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Abstract

A new transformed two-sample t-test has been proposed for testing equality of two population means for skewed
distributions by means of a univariate normal goodness of fit to the combined sample. The small sample performance of
the proposed test is compared with untransformed t-test and the non-parametric analogue of t-test via Wilcoxon rank
sum test using real-life examples and simulation from skewed distributions with varying values of skewness,
empirically. It reveals that the proposed new test is appropriate for estimating the level of significance and is more
powerful than the untransformed t-test and the Wilcoxon rank sum test for skewed distributions.
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1. Introduction
Let X = (X1, X5, ..., X)) and Y = (¥, Y,, ... Y;,) be two independent random samples from two populations having
means u, = E(X;) and u, = E(Y;), respectively. We wish to test the null hypothesis
Hoq: py = 1y

that is, the two populations from which the two samples are considered have the same mean. For testing H,,, the
standard statistical models usually assume that the two population distributions are normal with the common unknown
variance o2. Under the assumption, a pooled estimator of a2 is given by
_(m-1SF+m—-1S;

m+n-—2

Sp

where SZ and S7 are sample variances of the two samples X and Y, respectively. Under Hy,, the test statistic T
given by

1,1
Sp m + E
follows Student’s t-distribution with m + n — 2 degrees of freedom. This test is uniformly most powerful unbiased test
(see, e.g., Lehmann 1994), and is omnipresent in statistical practice for making inference about the difference of the two
population means.

In real life, the assumption of normality is often invalid or unmet. As such, one option is to use the nonparametric
analog of t-test, namely, Wilcoxon rank sum test (Wilcoxon, 1945) or Mann Whitney U test (Mann & Whitney, 1947)
which does not require the normality of the data for the validity of the inference. Alternately, one may use the t-test to
transformed data following an appropriate transformation. With transformation an option, the common practice is to
re-express the data to achieve the normality and then implement t-test (Mosteller & Tukey, 1977; Atkinson, 1985). In an
oft-cited paper, Box and Cox (1964) suggested a power transformation for non-negative observations to achieve
normality. Since then Box-Cox transformation has widely been used for of the problems of statistical inference.

In this article, a new method is proposed to estimate the Box-Cox transformation by means of the univariate normal
goodness-of-fit approach. The idea is to combine the Box-Cox transformed data from two samples to fit into a normal
distribution to estimate the transformation parameter, and then implement the t-test to the transformed data. The new
transformed t-test outperforms existing transformed t-test, and the nonparametric Wilcoxon rank sum test or the
Student’s t-test in the violation of the normality.
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2. Methods

In this section, we review some popular tests for comparing two groups with respect to their locations (means or
medians). Section 2.1 presents a brief review of nonparametric Wilcoxon rank sum test for the completeness of the
comparison. A Box-Cox transformed t-test achieved via a maximum likelihood method is discussed in section 2.2. The
new transformation using the univariate normal goodness-of-fit is discussed in section 3. Examples from a real-life
situation and a simulated data appear in section 4 to demonstrate the application and performance of the proposed test as
compared with the other tests described. A simulation study is carried out in section 5 to compare the finite sample
performance of all tests considered in this article. Results and discussion from examples and simulation study appear in
section 6. The concluding remarks of the study appear in section 7.

2.1 Wilcoxon Rank Sum Test

The nonparametric Wilcoxon rank-sum test, also known as the Mann-Whitney U test, is well-known and preferable to
the two-sample t-test when the two populations the samples come from depart from normality. Let {X;,...,X,,} and
{Yy,...,Y,} be two independent samples from two populations with continuous cdfs Fy and F, and location
parameters u, and p,, respectively. Then, the basic null hypothesis of the Wilcoxon rank sum test is that the two
populations have an identical distribution (Gibbons & Chakraborti, 2014; Kvam & Vidakovic, 2007; Desu &
Raghavarao, 2004). That is Hg,: Fy(x) = Fy(x). Note that when the two random variables X and Y have the
identical distribution, they will have the same median or mean, say, i, = u,. Then, one can test the equality of two
location parameters using the test Hy,: F, = F, or equivalently  Hy,: p, = u,. In order to test Hy,, the
Mann-Whitney (U) test compares each X;,i = 1,2,...,m witheach Y;,j = 1,2,...,n and is defined as follows:

