
International Journal of Statistics and Probability; Vol. 9, No. 5; September 2020 

ISSN 1927-7032   E-ISSN 1927-7040 

Published by Canadian Center of Science and Education 

11 

Sinh Inverted Exponential Distribution: Simulation & Application to Neck 

Cancer Disease 

Saeed E. Hemeda1 & Ali M. Abdallah2 

1 Obour High Institute for Management & Informatics, Cairo, Egypt 

2 Aswan University, Quantitative Methods Department, Aswan, Egypt  

Correspondence: Saeed E. Hemeda, Obour High Institute for Management & Informatics, Cairo, Egypt 

 

Received: June 2, 2020   Accepted: June 28, 2020   Online Published: July 27, 2020 

doi:10.5539/ijsp.v9n5p11          URL: https://doi.org/10.5539/ijsp.v9n5p11 

 

Abstract 

A goal of this research is providing new probability distribution called Sinh inverted exponential distribution. The new 

distribution was extensively depending on the hyperbolic sine family of distributions with exponential distribution as a 

baseline distribution. Valuable statistical properties of the proposed distribution including mathematical and asymptotic 

expressions for its probability density function and Reliability. Moments, quantiles, moment generating function, failure 

rate function, mean residual lifetime, order statistics and entropies are derived. Actually, the applicability and validation 

of this model is proved in simulation study and an application to neck cancer disease data. 

Keywords: hyperbolic sine, quantiles, moments, mean residual lifetime, entropy, simulation, maximum likelihood 

estimates 

1. Introduction 

In many applied areas such as lifetime analysis and other fields, there is strong need to develop the classical 

distributions. So, different methods to generating new families of distributions are defined. These include; Azzalini’s 

skew family by Azzalini (1985), Marshal- Olkin generated family by Marshall and Olkin (1997), exponentiated 

generator by Gupta et al. (1998), beta-G by Eugene et al. (2002). In addition, Cordeiro and de Castro (2011) studied 

Kumaraswamy-G family, Nadarajah et al. (2013) introduced geometric exponential-Poisson generator. Recently, 

Kharazmi and Saadatinik (2016) proposed hyperbolic cosine family also, Kharazmi and Saadatinik (2018) discussed the 

hyperbolic sine family of distributions, Chakraborty and Handique (2017) investigated the generalized Marshall-Olkin 

Kumaraswamy-G family and generalized inverse Weibull family by Hemeda et. al (2019) and more. 

According to Kharazmi and Saadatinik (2018), the hyperbolic Sine (HS) family with cumulative CDF is 
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Where, 𝐺(𝑥) and 𝑔(𝑥) are the CDF and PDF for any random variable, respectively and the hyperbolic sine function

( ( ))sinh x is defined as 
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Using series expansion theorem, 𝑠𝑖𝑛ℎ (𝑥) takes the following formula; 
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In our study, we will take 𝐺(𝑥) is the CDF of the inverse exponential distribution and 𝑔(𝑥) its PDF. 

Dey (2007) studied the inverse exponential (IE) distribution with CDF and PDF are given by 
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2. The New Model and Its Behaviors 

This section contributes the representation of Sinh inverted exponential (SIE) distribution. The CDF, reliability, hazard 

rate, cumulative hazard rate functions are deduced and discussed analytically. As well as, asymptotic behaviors of SIE 

Distribution will be acquired. 

2.1 Mathematical Representations 

By substituting from (5) and (6) into (1) and (2), then the SIE CDF and PDF will be 
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Using (1), the PDF will be in the following form 
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The survival and hazard rate (ℎ𝑟) functions are 
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In addition, the cumulative hazard rate function corresponding to (10) is  
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Figure 1. PDF and CDF of SIE distribution 

 

 

  

 

Figure 2. Survival & ℎ𝑟 functions of SIE distribution 

2.2 Asymptotic Limits 

The asymptotic limits of CDF (7) and PDF (8) for SIE distribution are shown in the following remarks: 

Remark 1: Asymptotic of CDF 
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3. Useful Statistical Properties 

Various statistical measures will be deduced such as moments, moment generating function, incomplete moments and 

mean residual life time, quantile function, median, mode, entropies, skewness and kurtosis of SIE distribution in this 

section. 

3.1 Moments and Incomplete Moments 

Using equations (3), (4), the PDF of SIE distribution takes the following formula; 
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Since the mth moments is defined as 
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By substituting from (13) into the last equation, the mth moment is written as 
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The first moment (mean) can be calculated as follows 
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The incomplete moment ( t

m ) is computed by the following equation: 
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3.2 Moment Generating Function & Mean Residual Life Time 

The moment generating function of a probability distribution can be derived as follows 
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where, m  is the mth moment about origin. Using (13) then ( )SIEM t  will be
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 The mean residual of SIE distribution ( )SIEm t is determined by
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Substituting from PDF (13) then ( )SIEm t  will be calculated by   
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3.3 Quantile Function & Skewness and Kurtosis 

The quantile function of SIE distribution, (
1( ) ( )x p F p ) is determined by converting (7) as follows: 
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Equation (19) can be solved numerically, the SIE random variable X can be generated where p has the uniform 

distribution on the interval [0,1]. 

