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Abstract 

The main objective of the present study is to find the estimation of the two Exponentiated Weibull distribution 

parameters, based on progressive Type II censored samples. The maximum likelihood and Bayes estimators for the two 

shape parameters and the scale parameter of the exponentiated Weibull lifetime model were derived. Bayes estimators 

was obtained by using both the symmetric and asymmetric loss functions via squared error loss and linex loss functions 

This was done with respect to the conjugate priors for two shape parameters. We used an approximation based on the 

Lindley (Trabajos de Estadistca) method for obtaining Bayes estimates under these loss functions. The different 

proposed estimators have been compared through an extensive simulation studies. Bayes ratings also turned out to be 

better than MLE. Whatever the sample sizes are, we get the same results. 

Keywords: bayes estimation, LINEX loss function, maximum likelihood estimates, exponentiated weibull model 

1. Introduction 

The Exponentiated Weibull distribution is considered an important statistical distribution. The importance of this 

distribution lies in the fact that the function of the survival rate takes different forms, which make it suitable for 

studying and covering many problems of reconciliation of the times of life and validity. It contains many probability 

distributions as special cases.  

The form of the probability density function (PDF) and cumulative distribution function (CDF), with two shape 

parameters, α and θ are given, respectively, by 

f(t) =  α θ tα−1e−t
α
 (1 − e−t

α
)
θ−1 

    t > 0  , α > 0  , θ > 0                     (1) 

where α , θ: shape parameter and 

F(t) =( 1 − e−t
α
)
θ
       ,    t > 0.                            (2) 

Also, the Reliability function of the Exponentiated Weibull distribution with two shape parameters α  and θ is in the 

formula  

R(t) = 1 − (1 − e−t
α
)
θ
          , t > 0                                                            (3) 

Failure function is written in the formula:  

h(t) =  α θ tα−1e−t
α
 (1 − e−t

α
)
θ−1 

01 − .(1 − e−t
α
)
θ−1 

/1                                       (4) 

The maximum likelihood estimations of the distribution are discussed by Mudholkar et al. (1995) using several sets of 

data. If the shape parameter θ =1 the EW probability density function (PDF) is that of the Weibull distribution. Other 

statistical properties of this distribution are discussed by Mudholkar and Hutson (1996) and Nassar and Eissa (2003). 

Parametric characterizations of the density function are discussed by Jiang and Murthy (1999) and Soliman (2000, 

2001). They showed that the density function of the EW distribution is decreasing when α θ ≤ 1 and unimodal when α θ> 

1. Some statistical properties of this distribution are discussed by Jiang and Murthy (1999), and Nassar and Eissa (2004) 

that derived Bayes estimates of the two shape parameters, reliability and failure rate functions of the exponential 

Weibull lifetime model, from complete and Type II censored and complete samples. 
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Choudhury (2005) proposed a simple derivation for the moments of the EW. Singh et al. (2005a,b) derived maximum 

likelihood and Bayes estimates for the parameters of the EWM based on Type-II censored samples. (Pal et al, 2006) 

introduced many properties and obtained some inferences for the three parameters EW. Kim et al. (2011) obtained the 

maximum likelihood and Bayes estimators for the two shape parameters and the reliability function of the EW based on 

progressive Type-II censored samples. 

In many life test studies, it is common that the lifetimes of test units may not be able to record exactly. For example, in 

Type II censoring, the test terminates after a predetermined number of failures occurs in order to save time or cost. 

Furthermore, some test units may have to be removed at different stages in the study for various reasons. This would 

lead to progressive censoring. Although censoring occurs frequently in many applications, there are relatively few 

research projects that have published in this specific area. Some early studies can be found in Cohen (1963); 

Confild(1970); Mann (1971); Zellner(1986); Pandey and Rai(1992); Viveros and Balakrishnan (1994)) and 

Balakrishnan and Sandhu (1995)and Pandey(1996). 

2. Method 

Suppose that n independent items are put on a life test and the censoring scheme (R1, R2,· · · , Rn) is previously fixed 

such that immediately following the first failure,t1 ,R1 surviving items are removed from the experiment at random 

and immediately following the second failure, t2 ,R2 surviving items are removed from the experiment at random; 

this process continues until, at the time of the mth observed failure, tm, the remaining Rm items are removed from the 

test. The n ordered observed failure times denoted byt1, . . . , tn are called progressive Type II right censored order 

statistics of size m from a sample of size n with a progressive censoring scheme (R1, R2,· · · , Rn). It is clear that m = 

n +R1 + R2 + · · · + Rn. Also that the familiar complete and Type II right-censored samples are special cases of this 

scheme. If R1 = R2 = · · · = Rn−1 = 0 and Rn = m − n, this sampling scheme reduces to conventional Type II censoring. 