U, = # of pairs (XL-, YJ) for which X; > Y;

m(m+1)
It follows that U, = Y%, R; —

, where R, < R, < -+ < R,, are the ordered ranks of "m” x-observations in
the combined sample. On the other hand, the Wilcoxon rank sum test (W) is defined in terms of “sum of X ranks in
the combined sample”™: W, = ¥, R;. It is easy to verify that W, and U,, are connected by the equation W, =

m(m+1)
2

Uyx + (e.g., see Gibbons & Chakraborti, 2014; Kvam & Vidakovic, 2007; Desu & Raghavarao, 2004). In view

of this relationship, one can use either of the statistics W, or U,, or similarly defined W, or U,, for testing Hy,.
For an example, given a level of significance a, the inference procedure using Wilcoxon rank sum statistics can be
made as follows:

1) Reject Hy, against Hy,: py > py, if W, islargerie., p —value = P(W = W,) < a.

2) Reject Hy, against Hpp,: u, < py, if W, islargerie., p —value = P(W =2 W,) < a.

3) Reject Hy, against Hyc: py # w, Using Wy, = min(W,, W,)) or Wy, = max(W,, W, ) if the

p —value =2P(W < W) = 2P(W > Wmax) <a.

We implement this test using the statistical software R.
2.2 Box-Cox Transformed Test

An alternative to Wilcoxon rank sum test, one can use the Box-Cox transformation (Box & Cox, 1964) to achieve
normality before applying t-test when the data deviate from normality. For simplicity of presentation, let X = (Xy,....X;,,)
and Y = (1;,...,Y,) be non-negative random variables having a positive skewed distribution or deviating from normality.
Given a scalar 2, the Box-Cox power transformation to the sample X, X(A), is defined by

XA —1)/2, if1#0
XL(A) — {( L )/ 1 ¢

log(X;), ifA=0
The transformation to Y}, Y;(4) is defined in a similar way.

Let X(1) =m™' Y™, X;(1) be the mean of the transformed sample X(1). Let Y(1)be defined similarly. Let
52(1) be the pooled maximum likelihood estimate of the variance to the transformed data given by

(1)

S = (1/om+ w3 | (XD - + ) {r,m - M}Z‘
i=1 j=1
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Given the transformation (1) is successful to transform the data to fit a normal model, the profiled log-likelihood
function for the transformation parameter 4 is
[(A) = —{(m +n)/2}1ogS*(D) + M{TL, log X; + ¥\, log ¥} (2)
Box and Cox (1964) proposed to estimate A by the maximum likelihood estimator (MLE), A, over a pre-specified set
I of values of A4 so as to the equation (2) is maximized. Then, the two-sided transformed t-test is to reject Hyq: pty =
X(A)-¥(4)

S1/m+1/n’

The theoretical aspects of the Box-Cox transformed data analysis described above have been reported in literature. For
examples, Hinkley (1975) and Hernandez and Johnson (1980) investigated the asymptotic properties of the parameter
estimates. Bickel and Doksum (1981) critically examined the behavior of the asymptotic variances of the parameter
estimates for regression and analysis of variance situations. Chen and Loh (1992) and Chen (1995) proved that the
Box-Cox transformed t -test is typically more efficient asymptotically than the t-test without transformation. Islam

uy if |T(il)| is greater than the Student’s 1 critical value ty 5 p1n—o, Where T(il) =

and Chen (2007) justified the use of transformed t-test by fitting a t distribution to transformed data.

