S β̂ k j =
β̂

S β̂
P(> |k j|)

β̂1 = 0.35679 0.04163 8.57 < 2.10−16 ∗ ∗ ∗

β̂2 = 0.27946 0.09362 2.985 0.00284 ∗∗
η̂ = 0.27046 0.19319 1.400 0.16153

It is evident from the table (8), that at the level α = 5% of significance, p-value equal to 0.16153 is higher than α; therefore
the coefficient η of estimate η̂ = 0.27046 is null significantly; what confirm the independance between the variable X and
Y . It also evident from this table that to the same level of significance, the coefficients β̂ j( j = 1, 2) was not null significantly
because the p-value was smaller than α, what brings us to say that the factor t has the effect, and on the variable X and on
the variable Y .

5. Conclusion

The bivariate function proposed by Kimberly et al.(2016) is not a probability distribution, so it cannot be used as a model
to describe data. The bivariate COM-Poisson distribution that we have proposed in this paper is definetely a probability
distribution. This distribution allowed us to highlight, not only the independence between the variables X and Y , but also
the effect of the factors (or predictors) on these variables. The resulting covariance is negative, zero or positive depending
on the values of a parameter; in particular for the bivariate Poisson distribution according to Berkhout and Plug(2004).
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