The skewness ( ) and kurtosis ( ) coefficients based on quantiles are computed from the following formulas: 
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Substituting from (19) into (20) and (21) respectively, we can get some values to the skewness and kurtosis coefficients 

of SIE distribution as represented in Figure 3. 

 

Figure 3. Quantile function of SIE distribution with some values of δ, θ 

3.4 Median and Mode 

Hence, the median 𝑥𝑚𝑒𝑑 of SIE distribution is derived by substituting  𝑝 = 0.5 in equation (19) as follows 
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The median 𝑥𝑚𝑒𝑑 is determined by solving (22) numerically for some selected values of θ, δ. 

The mode 𝑥𝑚𝑜𝑑 is computed by solving the equation 
𝑑𝑓𝑆𝐼𝐸(𝑥)

𝑑𝑥
= 0 such that 

𝑑2𝑓𝑆𝐼𝐸(𝑥)

𝑑𝑥2
≥ 0. 

Therefore, 

2

3 4 4

2

( ) 2
2 sinh sinh cosh 0

( 1)

SIE x x x x x x
df x e

x e e x e e x e e
dx e

     




    

     

  
      

          
        

, 

4 ( 2 )sinh cosh 0x x xx e x e e
  

    
  


    

      
     

.                      (23) 

The mode 𝑥𝑚𝑜𝑑 is determined by solving (23) numerically for some initial values of parameters θ, δ. 

3.5 The Entropy Measures 

The entropy of a random variable 𝑋 is an important measure, it is defined as a measure of variation of the uncertainty 

(see, Rényi (1961)). In this subsection, we discuss Rényi and 𝑤 entropy measures. 
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4. Estimation of Parameters 

In this section, the maximum likelihood estimators of the model parameters ℑ = (𝛿, 𝜃) of SIE distribution from 
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Differentiating ( )ln L  with respect to 𝜃, 𝛿 and setting the result equals to zero, the maximum likelihood estimators 

will be gotten. The partial derivatives of ( )ln L  with respect to each parameter are given as 
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.

 

The maximum likelihood estimators of the model parameters are determined by solving the non-linear equations

( ) ( )
0 , 0

lnL lnL

 

   
 

 
.These equations can be solved simultaneously, numerically using iterative technique. For interval 

estimation of the parameters, the 2 × 2 observed information matrix 𝐼(Ω) = *𝐼𝑢𝑣+ for (𝜃, 𝛿). Under the regularity 

conditions, the known asymptotic properties of the maximum likelihood method ensure that: 

√𝑛(Ω̂ − Ω)
𝑑
→ 𝑁2(0, 𝐼

−1(Ω)) as 𝑛 → ∞, where 
𝑑
→ means the convergence in distribution, with mean 𝑂 = (0,0)𝑇 and 

2 × 2 covariance matrix 𝐼−1(Ω) then, the 100(1 − 𝛽)% confidence intervals for 𝜃 𝑎𝑛𝑑 𝛿 are given, respectively, as 

follows 

𝛿̂ ± 𝑍𝛽
2⁄
√𝑣𝑎𝑟  (𝛿̂) and 𝜃 ± 𝑍𝛽

2⁄
√𝑣𝑎𝑟  ( 𝜃 ̂), where 𝑍𝛽

2⁄
is the standard normal at 𝛽 2⁄ . The significance level is 𝛽 2⁄  

and the variances of 𝜃, 𝛿 are the diagonal elements of 𝐼−1(Ω) corresponding to the model parameters. 

5. Simulation Study 

A simulation study is carried out to investigate the performance of estimators for SIE distribution in terms of their bias 

(bias), mean square error (MSE) using maximum Likelihood estimation (MLE) method. Simulated procedures can be 

described as follows: 

Generated samples of sizes n = 30, 50, 100 from SIE distribution are generated and parameters are estimated using the 

maximum likelihood estimation method. 10000 such repetitions are made to calculate the bias and mean square error  

(MSE) of these estimates using the formula of estimates for any parameter η by Bias𝛹(̂ )=
1000

1

1
ˆ( )

1000 i

 


  and 

MSE𝛹 (̂ )=
1000

2

1

1
ˆ( )

1000 i

 


 respectively.  