3. The New Proposed Transformed T-Test

In this article, we propose a new transformed t-test by applying a univariate normal goodness-of-fit to the transformed
combined sample data. This method is easy to implement using any standard statistical software, and it outperforms
other tests considered in this study while applied in real-life problems and simulations. Below we describe the new
method along with an algorithm to implement it.

Given the transformation X (1) is successful or nearly successful in achieving normality, it is expected that Z, (1) =

% = (Zl,x(/l),Zzlx(A), ...,Zm,x(l)) represents a random sample from a N(0,1) distribution. With the similar
X
Y()-u, (A
argument, Z,(1) = %‘g() = (Zl‘y(l),Zzly(/l), ...,Zn_y(/l)) represents a random sample from a N(0,1) distribution.
y

Then, the combined Z,,, (1) = (Zx(l),Z (A)) represents a sample

(216, Z0x D), o, Zan e D), 21,y D), Z3y D), ., 2y (D))
of size N = m + n froma N(0,1) distribution, which for the simplicity of the presentation we write as:

We propose to estimate A by A, in a way that Z( in) is as close as possible to the true N(0,1) distribution. Viewing
this problem as a goodness-of-fit to normal distribution, we test the hypothesis:

Hy:Z1(A),Z,(A), ..., Zy(2) is coming from a N(0,1) distribution, against
Hi:Z1(A),Z,(A), ..., Zy(2) isnotaN(0,1) distribution.

Following Shapiro and Wilk (1965), we use the test statistic W, (1) to test H,, which is given by
[Zi @iz (/1)]2
L Zi -2 ()
Zyp(A),i=1,..,N represents the ith order statistic of the sample Z(2),
Z,(0) = (N, Z,(1)/N is the sample mean,
mTy—1

(@, -, an) = (mTv-1y=1m)/? ’

W, (1) = where

m=(my, .., my)7,
m; =E (Z(i) (/1)) ,i=1,...,N,is the expected value of the ith order statistic Z;(4),

V = (v;;) is the variance-covariance matrix of order N x N, and
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v;; = Cov (Z(i) D, Zy (/1)) ,i,j = 1,..N, isthe covariance between ith and jth order statistics.

While the value of W,(1) lies between zero and one, the small value of W,(1) leads to the rejection of normality,

whereas a value close to one indicates normality. Given a level of significance «, one may reject the null hypothesis if

p-value p(1) = P(W < wz(1)) < a and accept otherwise. We propose to estimate A by observing the maximum

p-value associated with W,(1) over all possible values of 4 to achieve the desired normality of the transformed data.

In other words, the new estimate A,, using the univariate goodness-of-fit to N(0,1) distribution satisfies the equation
P(An) = maxze; P(W < wz(2)) ©)

where I is a pre-specified set of values of 1 considered in the search. In this article, the search for A, is made over

the interval [—1,1] with an increment of 0.1, and therefore, hereafter, we express it by I = {—1:0.1:1}. Once 4, is

obtained, we re-express the original samples and apply Student’s t-test to the transformed data. We employ the software

R in all examples and simulation to obtain the optimum A,, and other computational purposes.

An algorithm for the estimate A,, and the transformed test using 1, is as follows:

Given X and Y andafixed A € I ={-1:0.1: 1},

i.  Obtain the transformationsto X and Y, X(4) and Y(1) using equation (1).

X()-X(A)
Sx(A)

Y(O-F (D)
Sy ()

transformed data by S,(1) = /X, (x;(A) — %(1))? /m and

ii. Estimate Z,(1) = and Z,(1) = , Where S,(1) and S,(1) are estimated using the

Sy(A) = \/Z};l(yj ) - 37(1))2 /n. The term X (1) — X (1) refers to element-wise subtraction of sample

mean X(A) from the vector X (1) and similar operation applies to Y (1) — Y (1), which are allowed by any

standard statistical software.

iii.  Combine the two samples together to form Z(2) = (Z,(1), Z,(4), ..., Zy(1)), where N =m + n.
iv. Compare Z(A) with the N(0,1) distribution using the Shapiro-Wilk goodness-of-fit and find the p-value.
V. Repeat steps (i)-(iv) forall 1 € I = {-1:0.1:1}.