Also, if R1 = R2 = · · · = Rn = 0, then the progressive Type II censoring scheme reduced to the complete sampling case. 

If the failure times of the  items originally on the test with progressive censoring scheme (R1, R2,· · · , Rn) are from a 

continuous population with  probability density function f(x) and cumulative density function  F(t), then the joint 

probability density function of progressively Type II censored sample is: 

X = X1 ,m ,n

(R1 ,R2 ,...,Rm)   , X2 ,m ,n

(R1 ,R2 ,...,Rm) , .  .  .  , Xm ,m ,n

(R1 ,R2 ,...,Rm)   of size m form a sample of size n is given by: 

𝑓t(1,n ,m k)…..,t(n,n ,m ,k)(t1, t2 ,… . . , tn) = dr−1 [∏,F̅(ti)-
m1

r−1

i=1

f(ti)] ,F̅(tn)-
k−1 f(tn), 

F−1(0) < t(1) ≤ t(2) ≤ ⋯  ≤   t(n) < F−1(1),                                                                   (5) 

Where 

dn−1 = k(∏γi

n−1

i=1

)      ,    γi = k + n − j +∏𝑚1

𝑛−1

𝑖=𝑗

> 0  

For j ∈ *1 , 2 , . . . , n+  and F̅(t) = 1 − F(t) 

2.1 Maximum Likelihood Estimation  

Suppose that the lifetimes of the unite being tested have a Weibull distribution. The probability density function is given 

in Equation (1). Let t = (t1 , t2 , … , tn) be a progressively type II conserved sample a Weibull  distribution, with 

censoring scheme r = (r1 , r2 , … , rn).Based on the observed data (t . r), the likelihood function can be obtained 

substituting from(1) and (2) in (5)written as: 

ℓ(α , θ ǀ t) = dm−1α
mθm∏ ψj ηj

θm
j=1  ∏ ηj

n θ ηn
θ(k−1)m−1

j=1                                              (6) 

where                                     t = (t1 , t2 , … , tm)  for j = 1 , 2 , . . . , n 

ψj = 
tj
α−1 e−tj

α

ηj
 

ηj = 1 − e−tj
α

 

The natural logarithm of the likelihood function (1) is given by: 

L(α , θǀt) = ln(dm−1) +  m ln α +  m lnθ + ∑ (   lnψj + θ ln ηj) +  n θ ∑ ln ηj +  θ(k − 1) ln ηn           
m−1
j=1

m
j=1 (7) 
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Taking derivatives with respect to α and θ and equating them zero, the obtained the likelihood equations for α and 

θ 

∂L(α ,θǀt)

∂α
=

m

α
+ ∑ .ξ1j(α) + (θ − 1)ξ2j(α)/+ nθ∑ ξ2j(α) + θ(k − 1)ξ2j(α)

m−1
j=1

m
j=1                  (8) 

and  

∂L(α , θǀt)

∂θ
=
m

θ
+∑lnηj + n ∑ lnηj 

m−1

j=1

+ (k − 1)lnηn = 0                                                 (9)

m

j=1

 

where 

ξ1j(α) = (1 − tj
α) ln tj ,

 
 

ξ2j(α) =
tj
α e−t

α
ln tj

ηj
 

For  j = 1 , 2 , . . . , n 

Obtaining the closed forms equation (8) and (9) are not possible. The solution can be obtained by using the 

Newton-Raphson method. For a given t , the Maximum Likelihood Estimation (MLE) of the reliability function R(t) is 

computed form(3) after replacing  α and  θ by their MLE estimation. 

