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Abstract 

A new transformed two-sample t-test has been proposed for testing equality of two population means for skewed 

distributions by means of a univariate normal goodness of fit to the combined sample. The small sample performance of 

the proposed test is compared with untransformed t-test and the non-parametric analogue of t-test via Wilcoxon rank 

sum test using real-life examples and simulation from skewed distributions with varying values of skewness, 

empirically. It reveals that the proposed new test is appropriate for estimating the level of significance and is more 

powerful than the untransformed t-test and the Wilcoxon rank sum test for skewed distributions.  

Keywords: goodness-of-fit, power, transformation, two-sample t-test, Wilcoxon test 

1. Introduction 

Let 𝑋  (𝑋  𝑋    𝑋 ) and 𝑌  (𝑌  𝑌   𝑌 ) be two independent random samples from two populations having 

means     (𝑋 ) and     (𝑌 ), respectively. We wish to test the null hypothesis 

𝐻0 :       

that is, the two populations from which the two samples are considered have the same mean. For testing 𝐻0 , the 

standard statistical models usually assume that the two population distributions are normal with the common unknown 

variance 𝜎 . Under the assumption, a pooled estimator of 𝜎  is given by 

𝑆𝑝
  

(𝑚 − 1)𝑆 
 + (𝑛 − 1)𝑆 

 

𝑚 + 𝑛 − 2
 

where 𝑆 
  and 𝑆 

  are sample variances of the two samples 𝑋 and 𝑌, respectively. Under 𝐻0 , the test statistic 𝑇 

given by 

𝑇  
𝑋̅ − 𝑌̅

𝑆𝑝√
1
𝑚
+
1
𝑛

 

follows Student’s t-distribution with 𝑚 + 𝑛 − 2 degrees of freedom. This test is uniformly most powerful unbiased test 

(see, e.g., Lehmann 1994), and is omnipresent in statistical practice for making inference about the difference of the two 

population means.  

In real life, the assumption of normality is often invalid or unmet. As such, one option is to use the nonparametric 

analog of t-test, namely, Wilcoxon rank sum test (Wilcoxon, 1945) or Mann Whitney U test (Mann & Whitney, 1947) 

which does not require the normality of the data for the validity of the inference. Alternately, one may use the t-test to 

transformed data following an appropriate transformation. With transformation an option, the common practice is to 

re-express the data to achieve the normality and then implement t-test (Mosteller & Tukey, 1977; Atkinson, 1985). In an 

oft-cited paper, Box and Cox (1964) suggested a power transformation for non-negative observations to achieve 

normality. Since then Box-Cox transformation has widely been used for of the problems of statistical inference. 

In this article, a new method is proposed to estimate the Box-Cox transformation by means of the univariate normal 

goodness-of-fit approach. The idea is to combine the Box-Cox transformed data from two samples to fit into a normal 

distribution to estimate the transformation parameter, and then implement the t-test to the transformed data. The new 

transformed t-test outperforms existing transformed t-test, and the nonparametric Wilcoxon rank sum test or the 

Student’s t-test in the violation of the normality.  



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 9, No. 5; 2020 

31 

2. Methods 

In this section, we review some popular tests for comparing two groups with respect to their locations (means or 

medians). Section 2.1 presents a brief review of nonparametric Wilcoxon rank sum test for the completeness of the 

comparison. A Box-Cox transformed 𝑡-test achieved via a maximum likelihood method is discussed in section 2.2. The 

new transformation using the univariate normal goodness-of-fit is discussed in section 3. Examples from a real-life 

situation and a simulated data appear in section 4 to demonstrate the application and performance of the proposed test as 

compared with the other tests described. A simulation study is carried out in section 5 to compare the finite sample 

performance of all tests considered in this article. Results and discussion from examples and simulation study appear in 

section 6. The concluding remarks of the study appear in section 7. 

2.1 Wilcoxon Rank Sum Test 

The nonparametric Wilcoxon rank-sum test, also known as the Mann-Whitney U test, is well-known and preferable to 

the two-sample t-test when the two populations the samples come from depart from normality. Let *𝑋    𝑋 +  and 

*𝑌    𝑌 +  be two independent samples from two populations with continuous cdfs 𝐹𝑋  and 𝐹𝑌  and location 

parameters    and   ,  respectively. Then, the basic null hypothesis of the Wilcoxon rank sum test is that the two 

populations have an identical distribution (Gibbons & Chakraborti, 2014; Kvam & Vidakovic, 2007; Desu & 

Raghavarao, 2004). That is 𝐻0 :  𝐹𝑋(𝑥)  𝐹𝑌(𝑥). Note that when the two random variables 𝑋 and 𝑌 have the 

identical distribution, they will have the same median or mean, say,      . Then, one can test the equality of two 

location parameters using the test 𝐻0 :  𝐹  𝐹  or equivalently  𝐻0 :       .  In order to test 𝐻0 , the 