Vi. Select the maximum p-value among all p-values from steps (i)-(Vv).
vii. 1, is the value of 1 corresponding to the maximum p-value in step (vi).
viii.  Obtain transformations X(4,) and Y(4,).

iX. Perform usual t-test based on transformed data in step (viii) and decide about the acceptance and rejection of
the null hypothesis comparing with critical value of t distribution.
4. Applications

In this section, we will present two examples, one with real life data and the other with simulated data from a skewed
distribution to show application and performance of various tests in making inference about acceptance or rejection of
the equality of two population means.

Example 1

In this example, X and Y refer to sample data of checkout times, in minutes, of two grocery checkers. This data is due
to Verzani (2005).

X 5.8 1.0 11 2.1 2.5 11 1.0 1.2 3.2 2.7

Y 15 2.7 6.6 4.6 11 1.2 5.7 3.2 1.2 1.3

The summary statistics for X and Y are, mean=2.17 and skewness=1.71 (for X); mean=2.91 and skewness=0.86 (for
Y). The histograms and boxplots of X and Y are presented in Figure 1 to understand the shape of the simulated data.

Based on values of skewness and the shape from the histograms and boxplots, both samples X and Y seem to have
positively skewed distributions. Let the population mean difference Ax = p, — . The results of the test Hy:Ax =0
against the two-sided alternative H;: Ax # 0 using various tests discussed in this article appear in Table 1.
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Figure 1. Histograms and boxplots of samples X and Y in Example 1 with their shapes
Table 1. Test statistics and p-values for various tests for data in Example 1

Tests** Test statistic p-value A

t -0.9164 0.3716 -

w 34.000 0.2394 -
t() -0.8201 0.4229 -0.6
t(n) -0.8415 0.4111 -0.1

“t: Student’s t-test applied to untransformed data
w: Wilcoxon test
t(l): transformed t-test by a maximum likelihood method
t(n): new transformed t-test by a normal goodness-of-fit method
Based on the results of various tests in Table 1, it follows that all four tests provide identical conclusion of the

acceptance of the null hypothesis at 5% level of significance, with transformed two tests, ¢(l) and t(n),
outperforming the other two tests with p-values 0.4229 and 0.4111.

It is to be noted that the conclusion of t-test, whatever it is, may be misleading because data do not provide any
evidence of normality, a violation of applicability of t-test. Wilcoxon test assumes that the two distributions are
identical, and is a popular alternative to Student’s t-test for comparing two populations with respect to locations
(medians). On the other hand, the conclusion of both transformed ¢-tests appears to be valid because transformations
were intended to achieve normality.

Example 2
For this example, we simulate sample X from a G(2,1) distribution and the sample Y from 0.8 4+ G(2,1)

distribution. Thus, in the population distributions of X and Y, an absolute mean difference is |Ax| = B, — My| = 0.8.

In other words, we simulate two samples X and Y under alternative hypothesis H;: Ax # 0. For the convenience of
the presentation, we round up the values of the simulated data to two decimal places and are presented as follows:
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X: 1.06 1.88 3.68 1.13 2.08 4.84 1.42 1.29 0.37 2.43
Y: 1.73 2.74 1.85 3.74 1.95 2.73 4.25 2.35 1.94 2.08
2.45 2.49 3.08 1.71 3.48

We wish to test Hy: Ax = 0 against the two sided alternative H,: Ax # 0 using various tests discussed in this article.