The asymptotic variance-covariance matrix of the MLE for parameters α and θ  is given by the elements of the Fisher 

information matrix  

Iij    =   E .
−∂2L(α  ,θǀt)

∂α ∂θ
/      ,   i , j = 1 , 2                           (10) 

But, the exact mathematical expressions for the above expressions are very difficult to obtain. Therefore, we give the 

approximate asymptotic variance-covariance matrix for the MLE. Which is obtained by dropping the expression operators 

as following:  

*
var(α̂) cov(α̂, θ̂)

cov(α̂, θ̂) var(θ̂)
+ = [

−∂2L(α,θ)

∂α2

−∂2L(α,θ)

∂α ∂θ

−∂2L(α,θ)

∂α ∂θ

−∂2L(α,θ)

∂θ2

]                        (11) 

With: 

∂2L

∂θ2
=  

−m

θ2
  , 

∂2L

∂α2
=  

−m

α2
− ∑tj

α ln2 tj + n θ ∑ γj + ∑(θ − 1)γj + θ(k − 1)γn

m

j=1

m−1

j=1

m

j=1

 

∂2L

∂α∂θ
=   

∂2L

∂θ ∂α
=  ∑ξ2j(α)+ n ∑ ξ2j(α) + (k − 1)ξ2j(α)

m−1

j=1

m

j=1

 

where 

γj =  θξ2j(α)[ξ1j(α) − ξ2j(α)] 

For j = 1 , 2 , . . . , n 

The asymptotic normality of the MLE can be used to compute the approximate confidence intervals for parameters α 

and θ . Therefore, (1 − α)100% confidence intervals for parameters α and θ have become respectively. 

α̂ML + Zα
2
 √var(α̂ML)    and  θ̂ML + Zα

2
 √var(θ̂ML)     

where Zα
2
: is a standard normal variant. 
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2.2 Bayes Estimation    

The Bayesian inference procedures have been developed under the usual SE loss function (quadratic loss), which is 

symmetrical, and associates equal importance to the losses due to overestimation and underestimation of equal 

magnitude. However, such a restriction may be impractical. For example, in the estimation of reliability and failure rate 

functions, an overestimation is usually  more serious than an underestimation; the use of symmetric loss functions may 

be inappropriate, as has been recognized by Calabria and Pulcini (1996), Singh et al. (2002) and Singh, et al (2005a, b). 

A very useful asymmetric loss function known as the LINEX loss function was first introduced by (Varian, 1975) and 

was widely used by several authors. This function rises approximately exponentially on one side of zero and 

approximately linearly on the other side. Under the assumption that the minimal loss occurs at λ̂ =  λ, the LINEX loss 

function for  λ = λ(α, θ) can be expressed as: 

L(∆) ∝  (ek∆ − k∆ − 1)       ;     k ≠ 1                            (12) 

where  ∆= λ̂ −  λ , k is a constant amount that represents the shape parameter of the L(∆) function, k Fixed amount 

represents the shape parameter of the L function, which is of the most important properties: 

1. It is asymmetric around the origin point. 

2. The shape parameter controls the degree and direction of the asymmetry of the function, since the value of the 

numerical k parameter controls the degree of asymmetry of the loss function. 

3. The signal of parameter k reflects the direction of asymmetry, and degree of symmetry, respectively, (k > 0) means 

overestimation is more serious than underestimation, and k < 0) means the opposite). For a closed to zero, the LINEX 

loss function is approximately the squared error (SE) loss, and therefore almost symmetric. Many researchers have used 

the linear loss function in it is various forms to obtain Bayesian inferences of the various statistical distributions. The 

Balanced Loss Function (BLF) as presented by (Zellner, 1996) is written in the formula: 

Lρ.λ ,ξ
q

 (γ(θ), δ) =  λq(θ)ρ(r(θ), δ) + (1 − λ)q(θ)ρ(r(θ), δ)                   (13) 

where δ is the parameter estimate γ(θ) ,ξ  is a prior estimate of the parameter γ(θ) , λ ∈ ,0,1) and  ρ(r(θ), δ): is 

an optional loss function to estimate γ(θ)  by δ. In this study, the balanced squared error loss function and balanced 

LINEX loss function will be used by Ahmadi et al. (2009a,b), in the form 

Lω ,ξ(γ(θ), δ) =  λ(δ − ξ)2 + (1 − λ)ρ(δ − γ(θ))2                        (14) 

and the corresponding Bayes estimate of the function γ(θ) is given by         

δϖ,ξ(t) = ϑδ + (1 − ϑ)E(γ(θ) ǀ t)                                (15) 

Also, by choosing  ρ(r(θ), δ) =  ek(δ−γ(θ)) − k(δ − γ(θ)) − 1    and q(θ) = 1   in (13) we get as the balanced 

LINEX loss function written as 

Lλ ,ξ
∗  (γ(θ), δ) =  ϑ(ek(δ−ξ) − k(δ − ξ) − 1) + (1 − ϑ)(ek(δ−γ(θ)) − k(δ − γ(θ)) − 1)                      (16) 