Mann-Whitney (𝑈) test compares each 𝑋𝑖  𝑖  1 2   𝑚 with each 𝑌𝑗 𝑗  1 2   𝑛 and is defined as follows: 

𝑈   # of pairs (𝑋𝑖 𝑌𝑗) for which 𝑋𝑖 > 𝑌𝑗 

It follows that 𝑈   ∑ 𝑅𝑖
 
𝑖= −

 ( + )

 
, where 𝑅 < 𝑅 < ⋯ < 𝑅  are the ordered ranks of "𝑚” 𝑥-observations in 

the combined sample. On the other hand, the Wilcoxon rank sum test (𝑊) is defined in terms of “sum of 𝑋 ranks in 

the combined sample”: 𝑊  ∑ 𝑅𝑖
 
𝑖= . It is easy to verify that 𝑊  and 𝑈   are connected by the equation 𝑊  

 𝑈  +
 ( + )

 
 (e.g., see Gibbons & Chakraborti, 2014; Kvam & Vidakovic, 2007; Desu & Raghavarao, 2004). In view 

of this relationship, one can use either of the statistics 𝑊  or 𝑈   or similarly defined 𝑊  or 𝑈   for testing 𝐻0 . 

For an example, given a level of significance 𝛼, the inference procedure using Wilcoxon rank sum statistics can be 

made as follows: 

1) Reject 𝐻0  against 𝐻 𝑎:   >    if 𝑊  is larger i.e., 𝑝 −  a      (𝑊  𝑊 )  𝛼. 

2) Reject 𝐻0  against 𝐻 𝑏:    <    if 𝑊  is larger i.e., 𝑝 −  a      (𝑊  𝑊 )  𝛼. 

3) Reject 𝐻0  against 𝐻 𝑐:        using 𝑊 𝑖  𝑚𝑖𝑛(𝑊  𝑊 )  or 𝑊 𝑎  𝑚𝑎𝑥(𝑊  𝑊 )  if the 

𝑝 −  a     2 (𝑊  𝑊 𝑖 )  2 (𝑊  𝑊 𝑎  )  𝛼. 

We implement this test using the statistical software R. 

2.2 Box-Cox Transformed Test 

An alternative to Wilcoxon rank sum test, one can use the Box-Cox transformation (Box & Cox, 1964) to achieve 

normality before applying t-test when the data deviate from normality. For simplicity of presentation, let 𝑋  (𝑋 ,…,𝑋 ) 

and 𝑌  (𝑌 ,…,𝑌 ) be non-negative random variables having a positive skewed distribution or deviating from normality. 

Given a scalar 𝜆, the Box-Cox power transformation to the sample 𝑋, 𝑋(𝜆), is defined by 

𝑋𝑖(𝜆)  {
(𝑋𝑖

𝜆 − 1)/𝜆      if 𝜆  0

 og(𝑋𝑖)              if 𝜆  0
         (1) 

The transformation to 𝑌𝑗, 𝑌𝑗(𝜆) is defined in a similar way. 

Let 𝑋(𝜆)  𝑚− ∑ 𝑋𝑖(𝜆)
 
𝑖=  be the mean of the transformed sample 𝑋(𝜆). Let  𝑌(𝜆) be defined similarly. Let 

𝑆 (𝜆) be the pooled maximum likelihood estimate of the variance to the transformed data given by 

𝑆2(𝜆)  *1/(𝑚 + 𝑛)+ [∑{𝑋𝑖(𝜆) − 𝑋(𝜆)}
2

𝑚

𝑖 1

+∑{𝑌𝑗(𝜆) − 𝑌(𝜆)}
2

𝑛

𝑗 1

] 
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Given the transformation (1) is successful to transform the data to fit a normal model, the profiled log-likelihood 

function for the transformation parameter 𝜆 is 

𝑙(𝜆)  −*(𝑚 + 𝑛)/2+  og 𝑆 (𝜆) + 𝜆{∑  og𝑋𝑖
 
𝑖= +∑  og𝑌𝑗

 
𝑗= }     (2)  

Box and Cox (1964) proposed to estimate 𝜆 by the maximum likelihood estimator (MLE), 𝜆̂𝑙 over a pre-specified set 

𝐼 of values of 𝜆 so as to the equation (2) is maximized. Then, the two-sided transformed t-test is to reject 𝐻0 :    

   if |𝑇(𝜆̂𝑙)|  is greater than the Student’s t critical value 𝑡𝛼/   + − , where 𝑇(𝜆̂𝑙)  
𝑋(𝜆̂𝑙)−𝑌(𝜆̂𝑙)

𝑆(𝜆̂𝑙)√ / + / 
. 

The theoretical aspects of the Box-Cox transformed data analysis described above have been reported in literature. For 

examples, Hinkley (1975) and Hernandez and Johnson (1980) investigated the asymptotic properties of the parameter 

estimates. Bickel and Doksum (1981) critically examined the behavior of the asymptotic variances of the parameter 

estimates for regression and analysis of variance situations. Chen and Loh (1992) and Chen (1995) proved that the 

Box-Cox transformed -t test is typically more efficient asymptotically than the t-test without transformation. Islam 

and Chen (2007) justified the use of transformed t-test by fitting a t distribution to transformed data. 