The summary statistics of two simulated samples are as follows: for sample X, mean=2.02 and skewness=1.17; for
sample Y mean=2.57 and skewness=0.89. The histograms and boxplots of X and Y are presented in Figure 2 to
understand the shape of the simulated data.
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Figure 2. Histograms and boxplots of samples X and Y in Example 2 with their shapes

Since the samples X and Y come from the populations with identical variance but different means, we expect that
various test statistics would be able to assess the inequality of the two means with stronger evidence. The results of
various tests with corresponding p-values are reported in Table 2.

Table 2. Test statistics and p-values for various tests for simulated data in Example 2

Tests Test statistic p-value A
t -1.3101 0.2031 -
w 43.500 0.8055 -
t() -1.696 0.1034 0.5
t(n) -2.0487 0.0487 -0.2

The results of various tests in Table 2, suggest that among all four tests only the new proposed test t(n) test provides
the correct decision by rejecting the null hypothesis of equality of two means with p-value 0.0487 at 5% level of
significance. Other tests provide evidence of accepting the null hypothesis with p values 0.2031 (untransformed test t),
0.8055 (Wilcoxon test w) and 0.1034 (transformed test based on the ML method), respectively.

Based on the performances of two examples presented, it seems reasonable to recommend the new transformed test for
skewed data.

5. Simulation Study

In this section, we carry out a simulation study to compare the finite sample performance of the various tests described
in this article, along with the proposed t-test. All simulations are performed by using the statistical software R, with
values of A € I = {—1:0.1:1}. Under the null model, the samples X and Y are simulated from G(a, b) population
where a is the shape parameter and b is the scale parameter. Under alternative model, the samples X and Y are
simulated from G(a,b) + Ax and G(a,b) populations, respectively, with the mean difference Ax > 0. The mean
difference Ax is arbitrarily chosen from the set {0.15, 0.25, 0.50, 0.65, 1.25} to ensure a testing power away from 0
and 1 for the purpose of the comparisons. Note that the skewness of G(a, b) distribution is y, = 2/+/a. In simulations,
we choose different values of the parameter a to allow varying levels of skewness of the simulated samples. We fix the
value of the parameter b at 1 since it does not affect the skewness of the simulated data. In all simulations, the Monte
Carlo size is considered 5,000. The power of various tests is estimated from the proportion of rejection of null
hypothesis under alternative over a Monte Carlo simulation of size 5,000 at 5% level of significance. In a similar
manner, the level of significance is estimated from the proportion of the rejection of the null hypothesis over a Monte
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Carlo simulation of size 5,000 at 5% level of significance when the null hypothesis is true. Table 3 provides the values
of the parameter a used in the simulation of samples X and Y to allow varying values of the skewness.

Table 3. Values of a and y; used insimulations of X and Y

Shape parameter_a SKEWNEss y,
0.25 4.0
0.5 2.8
1 2.0
2 1.4
10 0.6

Table 4 provides estimated power of the simulation study for varying values of shape parameter a, sample sizes (m,n)
and the mean difference Ax = u, — p,,.

Table 5 provides estimated rejection rates under the null distributions at 5% level of significance, along with mean and
standard deviation of the estimated transformation parameter A by maximum likelihood (1) and univariate goodness
of fit technique (1,,) over a Monte Carlo simulation of size 5,000.

6. Results and Discussion

The results of Example 1 in section 4 suggest that all the four tests applied to compare means of checkout times of two
grocery checkers lead to the identical conclusion of acceptance of equality of two locations with p-values 0.3716
(Student’s t), 0.2394 (Wilcoxon test) and 0.4229 (transformed ¢-test by a maximum likelihood method) and 0.4111.
However, given the fact that the X and Y seem to have a positive skewed distributions, as are evident by histograms
and boxplots in Figure 1, and the skewness (1.71 for X and 0.86 for Y), one may be doubtful about the conclusion of
the Student’s t-test. In reference to the conclusions of four tests applied to Example 2, only the proposed new test t(n)
could make a correct conclusion of the rejection of the null hypothesis given the fact that the data were generated under
the alternative. Thus, the proposed test outperforms other tests in the right decision-making.