For which the Bayes estimate of γ(θ) is based on the loss function of (16) takes the form  

δω,ξ
∗ (t) =  

−1

α
 ln 0ϑ e−αξ(t) + (1 − ϑ)E[e−αγ(θ)|t|]1                                                (17) 

Suppose that the prior knowledge about the parameters α and θ are assumed to be unknown, Nassar and Eissa (2004) 

and Kim et al. (2011), suggested a bivariate prior density is given by: 

π(α, θ) = π1(θ|α) π2(α),                                    (18) 

where π1(θ|α) is a gamma prior density function when  α is known  

π1(θǀα) =  
α−ν

Γ(ν)
 θν−1 e

  −θ

α                ;  θ > 0 , α & ν > 0                                                    (19) 

and π2(α) is a gamma prior density function  

π2(α) =  
b−τ

Γ(τ)
 ατ−1 e

−α

b                ; α > 0 , τ & b > 0                                                         (20) 
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Is an exponential density function. Here, ν , α and b are assumed to be known. Therefore, the bivariate prior density 

function of α and θ can be written as: 

π( α , θ) =  
1

b Γ(ν+τ)
 ατ−ν−1  θν−1 e−(α

2+bθ) bα⁄  ,       α, θ > 0                                             (21) 

The joint posterior probability density function of  α and θ  is obtained from (17) and (18) and written as: 

π∗( α , θǀt) =  Τ−1 αn+τ−ν−1  θn+ ν−1 e−(α
2+bθ) bα⁄  φ(α, θ)                                            (22) 

where 

Τ = ∫ ∫  αn+τ−ν−1  θn+ ν−1 e−(α
2+bθ) bα⁄  φ(α, θ)dαdθ  ,

∞

0

∞

0

 

and  

φ(α, θ)  = ∏ ψj ηj
θm

j=1  ∏ ηj
n θ ηn

θ(k−1)
                                                                 m−1

j=1 (23) 

Under the SEL function, and by using (15) the Bayes estimate of k function 

λ = λ(α, θ) , θ is given by 

λ̂BS = E(λǀ t) =  
∫ ∫ λ(α,θ) L(α,θǀ t)π( α ,θ) dαdθ 

θα

∫ ∫ L(α,θǀ t) π( α ,θ) dαdθ 
θα

                         (24) 

or     λ̂BS = ϑλ̂BS + (1 − ϑ)Τ−1  ∫ ∫  αn+τ−ν−1  θn+ ν−1 e−(α
2+bθ) bα⁄  φ(α, θ)dαdθ     

∞

0

∞

0
  

Also, based on the LINEX loss function, the Bayes estimate the function λ is obtained by using (16) and written as  

λ̂BS = 
−1

α
 ln[ϑe−α λ̂ML+(1−ϑ)k

−1 
∫ ∫  αn+τ−ν−1  θn+ ν−1 e−(α

2+bθ) bα⁄  φ(α, θ)dαdθ
∞

0

∞

0
]                       (25) 

where λ̂ML is the ML estimate of λ and φ(α, θ) is as given by (23). 

It may be noted, from (24) and (25), that the Bayes estimates of the function φ = φ(α, θ) contains double integrals 

that cann't be obtained in simple closed form and numerical techniques must be used for computations. It used Nassar 

and Eisa (2004) in the form: 

If  g(α , θ) = α.   Then             α̂s = α + ψ1 

If  g(α , θ) = θ.   Then            θ̂S = θ + ψ2 

If  g(α , θ) = e−c α.   Then    α̂L = α −
1

C
ln .1 − cψ1 +

c2H

2N
/ , c ≠ 0 

If  g(α , θ) = e−c θ.   Then   θ̂L = θ −
1

C
ln .1 − cψ2 +

c2G

2N
/ , c ≠ 0 

3. Simulation Study and Comparisons   

The purpose of this section is to compare the performance of the different methods of estimation discussed in the 

previous sections. We analyze a real data set for illustrative purpose is to be analyzed. A simulation study is also carried 

out to check the behavior of the proposed methods and to assess the statistical performances of these estimates, a 

simulation study is conducted. The root mean square errors (RMSEs) using generated random samples of different sizes 

are computed for each estimator. 

Applying the algorithm of Balakrishnan and Sandhu (1995), we used the following steps to generate a progressive Type 

II censored sample from the exponentiated Weibull distribution. 

