
International Journal of Statistics and Probability; Vol. 9, No. 4; July 2020
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

Statistical Issues on Analysis of Censored Data Due to
Detection Limit

Hua He1, Xuenan Mi1 Jerry Cornell2, Wan Tang2, Tanika Kelly1, Hui Shen2, Hongwen Deng2 & Yan Du2

1 Department of Epidemiology, USA
2 Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New
Orleans, LA, USA

Correspondence: Hua He, Department of Epidemiology, USA

Received: April 22, 2020 Accepted: May 20, 2020 Online Published: June 14, 2020

doi:10.5539/ijsp.v9n4p49 URL: https://doi.org/10.5539/ijsp.v9n4p49

Abstract

Measures of substance concentration in urine, serum or other biological matrices often have an assay limit of detection.
When concentration levels fall below the limit, the exact measures cannot be obtained, and thus are left censored. Common
practice for addressing the censoring issue is to delete or ’fill-in’ the censored observations in data analysis, which often
results in biased or non-efficient estimates. Assuming the concentration or transformed concentration follows a normal
distribution, a Tobit regression model can be applied. When the study population is heterogeneous, for example due to the
existence of a latent group of subjects who lack the substance, the problem becomes more challenging. In this paper, we
conduct intensive simulation studies to investigate the statistical issues in analyzing censored data and compare different
methods in which the data are treated either as a dependent variable or an independent variable. We also analyze triclosan
data in the NHANES study and metabolites data in the Bogalusa Heart Study to illustrate the issues. Some guidelines for
analyzing such censored data are provided.

Keywords: censored data, censored normal distribution, detection limit, heterogeneous population, joint modeling, mix-
ture model, relative efficiency, Tobit regression model

1. Introduction

Measures of substance concentration in urine, serum or other biological matrices that fall below assay limit of detection
are common in epidemiological and medical research (Nassan et al., 2017; Ferrero et al., 2017; Østergren et al., 2017;
Kim et al., 2018; Zhao et al., 2018; Gomez et al., 2019; Maule et al., 2019). When the concentration levels are under the
detection limit (DL), denoted as L, accurate measures cannot be obtained. Instead, their values are only partially known
and left censored. For example, triclosan, collected in NHANES studies, is a broad-spectrum antimicrobial chemical and
widely used in household and health care related products. Currently the DL for urine triclosan concentration is 2.3 ng/ml,
meaning only triclosan concentrations greater than or equal to 2.3 ng/ml can be detected. For triclosan concentrations
lower than 2.3 ng/ml, their values are censored. Instead of precise measures of the triclosan concentration levels, the
values are only partially known, namely somewhere between 0 and 2.3. The censoring generates informative missing data
that need to be properly handled in order to obtain valid inference and achieve efficiency.

A simple approach for handling such censored data is complete-case analysis (Little and Rubin, 2002). This approach
discards all subjects who have censored data and fits regression models by using only subjects whose data are uncensored.
This method is often invalid because it violates the missing completely at random assumption and is potentially highly
inefficient even with moderate censoring.

Another common approach is the ’fill-in’ method where the censored observations are replaced by a constant such as L,
or 1

2 L (Olson, 1993; LaFleur et al., 2011; Slymen et al., 1994; Gleit, 1985; Newman et al., 1989). This approach is widely
applied in epidemiological and medical research because of its simplicity of implementation, but often leads to biased
estimates.

When the underlying measures follow a single normal distribution, the data then follow a censored normal distribution
due to DL. Tobit regression models can be applied to model such censored dependent variables (Tobin, 1958). When
the underlying measures are not from a normal distribution, data transformation such as log-transformation can be em-
ployed first, and a Tobit regression model can then be applied on the transformed data. The Tobit regression model has
been widely applied in some fields such as economics (Rosen, 1976; Keeley et al., 1978; McDonald and Moffitt, 1980;
Amemiya, 1984; Zhou et al., 2018; Al-Hanawi et al., 2018; Deng et al., 2019; Leng et al., 2019; Hezaveh and Cherry,
2019); however, its application is not well-recognized in epidemiological and medical research despite the universality of

49



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 9, No. 4; 2020

censored data due to DL.

We run into issues when censored observations are from heterogeneous populations, such as when exposure and non-
exposure become factors. Subjects from the non-exposure population are not exposed at all, so their concentration level
is 0 and thus censored, while subjects from the exposure population will have a concentration level greater than 0. If
their levels are lower than L, they are censored as well. Only those subjects who are exposed and also have concentration
levels greater than or equal to L can be observed. In the above triclosan example, subjects having triclosan in their urine,
namely the exposed group, but with concentration levels lower than L are censored. However, when there is a subgroup of
subjects who do not have triclosan at all, i.e, are not exposed to triclosan, their measures are of course under L and thus are
censored as well. Because measures from the non-exposed group are always censored, they are considered latent. If the
data from the exposure population follow a censored normal distribution, data from the whole sample follow a mixture
of censored normal and degenerate distributions. In this case, if a Tobit model is applied, biased estimates can occur.
To model data from such heterogeneous populations, mixture model techniques should be applied to achieve unbiased
estimates(Moulton and Halsey, 1995; Taylor et al., 2001; Reisetter et al., 2017).