Table 4. Simulated power of various tests at 5% significance level over 5,000 samples

t w t(h t(n) t w t(D t(n)
a (m,n) Ax = 0.15 Ax = 0.25
10,1 0.173 0478 0584 0.657 [0.341 0656 0766 0.817
15,15 0199 0.668 0.761 0.872 |0.399 0.838 0.911 0.965
20,20 0219 0.799 0873 0958 | 0.463 0936 0.968 0.993
0.25 25,25 0255 0879 0934 0985 |0506 0971 0.990 0.999
15,10 0.169 0577 0.702 0.809 |0.362 0740 0.852 0.888
20,15 0212 0.722 0.822 0937 | 0413 0874 0.941 0.980
25,20 0241 0.825 0.908 0.977 |0.481 0944 0978 0.996
Ax = 0.15 Ax = 0.25
10,10 0.078 0.180 0230 0270 [0.159 0324 0396 0.462
15,15 0.097 0.264 0332 0426 | 0200 0.469 0.551 0.678
20,20 0.120 0.354 0.422 0550 |0.241 0599 0.668 0.807
0.50 25,25 0.131 0420 0505 0.646 |0.263 0.705 0.769 0.890
15,10 0.080 0.241 0311 0431 |0.173 0392 0490 0.645
20,15 0.102 0.299 0.387 0538 |0.224 0528 0.629 0.793
25,20 0.124 0.388 0.490 0.648 | 0.257 0.626 0.726  0.868
Ax = 0.50 Ax = 0.65
10,10 0222 0301 0362 0403 [0346 0452 0516 0.569
15,15 0.303 0458 0525 0.609 | 0453 0.620 0.700 0.784
20,20 0379 0591 0.647 0740 |0553 0772 0811 0.886
1 25,25 0424 0.682 0.740 0.825 | 0.638 0.849 0.892 0.941
15,10 0.259 0.390 0.467 0561 |[0.399 0538 0.627 0.729
20,15 0.326 0517 0.600 0.703 | 0503 0.689 0.763 0.859
25,20 0.397 0.615 0.707 0.806 | 0.600 0.793 0.852 0.923
Ax = 0.65 Ax = 0.85
10,10 0181 0196 0236 0.255 [ 0.274 0301 0.348 0.376
15,15 0.250 0.304 0347 0372 |0381 0450 0502 0.541
20,20 0313 0.399 0445 0475 | 0.484 0587 0.641 0.681
2 25,25 0.365 0.472 0530 0570 |0565 0.678 0730 0.774
15,10 0212 0.254 0312 0344 |0316 0371 0439 0.485
20,15 0269 0330 0395 0435 |0430 0509 0.582 0.632
25,20 0.334 0421 0485 0526 |0522 0.627 0.689 0.737
Ax = 0.85 Ax =1.25
10,10 0.087 0.0/73 0.093 0.100 |[0.129 0.121 0.138 0.145
15,15 0.107 0.104 0.121 0.125 |0.190 0.183 0.207 0.216
20,20 0.131 0.132 0.141 0.149 |0.239 0.236 0.256 0.265
10 25,25 0.157 0.159 0.172 0.178 |0.283 0.289 0.308 0.317
15,10 0.097 0.091 0105 0.115 |0.146 0.148 0.164 0.174
20,15 0.120 0.116 0.133 0.141 |0.210 0.204 0.232 0.240
25,20 0149 0.146 0.163 0.169 |0.246 0.249 0.273  0.283

36



http://ijsp.ccsenet.org International Journal of Statistics and Probability \ol. 9, No. 5; 2020

Table 5. Estimated rejection rates at 5% level, along with average and standard deviation (S.D) of A