The random samples are generated as follows: 

1. Generating m independent U(0, 1) random variables(Zi) that follow the regular distribution within the period(0,1). 

Ui~U(0,1)    , i = 1 , 2 , . . . , n 

where Ui is a continuous random variable. 

2. The values given to the progressive monitoring system are set in the following method. 
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Yi = Z
i

1
(i+Rn+ Rn−1+ .  .  .+ Rn−i+1)
⁄

    , i = 1 , 2 , . . . , n 

3. From step(2), we set   Ui = 1 − YnYn−1. . . Yn−i+1     , i = 1 , 2 , . . . , n.  

Then U1, U2 , . . . , Um is a progressive Type II censored sample of size m from U(0, 1). 

4. For a given value of b , generate values of α  and θ from the joint prior density given by (21). 

Using the result for α  and  θ from step (4), we generated a censored sample of size  m from the exponentiated 

Weibull distribution(EWD), using the inverse CDF. 

Ti = (−ln *1 − U
i

1
θ+)

1
α

   , i = 1 , 2 , . . . , n 

which is the required progressive Type II censored sample of size m from the EWD. 

We obtained the MLEs, α ̂MLE  and  θ ̂MLE  of parameters α  and  θ  , by iteratively solving Eg. (8) and(9). 

Substituting  α ̂MLE and  θ ̂MLE of parameters α  and  θ.  

Table (1). Estimated means for different estimates θ and α for all different values C 

C  ̂   ̂   ̂   ̂   ̂   ̂  

-3 4.68741 4.59842 6.25681 1786.2 1.8547 2.4561 

-1   5.95874   2.1032 

0   5.76583   2.0056 

1   5.45982   1.9024 

3   4.89547   1.8245 

7. In order to compare the different estimators of the parameters, the assumed different sizes were identified for sample 

(n=20, 40 ,60) and frequency of experiment the  1000 times,  and computed the means and the LMSEs for different 

censoring sizes m and censoring schemes. The samples were simulated by using the algorithm described in 

Balakrishnan and Sandhu (1995). 

A simulation was conducted in order to study the properties and compare the performance of the Bayes estimator with 

maximum likelihood estimator. 

The mean square error (MSE) of the Bayes estimations and maximum likelihood estimations are computed over 

different combination of the censored random scheme as shown in Tables (2-8).To  assess the effect of the shape 

parameters α and θ, from the above  tables one  can see that the asymmetric Bayes estimates. 

Our computational results for the means and LMSE are computed in the above steps for the case of unknown α and θ, 

where the values of the parameters used are b = 5 and ν = 4 yielding α = 2.09581 and θ = 4.69824 (as true values). The 

estimations are conducted on the basis of various progressive Type II censoring schemes which include complete and 

Type II censoring. For given the progressive censoring scheme R = (0, 1, 2,1 , 0, 1 , 2 , 1) and various values of c, the 

MLE and Bayes estimates for the parameters α and θ are as in the following Table 1.To assess the effect of the shape 

parameters α and b  from Table 1,we see that the asymmetric Bayes estimates of the parameters α and θ are 

overestimates for c < 0. Otherwise, the effect of the c it gives more weight to underestimation. If c is near to 0, then the 

Bayes estimates are almost the same as the estimates under SEL. This is one of the useful properties of working with the 

Linex loss function. 

We study how much the estimated means and variances affected by censoring schemes, which have all surviving items 

removed from the experiment at the first failure point t1, midpoint and end point tm, respectively. From the results in 

Table 2, it is seen that the case of all items removed at the first failure time point t1 is better than the other case. Table 2 

also provide the estimated means, their variances, covariance's and 95% approximate confidence intervals for the 

parameters. 
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Table 2. Estimated (Means ,Variance ,Covariance ,and 95% Confidence Interval (CI) for  θ and α (m=20, n = 6-16) 

m  degree 

and censoring 

Censoring scheme 

(R1 , … , n ) 

θ̂          Var(θ̂) 
95% CI   for   α 

Cov(θ̂ , α̂) 
α̂̂          Var(α̂) 

95% CI   for   θ 

6(60%) 

(14,0,…., 0) 
4.725      2.487 

(3.962 ; 5.463) 
0.085 

2.321      0.487 

(1.762 ; 2.523) 

(0,0,…,0,14) 
4.974       2.631 

(3.875 ; 5.762) 
0.356 

2.872       0.225 

(1.792 ; 2.773) 