3. The New Proposed Transformed T-Test 

In this article, we propose a new transformed 𝑡-test by applying a univariate normal goodness-of-fit to the transformed 

combined sample data. This method is easy to implement using any standard statistical software, and it outperforms 

other tests considered in this study while applied in real-life problems and simulations. Below we describe the new 

method along with an algorithm to implement it. 

Given the transformation 𝑋(𝜆) is successful or nearly successful in achieving normality, it is expected that 𝑍 (𝜆)  

𝑿(𝜆)−𝜇𝑥(𝜆)

𝜎𝑥(𝜆) 
 .𝑍   (𝜆) 𝑍   (𝜆)   𝑍   (𝜆)/  represents a random sample from a N(0,1) distribution. With the similar 

argument, 𝑍𝑦(𝜆)  
𝒀(𝜆)− 𝑦(𝜆)

𝜎𝑦(𝜆) 
 .𝑍1 𝑦(𝜆) 𝑍2 𝑦(𝜆)   𝑍𝑛 𝑦(𝜆)/  represents a random sample from a N(0,1) distribution. 

Then, the combined 𝑍𝑥 𝑦(𝜆)  .𝑍𝑥(𝜆) 𝑍𝑦(𝜆)/ represents a sample 

.𝑍   (𝜆) 𝑍   (𝜆)   𝑍   (𝜆) 𝑍   (𝜆) 𝑍   (𝜆)   𝑍   (𝜆)/ 

of size 𝑁  𝑚 + 𝑛 from a N(0,1) distribution, which for the simplicity of the presentation we write as: 

𝑍(𝜆)  (𝑍 (𝜆) 𝑍 (𝜆)   𝑍𝑁(𝜆)) 

We propose to estimate 𝜆 by  𝜆̂  in a way that 𝑍( 𝜆̂ ) is as close as possible to the true N(0,1) distribution. Viewing 

this problem as a goodness-of-fit to normal distribution, we test the hypothesis: 

𝐻0: 𝑍1(𝜆) 𝑍2(𝜆)   𝑍𝑁(𝜆) is coming from a N(0,1) distribution, against 

𝐻1: 𝑍1(𝜆) 𝑍2(𝜆)   𝑍𝑁(𝜆) is not a N(0,1) distribution. 

Following Shapiro and Wilk (1965), we use the test statistic 𝑊𝑍(𝜆) to test 𝐻0, which is given by 

𝑊𝑍(𝜆)  
[∑ 𝑎𝑖𝑍(𝑖)(𝜆)
𝑁
𝑖=1 ]

2

∑ (𝑍𝑖(𝜆)−𝑍𝑖̅(𝜆))
2𝑁

𝑖=1
, where 

𝑍(𝑖)(𝜆) 𝑖  1   𝑁 represents the 𝑖th order statistic of the sample 𝑍(𝜆), 

𝑍𝑖̅(𝜆)  (∑ 𝑍𝑖(𝜆)
𝑁
𝑖= )/𝑁 is the sample mean, 

(𝑎    𝑎𝑁)  
 𝑇𝑉−1

( 𝑇𝑉−1𝑉−1 )
1/2 , 

𝑚  (𝑚    𝑚𝑁)
𝑇, 

𝑚𝑖   .𝑍(𝑖)(𝜆)/  𝑖  1   𝑁  is the expected value of the 𝑖th order statistic 𝑍(𝑖)(𝜆), 

𝑉  (𝑣𝑖 𝑗) is the variance-covariance matrix of order 𝑁 × 𝑁, and 
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𝑣𝑖 𝑗  𝐶𝑜𝑣 .𝑍(𝑖)(𝜆) 𝑍(𝑗)(𝜆)/  𝑖 𝑗  1  𝑁  is the covariance between 𝑖th and 𝑗th order statistics. 

While the value of 𝑊𝑍(𝜆) lies between zero and one, the small value of 𝑊𝑍(𝜆) leads to the rejection of normality, 

whereas a value close to one indicates normality. Given a level of significance 𝛼, one may reject the null hypothesis if 

𝑝-value 𝑝(𝜆)   (𝑊  𝑤𝑍(𝜆))  𝛼 and accept otherwise. We propose to estimate 𝜆 by observing the maximum 

𝑝-value associated with 𝑊𝑍(𝜆) over all possible values of  to achieve the desired normality of the transformed data. 