Estimated level of significance Average S.D

a (m,n) t w t(D) t(n) A Ay A Ay

(10,10) | 0.031 0.041 0.051 0.054 0.136 0.170 0.062  0.081

(15,15) | 0.036 0.048 0.056 0.056 0.137 0.167 0.0563  0.075

(20,20) | 0.037 0.050 0.053 0.054 0.137 0.163 0.050  0.061

0.25 | (25,25) | 0.042 0.051 0.055 0.056 0.136 0.163 0.048  0.055

(15,10) | 0.035 0.052 0.055 0.056 0.137 0.168 0.056  0.087

(20,15) | 0.040 0.047 0.050 0.054 0.138 0.166 0.050  0.065

(25,20) | 0.039 0.051 0.053 0.055 0.136 0.164 0.049  0.058

(10,10) | 0.042 0.045 0.054 0.055 0.194 0.226 0.102 0.171

(15,15) | 0.038 0.036 0.045 0.051 0.200 0.228 0.078  0.115

(20,20) | 0.040 0.044 0.047 0.050 0.204 0.227 0.065  0.088

0.50 | (25,25) | 0.041 0.045 0.047 0.049 0.204 0.226 0.058  0.077

(15,10) | 0.042 0.044 0.050 0.054 0.198 0.227 0.087  0.132

(20,15) | 0.043 0.047 0.052 0.053 0.203 0.228 0.070  0.100

(25,20) | 0.040 0.043 0.047 0.051 0.203 0.227 0.061  0.081

(10,10) | 0.040 0.040 0.046 0.051 0.241 0.271 0.170  0.254

(15,15) | 0.047 0.045 0.052 0.055 0.249 0.273 0.130  0.177

(20,20) | 0.045 0.048 0.049 0.053 0.253 0.271 0.109  0.139

1 (25,25) | 0.043 0.047 0.047 0.049 0.257 0.273 0.096  0.118

(15,10) | 0.049 0.051 0.057 0.058 0.246 0.274 0.149  0.208

(20,15) | 0.050 0.049 0.052 0.054 0.250 0.272 0.117  0.153

(25,20) | 0.044 0.047 0.050 0.053 0.255 0.273 0.102  0.128

(10,10) | 0.040 0.039 0.047 0.053 0.269 0.293 0.273  0.377

(15,15) | 0.052 0.046 0.054 0.054 0.271 0.289 0.211  0.270

(20,20) | 0.046 0.045 0.051 0.054 0.282 0.297 0.175  0.209

2 (25,25) | 0.048 0.048 0.050 0.051 0.289 0.302 0.155 0.181

(15,10) | 0.044 0.044 0.048 0.051 0.269 0.287 0.236  0.307

(20,15) | 0.049 0.045 0.052 0.055 0.280 0.297 0.194  0.239

(25,20) | 0.052 0.049 0.053 0.054 0.279 0.291 0.164  0.193

(10,10) | 0.047 0.042 0.050 0.053 0.260 0.238 0.565  0.653

(15,15) | 0.043 0.038 0.046 0.048 0.276 0.276 0.475 0542

(20,20) | 0.045 0.044 0.048 0.051 0.304 0.302 0.414  0.462

10 (25,25) | 0.051 0.051 0.052 0.053 0.299 0.307 0.374 0414

(15,10) | 0.044 0.043 0.048 0.052 0.276 0.264 0.508  0.586

(20,15) | 0.052 0.048 0.055 0.056 0.282 0.280 0.443  0.503

(25,20) | 0.049 0.046 0.051 0.054 0.292 0.295 0.391  0.437

As we look at the simulation results presented in Table 4, it is evident that the new transformed test ¢(n) provides the
maximum power for all sample sizes, equal (m =n) and unequal (m = n), among all four tests considered. We
consider equal sample sizes (m =n) at 10, 15, 20 and 25. Note that the lower value of the shape parameter a
corresponds to the higher value of the skewness. To evaluate the performance for varying values of skewness, we
consider values of a from 0.25 to 10 with arbitrary increases to its values to cause skewness to decrease from 4 to 0.6
as appeared in Table 3. It is also evident that all tests demonstrate higher power as mean difference Ax and sample size
increase. The new test t(n) has always performed the best in terms of estimated testing power; the second best has
been the ¢(1) test. However, as expected, the nonparametric test w has demonstrated higher power than the Student’s
t-test. Also, the differences in power among four tests have decreased as the skewness of the distribution has decreased.
It makes sense because Wilcoxon and transformed tests are expected to perform better for skewed distribution; the
higher the skewness, the better is their performance with respect to the testing power. As we see, overall, the proposed
new test t(n) outperforms all other three tests in terms of the power, for all sample size and skewness considered in
the simulation.

From the simulated results presented in Table 5, it appears that the estimated level of significance for Student’s ¢t