(0,0,0 ,14 , 0,0) 
4.998       2.153 

(4.031 ; 5.826) 
0.326 

2.246       0.351 

(1.731 ; 2.743) 

8(50%) 

(12 , 0 , …. ,  0) 
4.642       2.043 

(4.432 ; 5.626) 
0.312 

2.021      0.087 

(1.952 ; 2.591) 

(0 , 0 , … , 0 , 12) 
4.164       2.133 

(4.627 ; 5.469) 
0.461 

2.642       0.197 

(1.683 ; 2.733) 

(0, 1, 2 ,1 , 0, 1 , 2 , 1) 
4.872       2.041 

(4.395 ; 5.174) 
0.418 

2.246       0.351 

(1.739 ; 2.962) 

12(40%) 

(8 , 0 , …. ,  0) 
4.915       2.041 

(4.137 ; 5.327) 
0.486 

2.021      0.087 

(1.758 ; 2.910) 

(0 , 0 , … , 0 , 8) 
4.872       1.183 

(4.521 ; 5.109) 
0.763 

2.098       0.089 

(1.763 ; 2.358) 

(0 ,….. , 0 , 8 , 0 , 0 , 0, 0, 0) 
4.379       2.065 

(4.451 ; 5.539) 
0.581 

2.095       0.123 

(1.578 ; 2.361) 

14(20%) 

(6 , 0 , …. ,  0) 
4.874       2.933 

(4.431 ; 5.626) 
0.645 

2.015      0.085 

(1.774 ; 2.365) 

(0 , 0 , … , 0 , 6) 
4.167       1.962 

(4.476 ; 5.034) 
0.975 

2.086       0.074 

(1.964 ; 2.385) 

(0 , 0 , 0 , 6 , 0 , 0) 
4.083       1.761 

(4.361 ; 5.426) 
0.748 

2.054       0.041 

(1.877 ; 2.273) 

16(10%) 

(4, 0 , …. ,  0) 
4.067       1.684 

(3.931 ; 4.876) 
0.875 

1.978      0.054 

(1.749 ; 2.168) 

(0 , 0 , … , 0 , 4) 
3.987       1.472 

(3.879 ; 4.638) 
1.024 

1.568       0.072 

(1.986 ; 2.251) 

(0 , 0 ,… , 0 , 4 , 0 ,.., 0) 
3.654       1.352 

(4.751 ; 5.026) 
0.962 

1.789       0.082 

(1.674 ; 2.063) 

Tables 3, 4 display the estimated mean of MLE and the Bayes estimates relative to SEL and Linex loss functions of the 

parameters and its corresponding RMSE for different censoring schemes, respectively. Our experiments involved 

carrying out three cases with different censoring schemes. The first case was that all items failed, the second case is that 

Type II censoring, and the last case is that of progressive Type II censoring, respectively. We see that the Bayes 

estimates to be better than the MLE and the Bayes estimates relative to Linex loss function performed better than the 

others in the sense of comparing the RMSE of the estimates. This was true for both complete and Type II censored 

samples. 

Table 3. Estimated means and RMES of various estimator θ for m = 20 and C=1 

Censoring scheme θ̂M θ̂S θ̂L 

All items failed 
4.8725 

(1.6587) 

4.7693 

(1.2473) 

4.6854 

(1.0942) 

Type  II  censoring 
4.9163 

(1.7528) 

4.8905 

(1.5491) 

4.6792 

(0.9983) 

(0, 1, 2 ,1 , 0, 1 , 2 , 1) 
4.8726 

(1.7839) 

4.8094 

(1.1684) 

4.5173 

(0.8968) 

(1, 1 ,1 ,1 ,1 ,1 ,1 , 1, 1 ,1) 
4.8719 

(1.5185 

4.8429 

(1.2586) 

4.3768 

(1.0986) 

(2, 2 ,2 ,2 ,2 ,0 ,0 , 0, 0 ,0) 
4.8647 

(1.4286) 

4.8235 

(1.3276) 

4.4783 

(0.9164) 

(0, 0 ,0 ,0 ,0 ,2 ,2 , 2, 2 ,2) 
4.8974 

(1.5285) 

4.8764 

(1.1367) 

4.5185 

(0.8962) 
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Table 4. Estimated means and RMES of various estimator α for m = 20 and C=1 

Censoring scheme α̂M  α̂S   α̂L  

All items failed 
1.6747 
(0.3558) 

1.6623 
(0.3079) 

1.6298 
(0.2962) 