From Table 1, it is observed that; 

i. As sample size 𝑛 increases, bias decreases. That shows accuracy of the MLE of the parameters. 

ii. As sample size 𝑛 increases, MSE decreases. That shows consistency (or preciseness) of the MLE of the parameters 

as shown in figure 4. 
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Table 1. Bias and MSE of MLEs for SIE distribution 

 

Figure 4. MSEs of parameters estimates for SIE distribution 

6. Neck Cancer Disease Application 

In this section, the SIE distribution is fitted for a real data. The real data represents the survival times of patients 

 

ˆ 0.3   ˆ 0.1   

𝒏 30 50 100 30 50 100 

BIAS -0.10987 -0.1088 -0.1006 -0.0963 -0.0872 -0.0760 

MSE 0.0142 0.0123 0.0022 0.0693 0.0293 0.0035 

 

1.0ˆ   ˆ 0.2   

𝒏 03 03 033 03 03 033 

BIAS -0.1099 -0.1057 -0.0097 -0.1963 -0.1960 -0.1960 

MSE 0.7123 0.0188 0.0172 0.0385 0.0284 0.0080 

 

 ˆ 0.2   

𝒏 30 50 100 30 50 100 

BIAS -0.2099 -0.2099 -0.2098 -0.1961 -0.1959 -0.1959 

MSE 0.0443 0.0441 0.0440 0.0384 0.0384 0.0384 

 

2.0ˆ   ˆ 0.3   

𝒏 30 50 100 30 50 100 

BIAS -0.2099 -0.2099 -0.2098 -0.2962 -0.2960 -0.2959 

MSE 0.0443 0.0441 0.0441 0.0877 0.0876 0.0876 

 

5.0ˆ   ˆ 0.1   

𝒏 30 50 100 30 50 100 

BIAS -0.1400 -0.1100 -0.1100 -0.0905 -0.0453 -0.0150 

MSE 0.1601 0.1601 0.1600 0.0092 0.0092 0.0092 

 

1.0ˆ   ˆ 0.5   

𝒏 30 50 100 30 50 100 

BIAS -0.1109 -0.1107 -0.1107 -0.4953 -0.4952 -0.4949 

MSE 0.0123 0.0123 0.0123 0.2453 0.2452 0.2449 

 

1.0ˆ   ˆ 0.1   

𝒏 30 50 100 30 50 100 

BIAS -0.1102 -0.1100 -0.1100 -0.0962 -0.0959 -0.0959 

MSE 0.0122 0.0122 0.0121 0.0093 0.0092 0.0092 

 

5.0ˆ   ˆ 0.5   

𝒏 30 50 100 30 50 100 

BIAS -0.5099 -0.5099 -0.5099 -0.4960 -0.4959 -0.4952 

MSE 0.2601 0.2600 0.2600 0.2460 0.2495 0.2453 

2.0ˆ 
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suffering from Neck cancer disease. The patients in this group were treated using a combined radiotherapy and 

chemotherapy (CT&RT). The data are 

12.2 23.56 23.74 25.78 31.98  37 41.35 47.38 55.46 58.36 63.47 68.46 

78.26 74.47 81.43 84 92  94 110 112 119 127 130 133 

140 146 155 159 173 179 194 195 209 249 281 319 

339 432 469 519 633 725 817 776 

Kumar et al. (2015) fitted this data to the inverse Lindley distribution. We have fitted this data set with SIE distribution 

compared with Weibull (W) and inverted exponential (IE) probability distributions. The results of estimated values of 

the parameters (Log-likelihood , AIC, BIC and KS) are listed in  Table 2. The Q-Q plot, histogram, fitted PDF and 

estimated CDF of the SIE curve to this data have been shown in Figures 5 and 6 respectively. The selection criterion is 

that the lowest Log-likelihood and AIC correspond to the best model fitted. The MLEs, AIC, BIC and KS are shown in 

Table 2. From the Table, we can observe that the SIE model shows the smaller Log-likelihood, AIC, BIC and KS than 

other competing distributions. 

Table 2.  Statistical measures of fitted models using survival times of patients suffering from Neck cancer disease data 

Distribution Estimators LL AIC BIC KS 

SIE 𝜃̂ = 1.53 , 𝛿 = 7.91 −279.32 564.64 409.13 0.1840 

W 𝛽̂ = 3.07 ,  ̂ = 11.26 −288.79 597.43 532.02 0.1752 

IE ˆ 5.47   −480.35 862.71 813.00 0.0637 

 

Figure 5. Q-Q plot of SIE, IE and W models for the Neck cancer disease data 
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Figure 6. Plots of estimated CDF and histogram fitted PDF of the fitted models for the Neck cancer disease data from left 

to right 

7. Conclusion 

In this article, we have introduced and studied a new probability distribution called sinh inverted exponential 

distribution based on hyperbolic sin generator. The structural and reliability properties of this distribution have been 

studied and inference on parameters have also been mentioned.The estimation of parameters is approached by 

maximum likelihood methode.We presented a simulation study to exhibit the performance and accuracy of maximum 

likelihood estimates of the SIE model parameters. The Neck cancer disease real data application is applied to illustrate 

the efficience and applicability of the SIE distribution. The application of the SIE distribution shows that it could 

provide a better fit than other alternative distributions. 
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