ranges from 0.031 to 0.052, for a 5% nominal level of significance, throughout the simulation, under null hypothesis.
Indeed, the estimated levels of significance seem to be underestimated for all sample sizes for highly skewed
distributions (e.g., a = 0.25,0.50) and approach the nominal level as the skewness decreases (a = 1,2,10). The
estimated rejection rates for Wilcoxon test is close to the nominal level of 5%, with estimated values ranging from 0.036
to 0.052, under null hypothesis. On the other hand, the estimated rejection rates for both versions of transformed tests
are comparable at 5% level of significance, with estimated values ranging from 0.045 to 0.057 for t(l) test, and 0.048

37



http://ijsp.ccsenet.org International Journal of Statistics and Probability \ol. 9, No. 5; 2020

t0 0.058 for t(n) test, under null hypothesis.

The estimated average and standard deviation of A, and A, over 5,000 simulations under null hypothesis are also
reported in Table 5, where the search for 1, and 1, is made in the interval [-1,1] with an increment of 0.1. It follows
that the average and standard deviation of 1, and 1, depend on the levels of skewness of the distributions, with
standard deviation of both decreasing with the increase of the sample sizes for a given value of skewness. In terms of
average and standard deviation values of 1, and A,, similar conclusions apply under the alternative hypothesis where
powers are calculated and therefore, are not reported in Table 4 to avoid redundancy.

7. Concluding Remarks

This article proposes a new transformed t-test where the Box-Cox transformation to normality is achieved via a
univariate normal goodness-of-fit test. To this end, we i) apply Shapiro and Wilk test to the combined standardized
transformed samples to fit into the N(0,1) distribution, ii) estimate the best transformation to normality by observing the
maximum p-value from the Shapiro and Wilk test for all possible values of A € {—1:0.1:1} and iii) apply student’s
t-test to the best normal transformed samples to compare location parameters (means). The performance of the new test
over Student’s t-test, Wilcoxon test and an existing transformed t-test achieved via likelihood method has been
justified by two examples, and simulations where data comes from skewed distributions (gamma distribution). It is
evident that the new test is appropriate for estimating the level of significance and is more powerful than other three
tests considered for skewed distributions. It is also clear that higher the skewness, the better are the transformed t-tests
in terms of the testing power, with the new transformed t(n) test performing the best. It makes sense because if the
data is less skewed or almost no skewed at all, the power transformation will not be needed or appropriate. It follows
that the power of all tests is sensitive to the mean difference and sample size; the power of all tests increases with the
increase in the mean difference of two population means and the size of the samples. Given the performance of the
proposed new t-test, in terms of estimated power under the alternative hypothesis, and estimated level of significance
under the null hypothesis, researchers can practice the proposed test with confidence. Overall, the Wilcoxon test is
better in power than the Student’s t-test and transformed t-tests are better than the Wilcoxon test with the new
proposed test t(n) demonstrating the highest power. If researchers are too concern about the estimated level of
significance, they might consider Wilcoxon test because of its robustness. However, if power is of the concern, the new
test performs the best.
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