Type II censoring 
2.2174 
(0.7804) 

2.0975 
(0.67931) 

1.8952 
(0.6153) 

(0, 1, 2 ,1 , 0, 1 , 2 , 1) 
2.1549 
(0.5839) 

1.9762 
(0.5184) 

1.8963 
(0.4869) 

(1, 1 ,1 ,1 ,1 ,1 ,1 , 1, 1 ,1) 
2.0735 
(0.4793 

1.9583 
(0.4284) 

1.8769 
(0.3985) 

(2, 2 ,2 ,2 ,2 ,0 ,0 , 0, 0 ,0) 
2.0683 
(0.3962) 

1.9165 
(0.3481) 

1.5703 
(0.3179) 

(0, 0 ,0 ,0 ,0 ,2 ,2 , 2, 2 ,2) 
1.9894 
(0.4873) 

1.8935 
(0.4082) 

1.8492 
(0.3981) 

Our simulation study is extended to contain different sample sizes such as m = 40 (see Tables 5, 6) and m = 60 (see 

Table 7, 8). These results are similar to that of sample size m = 20. Tables 5, 6, 7 and 8 and present estimated means and 

RMSEs of various estimator for m = 40 and m = 60, respectively. Accordingly, as the number of each sample size 

increases, the variance and confidence intervals decrease. As shown by Tables 5, 6, 7 and 8, these results are alike in the 

case of size m = 20. In the sense of comparing the RMSE of the estimates, the Bayes estimates are better than the MLE. 

Even if the sample size is enlarged, expected results are the same. 

Table 5. Estimated means and RMES of various estimator α for m = 40 and C=1 

Censoring scheme θ̂M θ̂S θ̂L 

All items failed  
1.9834 
(0.2396) 

1.8942 
(0.2173) 

1.8837 
(0.1893) 

Type II censoring 
1.9947 
(0.2849) 

1.9486 
(0.2683) 

1.9173 
(0.2209) 

(1, 1, 1 ,1 , 1, 1, 1 , 1 , 1 ,1 ,1 , 1, 0 , 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) 
1.9718 
(0.2792) 

1.9395 
(0.2594) 

1.8968 
(0.2465) 

(0 , 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , 0 ,1 ,1 ,1 ,1 ,1,1 ,1 ,1, 1 ,1, 1 ,1)  
1.9160 
(0.2903) 

1.8759 
(0.2598) 

1.8791 
(0.2547) 

(2, 0 ,0 ,0 ,2 ,0 ,0 , 0, 2 ,0  , 0 ,0 , 2 ,0 , 0, 0 , 2, 0 ,0 ,0 ,2 ,0 , 
0 ,0)  

1.9751 
(0.2604) 

1.9356 
(0.2361) 

1.9035 
(0.2109) 

(0, 0 ,2 ,0 ,0 ,0 ,0 , 4, 0 ,0  , 1 ,0 , 0 ,0 , 2, 0 , 1, 0 ,0 ,1 ,0 ,2 , 
0 ,0)  

1.8963 
(0.2758) 

1.8496 
(0.2479) 

1.8390 
(0.2418) 

Table 6. Estimated means and RMES of various estimator θ for m = 40 and C=1 

Censoring scheme α̂M  α̂S  α̂L  

All items failed  
4.6791 
(1.2501) 

4.7051 
(0.9075) 

4.6379 
(0.6902) 

Type II censoring 
4.8108 
(1.0687) 

4.7892 
(0.9482) 

4.5718 
(0.7974) 

(1, 1, 1 ,1 , 1, 1, 1 , 1 , 1 ,1 ,1 , 1, 0 , 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) 
4.6893 
(0.9531) 

4.6947 
(0.8952) 

4.4861 
(0.8095) 

(0 , 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , 0 ,1 ,1 ,1 ,1 ,1,1 ,1 ,1, 1 ,1, 1 ,1) 
4.8174 
(0.9602) 

4.8183 
(0.9037) 

4.4906 
(0.7628) 

(2, 0 ,0 ,0 ,2 ,0 ,0 , 0, 2 ,0  , 0 ,0 , 2 ,0 , 0, 0 , 2, 0 ,0 ,0 ,2 ,0 , 0 ,0) 
4.6689 
(0.9861) 

4.6841 
(0.9164) 

4.4321 
(0.8753) 

(0, 0 ,2 ,0 ,0 ,0 ,0 , 4, 0 ,0  , 1 ,0 , 0 ,0 , 2, 0 , 1, 0 ,0 ,1 ,0 ,2 , 0 ,0) 
4.8417 
(0.8957) 