When censored variables are used as predictors, common practices such as deletion or ‘fill-in’ can be problematic (Zhao
et al., 2018; Park et al., 2018; Javad et al., 2018) . To better facilitate information provided by the censored observations in
predictors, a joint modeling approach is proposed to aid estimation. The joint modeling has been applied in Lynn (2001);
Rigobon and Stoker (2003); Austin and Hoch (2004); Bernhardt et al. (2015), but its application in epidemiological and
medical research is very rare. Furthermore, no method is available when censored predictors are from heterogeneous
populations.

In this paper, we propose a mixture model for outcomes obtained from heterogeneous populations, and develop joint
modeling for censored predictor, either from a single or heterogeneous populations. We conduct intensive simulation
studies to investigate statistical issues for different methods and also use two real data examples to illustrate the methods.

2. Methods

2.1 As Dependent Variable

When censored data are used as outcome, Tobit models can be applied. Next, we give a brief review of the Tobit model
for the outcome from a single population. Because the Tobit model is inappropriate for modeling outcomes from hetero-
geneous populations, a mixture model is also proposed for those cases (Moulton and Halsey, 1995; Taylor et al., 2001;
Reisetter et al., 2017).

2.1.1 Tobit Model for Single Population

The Tobit model is a linear regression model for data from censored normal distribution. Consider an independent sample
(xi, zi), i = 1, ..., n, where n is the sample size, xi = (xi1, xi2,..., xip) is a p-dimensional covariate, and zi is the outcome
for the ith subject. The zi is obtained based on an underlying outcome variable z∗i , which is assumed to have a linear
relationship with xi through

z∗i = x>i β + εi, εi ∼ N(0, σ2). (1)

Let L be the lower DL, the outcome zi is defined as

zi =

{
z∗i if z∗i ≥ L,

censored if z∗i < L. (2)

Under (1), the zi follows a censored normal distribution with likelihood given by

f (Zi = zi) =


1
√

2πσ
exp

(
−

(zi−µi)2

2σ2

)
if zi ≥ L,

Φ
(

L−µi
σ

)
if zi censored,

(3)

where Φ (·) is the cumulative distribution function of the standard normal and µi = x>i β is the conditional mean of the
outcome. The outcome zi can be modeled by a Tobit regression model, denoted as Tobit(µi, σ

2, L), given by

zi | xi ∼ i.d. Tobit
(
µi, σ

2, L
)
, µi = xT

i β. (4)

Let ci indicate whether zi is censored or not with ci = 1 for censored and ci = 0 for zi ≥ L. The likelihood function
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consisting censored and non-censored subjects is

L =

n∏
i=1

[
Φ

(L − µi

σ

)]ci
[

1
√

2πσ
exp

(
−

(zi−µi)2

2σ2

)](1−ci)

. (5)

The parameters β and σ can be estimated based on maximum likelihood estimate (MLE) approach, i.e., maximizing the
likelihood (5) for given (4).

The Tobit regression model is applied for outcomes from censored normal distribution. When the underlying measures
are not normally distributed, data transformation can be applied first, and a Tobit regression model can then be applied
on the transformed data.

2.1.2 Mixture Model for Heterogenous Populations

For data from heterogeneous populations, such as concerning exposure and non-exposure, Tobit models are not appro-
priate. Instead, models which can separate the two populations are needed.

Let ω be the prevalence of the non-exposure, so the whole population consists of 100ω% non-exposure and 100(1 −
ω)% exposure. If data from the exposure population follow a censored normal distribution (3), the data from the whole
population have a mixture of censored normal distribution with probability (1 − ω) and degenerate distributions with
probability ω, given by

f (Zi = zi) =


(1 − ω) 1

√
2πσ

exp
(
−

(zi−µi)2

2σ

)
if exposure and zi ≥ L,

(1 − ω)Φ
(

L−µi
σ

)
if exposure and zi < L,

ω if non-exposure

(6)

If the likelihood of non-exposure is predicted by some covariates, say ui, and modeled by a logit model, then the exposure
outcome is modeled by a Tobit model (4), so the data from the heterogeneous populations can then be modeled by a
mixture of Tobit and logit models, denoted as mTobit

(
ωi, µi, σ

2, L
)
, given by

zi | xi,ui ∼ i.d. mTobit
(
ωi, µi, σ

2, L
)
, logit (ωi) = u>i βω, µi = xT

i β. (7)

The mTobit model is composed of a logit model for the likelihood of non-exposure, and a Tobit model for the correlates
of the exposure. The covariates ui and xi in (7) can be the same or different. If the likelihood of non-exposure doesn’t
depend on any covariates, no link function is needed. The likelihood function of the mTobit model is given by