In other words, the new estimate 𝜆̂  using the univariate goodness-of-fit to N(0,1) distribution satisfies the equation 

𝑝( 𝜆̂ )  max𝜆∈𝐼  (𝑊  𝑤𝑍(𝜆))          (3) 

where 𝐼 is a pre-specified set of values of 𝜆 considered in the search. In this article, the search for 𝜆̂  is made over 

the interval ,−1 1- with an increment of 0.1, and therefore, hereafter, we express it by 𝐼  *−1: 0.1: 1+. Once 𝜆̂  is 

obtained, we re-express the original samples and apply Student’s t-test to the transformed data. We employ the software 

R in all examples and simulation to obtain the optimum 𝜆̂  and other computational purposes.  

An algorithm for the estimate 𝜆̂  and the transformed test using 𝜆̂  is as follows: 

Given 𝑋 and 𝑌 and a fixed 𝜆 ∈ 𝐼  *−1: 0.1: 1+, 

i. Obtain the transformations to 𝑋 and 𝑌, 𝑋(𝜆) and 𝑌(𝜆)  using equation (1). 

ii. Estimate 𝑍 (𝜆)  
𝑿(𝜆)−𝑋̅(𝜆)

𝑆𝑥(𝜆) 
 and 𝑍 (𝜆)  

𝒀(𝜆)−𝑌̅(𝜆)

𝑆 (𝜆) 
, where 𝑆 (𝜆)  and 𝑆 (𝜆)  are estimated using the 

transformed data by 𝑆 (𝜆)  √∑ (𝑥𝑖(𝜆) − 𝑥̅(𝜆))
  

𝑖= /𝑚  and 

𝑆 (𝜆)  √∑ (𝑦𝑗(𝜆) − 𝑦̅(𝜆))
  

𝑗= /𝑛. The term 𝑋(𝜆) − 𝑋̅(𝜆) refers to element-wise subtraction of sample 

mean 𝑋̅(𝜆) from the vector 𝑋(𝜆) and similar operation applies to 𝑌(𝜆) − 𝑌̅(𝜆), which are allowed by any 

standard statistical software. 

iii. Combine the two samples together to form 𝑍(𝜆)  (𝑍 (𝜆) 𝑍 (𝜆)   𝑍𝑁(𝜆)), where 𝑁  𝑚 + 𝑛. 

iv. Compare 𝑍(𝜆) with the N(0,1) distribution using the Shapiro-Wilk goodness-of-fit and find the 𝑝-value. 

v. Repeat steps (i)-(iv) for all 𝜆 ∈ 𝐼  *−1: 0.1: 1+. 

vi. Select the maximum 𝑝-value among all 𝑝-values from steps (i)-(v). 

vii. 𝜆̂  is the value of 𝜆 corresponding to the maximum 𝑝-value in step (vi). 

viii. Obtain transformations 𝑋(𝜆̂ ) and 𝑌(𝜆̂ ). 

ix. Perform usual t-test based on transformed data in step (viii) and decide about the acceptance and rejection of 

the null hypothesis comparing with critical value of 𝑡 distribution. 

4. Applications 

In this section, we will present two examples, one with real life data and the other with simulated data from a skewed 

distribution to show application and performance of various tests in making inference about acceptance or rejection of 

the equality of two population means. 

Example 1 

In this example, 𝑋 and 𝑌 refer to sample data of checkout times, in minutes, of two grocery checkers. This data is due 

to Verzani (2005).  

𝑋 5.8 1.0 1.1 2.1 2.5 1.1 1.0 1.2 3.2 2.7 

𝑌 1.5 2.7 6.6 4.6 1.1 1.2 5.7 3.2 1.2 1.3 

The summary statistics for 𝑋 and 𝑌 are, mean=2.17 and skewness=1.71 (for 𝑋); mean=2.91 and skewness=0.86 (for 

𝑌). The histograms and boxplots of 𝑋 and 𝑌 are presented in Figure 1 to understand the shape of the simulated data.  

Based on values of skewness and the shape from the histograms and boxplots, both samples 𝑋 and 𝑌 seem to have 

positively skewed distributions. Let the population mean difference ∆𝑥    −   . The results of the test 𝐻0: ∆𝑥  0 

against the two-sided alternative 𝐻 : ∆𝑥  0 using various tests discussed in this article appear in Table 1. 
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Figure 1. Histograms and boxplots of samples 𝑋 and 𝑌 in Example 1 with their shapes 

Table 1. Test statistics and 𝑝-values for various tests for data in Example 1 

Tests** Test statistic 𝑝-value 𝜆̂ 

𝑡 -0.9164 0.3716 - 

𝑤 34.000 0.2394 - 

𝑡(𝑙) -0.8201 0.4229 -0.6 

𝑡(𝑛) -0.8415 0.4111 -0.1 

**𝑡: Student’s 𝑡-test applied to untransformed data 

𝑤: Wilcoxon test 

𝑡(𝑙): transformed 𝑡-test by a maximum likelihood method 

𝑡(𝑛): new transformed 𝑡-test by a normal goodness-of-fit method 

Based on the results of various tests in Table 1, it follows that all four tests provide identical conclusion of the 

acceptance of the null hypothesis at 5% level of significance, with transformed two tests, 𝑡(𝑙)  and 𝑡(𝑛) , 

outperforming the other two tests with 𝑝-values 0.4229 and 0.4111. 