4.8310 
(0.8369) 

4.5481 
(0.7482) 

Table 7. Estimated means and RMES of various estimator α for m = 60 and C=1 

Censoring scheme θ̂M θ̂S θ̂L 
All items failed  1.8952 

(0.1573) 
1.8748 
(0.1483) 

1.8647 
(0.1327) 

Type II censoring 1.9371 
(0.1978) 

1.9192 
(0.1757) 

1.9073 
(0.1715) 

(1, 1, 1 ,1 , 1, 0, 0 , 0 , 0 ,0 ,1 , 1, 1 , 1 , 
1 ,0 ,0 ,0 ,0 ,0 ,1 ,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2 ,2 , 0, 0 , 0 , 0 ,0  ) 

1.9571 
(0.2194) 

1.9406 
(0.2082) 

1.9103 
(0.2009) 

(0, 0 , 0 , 0 ,0, 1, 1, 1 ,1 , 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 , 0 , 0 , 0 , 0 , 0 , 
1 , 1, 1 ,1 ,1 , 2 , 2 , 2 , 2 , 2 ) 

1.9641 
(0.2285) 

1.9372 
(0.2158) 

1.8987 
(0.2087) 

(0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 
1 , 1 ,2 ,2 ,2 ,2 , 0, 0 , 0 , 0) 

1.9583 
(0.2194) 

1.9392 
(0.2061) 

1.9017 
(0.1983) 

(0, 2, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 1, 0 , 0 , 0 , 4 , 0 , 
0 , 0 , 0 , 0 0, 2 , 0, 1 , 0) 

1.9582 
(0.2180) 

1.9468 
(0.2068) 

1.9072 
(0.2063) 
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Table 8. Estimated means and RMES of various estimator θ for m = 60 and  C=1 

Censoring scheme α̂M  α̂S  α̂L 

All items failed  4.7163 

(0.6849) 

4.7591 

(0.6206) 

4.5186 

(0.5952) 

Type II censoring 4.6973 

(0.7479) 

4.7268 

(0.7179) 

4.5391 

(0.6274) 

(1, 1, 1 ,1 , 1, 0, 0 , 0 , 0 ,0 ,1 , 1, 1 , 1 , 

1 ,0 ,0 ,0 ,0 ,0 ,1 ,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2 ,2 , 0, 0 , 0 , 0 ,0) 

4.6948 

(0.7408) 

4.7149 

(0.7317) 

4.4763 

(0.5962) 

(0, 0 , 0 , 0 ,0, 1, 1, 1 ,1 , 1, 0, 0 , 0 , 0 ,0 ,1 , 1, 1 , 1 , 

1 ,0 ,0 ,0 ,0 ,0 ,1 ,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2 ,2 ) 

4.6742 

(0.7286) 

4.6903 

(0.7107) 

4.4648 

(0.7013) 

(0, 0 , 0 , 0 , 1, 1, 1 ,1 , 1, 0, 0 , 0 , 0 ,0 ,1 , 1, 1 , 1 , 

1 ,0 ,0 ,0 ,0 ,1 ,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2 , 0, 0 , 0 , 0) 

4.6842 

(0.7359) 

4.7015 

(0.7206) 

4.4596 

(0.6387) 

(0, 2 , 0 , 0 , 0, 4, 0 ,0 , 0, 1, 0 , 0 , 0 ,0 , 3, 0, 0 , 0 , 

0 ,0 ,1 ,1 ,0 ,0 ,0 ,4 ,0 ,0 ,0 ,0 ,0 ,2 , 0, 1 , 0) 

4.6593 

(0.7382) 

4.6758 

(0.6851) 

4.4432 

(0.6168) 

4. Conclusions  

In this paper, we discussed the estimation problem of the unknown parameters of the exponentiated Weibull distribution 

based on generalized order statistics. Estimation based on progressive type-II censored samples and upper records from 

the exponentiated Weibull distributions are obtained as special cases. We used classical and Bayesian estimation 

methods to estimate the parameters. We obtained the Bayes estimates based on SE loss function using Lindley's 

approximation. The performance of the different estimators is compared based on simulation study in terms of their 

MSES. It is observed that the Bayes estimates with non-informative priors work very well in terms of MSES, also, the 

Bayes estimates using the informative prior have the smallest MSES among all other estimates proposed. 
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