It is to be noted that the conclusion of 𝑡-test, whatever it is,  may be misleading because data do not provide any 

evidence of normality, a violation of applicability of 𝑡-test. Wilcoxon test assumes that the two distributions are 

identical, and is a popular alternative to Student’s 𝑡-test for comparing two populations with respect to locations 

(medians). On the other hand, the conclusion of both transformed 𝑡-tests appears to be valid because transformations 

were intended to achieve normality. 

Example 2  

For this example, we simulate sample 𝑋  from a 𝐺(2 1)  distribution and the sample 𝑌  from 0.8 + 𝐺(2 1) 

distribution. Thus, in the population distributions of 𝑋 and 𝑌, an absolute mean difference is |∆𝑥|  | 
𝑥
−  

𝑦
|  0.8. 

In other words, we simulate two samples 𝑋 and 𝑌 under alternative hypothesis 𝐻1: ∆𝑥  0. For the convenience of 

the presentation, we round up the values of the simulated data to two decimal places and are presented as follows: 
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𝑋: 1.06 1.88 3.68 1.13 2.08 4.84 1.42 1.29 0.37 2.43 
𝑌: 1.73 2.74 1.85 3.74 1.95 2.73 4.25 2.35 1.94 2.08 

 
2.45 2.49 3.08 1.71 3.48 

     We wish to test 𝐻0: ∆𝑥  0 against the two sided alternative 𝐻 : ∆𝑥  0 using various tests discussed in this article. 

The summary statistics of two simulated samples are as follows: for sample 𝑋, mean=2.02 and skewness=1.17; for 

sample 𝑌 mean=2.57 and skewness=0.89. The histograms and boxplots of 𝑋 and 𝑌 are presented in Figure 2 to 

understand the shape of the simulated data. 

 
Figure 2. Histograms and boxplots of samples 𝑋 and 𝑌 in Example 2 with their shapes 

Since the samples 𝑋 and 𝑌 come from the populations with identical variance but different means, we expect that 

various test statistics would be able to assess the inequality of the two means with stronger evidence. The results of 

various tests with corresponding 𝑝-values are reported in Table 2. 

Table 2. Test statistics and 𝑝-values for various tests for simulated data in Example 2 

Tests Test statistic 𝑝-value 𝜆̂ 
𝑡 -1.3101 0.2031 - 
𝑤 43.500 0.8055 - 
𝑡(𝑙) -1.696 0.1034 0.5 
𝑡(𝑛) -2.0487 0.0487 -0.2 

The results of various tests in Table 2, suggest that among all four tests only the new proposed test 𝑡(𝑛) test provides 

the correct decision by rejecting the null hypothesis of equality of two means with p-value 0.0487 at 5% level of 

significance. Other tests provide evidence of accepting the null hypothesis with p values 0.2031 (untransformed test t), 

0.8055 (Wilcoxon test w) and 0.1034 (transformed test based on the ML method), respectively.  

Based on the performances of two examples presented, it seems reasonable to recommend the new transformed test for 

skewed data. 

5. Simulation Study 

In this section, we carry out a simulation study to compare the finite sample performance of the various tests described 

in this article, along with the proposed t-test. All simulations are performed by using the statistical software R, with 

values of 𝜆 ∈ 𝐼  *−1: 0.1: 1+. Under the null model, the samples 𝑋 and 𝑌 are simulated from 𝐺(𝑎 𝑏) population 

where 𝑎 is the shape parameter and 𝑏 is the scale parameter. Under alternative model, the samples 𝑋 and 𝑌 are 

simulated from 𝐺(𝑎 𝑏) + ∆𝑥 and 𝐺(𝑎 𝑏) populations, respectively, with the mean difference ∆𝑥 > 0. The mean 

difference ∆𝑥 is arbitrarily chosen from the set {0.15, 0.25, 0.50, 0.65, 1.25} to ensure a testing power away from 0 

and 1 for the purpose of the comparisons. Note that the skewness of 𝐺(𝑎 𝑏) distribution is 𝛾  2 √𝑎⁄ . In simulations, 

we choose different values of the parameter 𝑎 to allow varying levels of skewness of the simulated samples. We fix the 

value of the parameter 𝑏 at 1 since it does not affect the skewness of the simulated data. In all simulations, the Monte 

Carlo size is considered 5,000. The power of various tests is estimated from the proportion of rejection of null 

hypothesis under alternative over a Monte Carlo simulation of size 5,000 at 5% level of significance. In a similar 

manner, the level of significance is estimated from the proportion of the rejection of the null hypothesis over a Monte 
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Carlo simulation of size 5,000 at 5% level of significance when the null hypothesis is true. Table 3 provides the values 

of the parameter 𝑎 used in the simulation of samples 𝑋 and 𝑌 to allow varying values of the skewness. 

Table 3. Values of 𝑎 and 𝛾  used in simulations of 𝑋 and 𝑌 

Shape parameter 𝑎 Skewness 𝛾
1
 

0.25 4.0 
0.5 2.8 
1 2.0 
2 1.4 

10 0.6 

Table 4 provides estimated power of the simulation study for varying values of shape parameter 𝑎, sample sizes (𝑚 𝑛) 
and the mean difference ∆𝑥    −   .  

Table 5 provides estimated rejection rates under the null distributions at 5% level of significance, along with mean and 

standard deviation of the estimated transformation parameter 𝜆 by maximum likelihood (𝜆̂𝑙) and univariate goodness 

of fit technique (𝜆̂ ) over a Monte Carlo simulation of size 5,000. 

6. Results and Discussion 

The results of Example 1 in section 4 suggest that all the four tests applied to compare means of checkout times of two 

grocery checkers lead to the identical conclusion of acceptance of equality of two locations with 𝑝-values 0.3716 

(Student’s 𝑡), 0.2394 (Wilcoxon test) and 0.4229 (transformed 𝑡-test by a maximum likelihood method) and 0.4111. 

However, given the fact that the 𝑋 and 𝑌 seem to have a positive skewed distributions, as are evident by histograms 

and boxplots in Figure 1, and the skewness (1.71 for 𝑋 and 0.86 for 𝑌), one may be doubtful about the conclusion of 

the Student’s 𝑡-test. In reference to the conclusions of four tests applied to Example 2, only the proposed new test 𝑡(𝑛) 
could make a correct conclusion of the rejection of the null hypothesis given the fact that the data were generated under 

the alternative. Thus, the proposed test outperforms other tests in the right decision-making.  

Table 4. Simulated power of various tests at 5% significance level over 5,000 samples 

𝑎 (𝑚 𝑛) 
𝑡 𝑤 𝑡(𝑙) 𝑡(𝑛) 𝑡 𝑤 𝑡(𝑙) 𝑡(𝑛) 

∆𝑥  0.15 ∆𝑥  0.25 

 
(10,10) 0.173 0.478 0.584 0.657 0.341 0.656 0.766 0.817 

 
(15,15) 0.199 0.668 0.761 0.872 0.399 0.838 0.911 0.965 

 
(20,20) 0.219 0.799 0.873 0.958 0.463 0.936 0.968 0.993 

0.25 (25,25) 0.255 0.879 0.934 0.985 0.506 0.971 0.990 0.999 

 
(15,10) 0.169 0.577 0.702 0.809 0.362 0.740 0.852 0.888 

 
(20,15) 0.212 0.722 0.822 0.937 0.413 0.874 0.941 0.980 

 
(25,20) 0.241 0.825 0.908 0.977 0.481 0.944 0.978 0.996 

  
∆𝑥  0.15 ∆𝑥  0.25 

 
(10,10) 0.078 0.180 0.230 0.270 0.159 0.324 0.396 0.462 

 
(15,15) 0.097 0.264 0.332 0.426 0.200 0.469 0.551 0.678 

 
(20,20) 0.120 0.354 0.422 0.550 0.241 0.599 0.668 0.807 

0.50 (25,25) 0.131 0.420 0.505 0.646 0.263 0.705 0.769 0.890 

 
(15,10) 0.080 0.241 0.311 0.431 0.173 0.392 0.490 0.645 

 
(20,15) 0.102 0.299 0.387 0.538 0.224 0.528 0.629 0.793 

 
(25,20) 0.124 0.388 0.490 0.648 0.257 0.626 0.726 0.868 

  ∆𝑥  0.50 ∆𝑥  0.65 

 
(10,10) 0.222 0.301 0.362 0.403 0.346 0.452 0.516 0.569 

 
(15,15) 0.303 0.458 0.525 0.609 0.453 0.620 0.700 0.784 

 
(20,20) 0.379 0.591 0.647 0.740 0.553 0.772 0.811 0.886 

1 (25,25) 0.424 0.682 0.740 0.825 0.638 0.849 0.892 0.941 

 
(15,10) 0.259 0.390 0.467 0.561 0.399 0.538 0.627 0.729 

 
(20,15) 0.326 0.517 0.600 0.703 0.503 0.689 0.763 0.859 

 
(25,20) 0.397 0.615 0.707 0.806 0.600 0.793 0.852 0.923 

  
∆𝑥  0.65 ∆𝑥  0.85 

 
(10,10) 0.181 0.196 0.236 0.255 0.274 0.301 0.348 0.376 

 
(15,15) 0.250 0.304 0.347 0.372 0.381 0.450 0.502 0.541 

 
(20,20) 0.313 0.399 0.445 0.475 0.484 0.587 0.641 0.681 

2 (25,25) 0.365 0.472 0.530 0.570 0.565 0.678 0.730 0.774 

 
(15,10) 0.212 0.254 0.312 0.344 0.316 0.371 0.439 0.485 

 
(20,15) 0.269 0.330 0.395 0.435 0.430 0.509 0.582 0.632 

 
(25,20) 0.334 0.421 0.485 0.526 0.522 0.627 0.689 0.737 

  
∆𝑥  0.85 ∆𝑥  1.25 

 
(10,10) 0.087 0.073 0.093 0.100 0.129 0.121 0.138 0.145 

 
(15,15) 0.107 0.104 0.121 0.125 0.190 0.183 0.207 0.216 

 
(20,20) 0.131 0.132 0.141 0.149 0.239 0.236 0.256 0.265 

10 (25,25) 0.157 0.159 0.172 0.178 0.283 0.289 0.308 0.317 

 
(15,10) 0.097 0.091 0.105 0.115 0.146 0.148 0.164 0.174 

 
(20,15) 0.120 0.116 0.133 0.141 0.210 0.204 0.232 0.240 

 
(25,20) 0.149 0.146 0.163 0.169 0.246 0.249 0.273 0.283 
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Table 5. Estimated rejection rates at 5% level, along with average and standard deviation (S.D) of 𝜆̂ 

  
Estimated level of significance Average S.D 

𝑎 (𝑚 𝑛) 𝑡 𝑤 𝑡(𝑙) 𝑡(𝑛) 𝜆̂𝑙 𝜆̂𝑛 𝜆̂𝑙 𝜆̂𝑛 

 
(10,10) 0.031 0.041 0.051 0.054 0.136 0.170 0.062 0.081 

 
(15,15) 0.036 0.048 0.056 0.056 0.137 0.167 0.053 0.075 

 
(20,20) 0.037 0.050 0.053 0.054 0.137 0.163 0.050 0.061 

0.25 (25,25) 0.042 0.051 0.055 0.056 0.136 0.163 0.048 0.055 

 
(15,10) 0.035 0.052 0.055 0.056 0.137 0.168 0.056 0.087 

 
(20,15) 0.040 0.047 0.050 0.054 0.138 0.166 0.050 0.065 

 
(25,20) 0.039 0.051 0.053 0.055 0.136 0.164 0.049 0.058 

 
(10,10) 0.042 0.045 0.054 0.055 0.194 0.226 0.102 0.171 

 
(15,15) 0.038 0.036 0.045 0.051 0.200 0.228 0.078 0.115 

 
(20,20) 0.040 0.044 0.047 0.050 0.204 0.227 0.065 0.088 

0.50 (25,25) 0.041 0.045 0.047 0.049 0.204 0.226 0.058 0.077 

 
(15,10) 0.042 0.044 0.050 0.054 0.198 0.227 0.087 0.132 

 
(20,15) 0.043 0.047 0.052 0.053 0.203 0.228 0.070 0.100 

 
(25,20) 0.040 0.043 0.047 0.051 0.203 0.227 0.061 0.081 

 
(10,10) 0.040 0.040 0.046 0.051 0.241 0.271 0.170 0.254 

 
(15,15) 0.047 0.045 0.052 0.055 0.249 0.273 0.130 0.177 

 
(20,20) 0.045 0.048 0.049 0.053 0.253 0.271 0.109 0.139 

1 (25,25) 0.043 0.047 0.047 0.049 0.257 0.273 0.096 0.118 

 
(15,10) 0.049 0.051 0.057 0.058 0.246 0.274 0.149 0.208 

 
(20,15) 0.050 0.049 0.052 0.054 0.250 0.272 0.117 0.153 

 
(25,20) 0.044 0.047 0.050 0.053 0.255 0.273 0.102 0.128 

 
(10,10) 0.040 0.039 0.047 0.053 0.269 0.293 0.273 0.377 

 
(15,15) 0.052 0.046 0.054 0.054 0.271 0.289 0.211 0.270 

 
(20,20) 0.046 0.045 0.051 0.054 0.282 0.297 0.175 0.209 

2 (25,25) 0.048 0.048 0.050 0.051 0.289 0.302 0.155 0.181 

 
(15,10) 0.044 0.044 0.048 0.051 0.269 0.287 0.236 0.307 

 
(20,15) 0.049 0.045 0.052 0.055 0.280 0.297 0.194 0.239 

 
(25,20) 0.052 0.049 0.053 0.054 0.279 0.291 0.164 0.193 

 
(10,10) 0.047 0.042 0.050 0.053 0.260 0.238 0.565 0.653 

 
(15,15) 0.043 0.038 0.046 0.048 0.276 0.276 0.475 0.542 

 
(20,20) 0.045 0.044 0.048 0.051 0.304 0.302 0.414 0.462 

10 (25,25) 0.051 0.051 0.052 0.053 0.299 0.307 0.374 0.414 

 
(15,10) 0.044 0.043 0.048 0.052 0.276 0.264 0.508 0.586 

 
(20,15) 0.052 0.048 0.055 0.056 0.282 0.280 0.443 0.503 

 
(25,20) 0.049 0.046 0.051 0.054 0.292 0.295 0.391 0.437 

As we look at the simulation results presented in Table 4, it is evident that the new transformed test 𝑡(𝑛) provides the 

maximum power for all sample sizes, equal (𝑚  𝑛) and unequal (𝑚  𝑛), among all four tests considered. We 

consider equal sample sizes (𝑚  𝑛) at 10, 15, 20 and 25. Note that the lower value of the shape parameter 𝑎 

corresponds to the higher value of the skewness. To evaluate the performance for varying values of skewness, we 

consider values of 𝑎 from 0.25 to 10 with arbitrary increases to its values to cause skewness to decrease from 4 to 0.6 

as appeared in Table 3. It is also evident that all tests demonstrate higher power as mean difference ∆𝑥 and sample size 

increase.  The new test 𝑡(𝑛) has always performed the best in terms of estimated testing power; the second best has 

been the 𝑡(𝑙) test. However, as expected, the nonparametric test 𝑤 has demonstrated higher power than the Student’s 

𝑡-test. Also, the differences in power among four tests have decreased as the skewness of the distribution has decreased. 

It makes sense because Wilcoxon and transformed tests are expected to perform better for skewed distribution; the 

higher the skewness, the better is their performance with respect to the testing power. As we see, overall, the proposed 

new test 𝑡(𝑛) outperforms all other three tests in terms of the power, for all sample size and skewness considered in 

the simulation. 

From the simulated results presented in Table 5, it appears that the estimated level of significance for Student’s 𝑡 
ranges from 0.031 to 0.052, for a 5% nominal level of significance, throughout the simulation, under null hypothesis. 

Indeed, the estimated levels of significance seem to be underestimated for all sample sizes for highly skewed 

distributions (e.g., 𝑎  0.25 0.50) and approach the nominal level as the skewness decreases (𝑎  1 2 10). The 

estimated rejection rates for Wilcoxon test is close to the nominal level of 5%, with estimated values ranging from 0.036 

to 0.052, under null hypothesis. On the other hand, the estimated rejection rates for both versions of transformed tests 

are comparable at 5% level of significance, with estimated values ranging from 0.045 to 0.057 for 𝑡(𝑙) test, and 0.048 
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to 0.058 for 𝑡(𝑛) test, under null hypothesis. 

The estimated average and standard deviation of 𝜆̂𝑙 and 𝜆̂  over 5,000 simulations under null hypothesis are also 

reported in Table 5, where the search for 𝜆̂𝑙 and 𝜆̂  is made in the interval [-1,1] with an increment of 0.1. It follows 

that the average and standard deviation of 𝜆̂𝑙 and 𝜆̂  depend on the levels of skewness of the distributions, with 

standard deviation of both decreasing with the increase of the sample sizes for a given value of skewness. In terms of 

average and standard deviation values of 𝜆̂𝑙 and 𝜆̂ , similar conclusions apply under the alternative hypothesis where 

powers are calculated and therefore, are not reported in Table 4 to avoid redundancy.  

7. Concluding Remarks 

This article proposes a new transformed 𝑡-test where the Box-Cox transformation to normality is achieved via a 

univariate normal goodness-of-fit test. To this end, we i) apply Shapiro and Wilk test to the combined standardized 

transformed samples to fit into the N(0,1) distribution, ii) estimate the best transformation to normality by observing the 

maximum 𝑝-value from the Shapiro and Wilk test for all possible values of 𝜆 ∈ *−1: 0.1: 1+ and iii) apply student’s 

𝑡-test to the best normal transformed samples to compare location parameters (means). The performance of the new test 

over Student’s 𝑡-test, Wilcoxon test and an existing transformed 𝑡-test achieved via likelihood method has been 

justified by two examples, and simulations where data comes from skewed distributions (gamma distribution). It is 

evident that the new test is appropriate for estimating the level of significance and is more powerful than other three 

tests considered for skewed distributions. It is also clear that higher the skewness, the better are the transformed 𝑡-tests 

in terms of the testing power, with the new transformed 𝑡(𝑛) test performing the best. It makes sense because if the 

data is less skewed or almost no skewed at all, the power transformation will not be needed or appropriate. It follows 

that the power of all tests is sensitive to the mean difference and sample size; the power of all tests increases with the 

increase in the mean difference of two population means and the size of the samples. Given the performance of the 

proposed new 𝑡-test, in terms of estimated power under the alternative hypothesis, and estimated level of significance 

under the null hypothesis, researchers can practice the proposed test with confidence. Overall, the Wilcoxon test is 

better in power than the Student’s 𝑡-test and transformed 𝑡-tests are better than the Wilcoxon test with the new 

proposed test 𝑡(𝑛) demonstrating the highest power. If researchers are too concern about the estimated level of 

significance, they might consider Wilcoxon test because of its robustness. However, if power is of the concern, the new 

test performs the best. 
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