L =

n∏
i=1

[
ω + (1 − ω)Φ

(L − µi

σ

)]ci
[
(1 − ω)

1
√

2πσ
exp

(
−

(zi−µi)2

2σ2

)](1−ci)

. (8)

Again, the parameters βω, β and σ can be estimated by an MLE approach based on the likelihood (8) and model (7)

Under the Tobit model, for a given L, the proportion of the data under the DL is E
[
Φ

(
L−µi
σ

)]
, while under the mTobit

model, the proportion of the data under the DL becomes ω+ (1−ω)E
[
Φ

(
L−µi
σ

)]
, which is always greater than E

[
Φ

(
L−µi
σ

)]
for ω > 0. Therefore, ω is a parameter indicating excessive observations under the DL. Therefore, when the data exhibit
more censored observations than what would be expected under Tobit model, the mTobit can be applied to address the
heterogeneous issue.

2.2 As Independent Variable

Censored data are also often used as predictors to examine their relationship with some health-related outcomes. Because
of the limitations of deletion and ‘fill-in’ methods, a joint modeling approach is developed to address the censoring
issues. Similar to the censored data being treated as the outcome, we consider now censored predictors from either a
single exposure or heterogeneous populations. To illustrate the issues of censored predictors, for simplicity, we consider
the censored predictor as the only predictor for continuous outcomes as similar issues occur for other types of outcomes.

2.2.1 Predictor From Single Population

Suppose the underlying exposure Z∗i ∼ N(µ, σ2
z ), the continuous outcome Yi is associated with Z∗i through

yi = β0 + β1z∗i + εi, where εi ∼ N(0, σ2), (9)
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Due to DL, z∗i is observed only if z∗i ≥ L, i.e., the predictor zi is obtained based on (2), and the distribution of zi is given
by (3). Let F(·), f (·) and g(·) be the distribution of (Y,Z), Y |Z and Z, separately. In joint modeling, we have

F(Yi = yi,Zi = zi) = f (Yi = yi|Zi = zi)g(Zi = zi). (10)

For uncensored subjects, based on (9) and (3), we have

f (Yi = yi|Zi = zi) =
1
√

2πσ
exp

− [
yi− (β0 + β1zi)

]2

2σ2

 ,
g(Zi = zi) =

1
√

2πσz
exp

(
−

(zi − µ)2

2σ2
z

)
.

Thus the joint likelihood for the uncensored subjects is given by

F(Yi = yi,Zi = zi) =
1

2πσσz
exp

− [
yi− (β0 + β1zi)

]2

2σ2 −
(zi−µ)2

2σ2
z

 . (11)

While for censored subjects with Zi < L, the joint likelihood

F(Yi = yi,Zi < L) =

∫ L

−∞

F(Yi = yi,Zi = t)dt =

∫ L

−∞

f (Yi = yi|Zi = t)g(Zi = t)dt (12)

=

∫ L

−∞

1
2πσσz

exp
− [

yi− (β0 + β1t)
]2

2σ2 −
(t−µ)2

2σ2
z

 dt.

So the likelihood for the whole sample can be given by

n∏
i=1

[
F(Yi = yi,Zi < L)

]ci ·
[
F(Yi = yi,Zi = zi)

]1−ci (13)

By plugging (11) and (12) into (13) and applying MLE approach, the parameters (β0, β1, µ, σ
2
z , σ

2
z ) can be estimated, and

inference can be made.

2.2.2 Predictor From Heterogenous Populations

Assume the predictor z is from heterogeneous populations composed of non-exposure with probability ω and exposure
with probability (1 − ω). Suppose the underlying exposure z∗i ∼ N(µ, σ2

z ), and z∗i is observed only if z∗i ≥ L due to DL.
The predictor zi is a mixture of censored exposure and non-exposure with distribution given in (6). As it is very likely that
the relationships of exposure and non-exposure with outcome are different, we assume that relationships of the exposure
and non-exposure with outcome yi is

yi =

{
β0 + β1z∗i + εi, for exposure ,
β0 + β2 + εi for non-exposure, (14)

where εi ∼ N(0, σ2). In (14), the coefficient β1 describes the relationship between the exposure and outcome, while β2
captures the relationship between the non-exposure and outcome.

For uncensored subjects (ci = 0), based on (14) and (6), we have

f (Yi = yi|Zi = zi) =
1
√

2πσ
exp

− [
yi− (β0 + β1zi)

]2

2σ2

 ,
g(Zi = zi) = (1 − ω)

1
√

2πσz
exp

(
−

(zi − µ)2

2σ2
z

)
.

So the joint likelihood is given by

F(Yi = yi,Zi = zi) =
(1 − ω)
2πσσz

exp
− [

yi− (β0 + β1zi)
]2

2σ2 −
(zi−µ)2

2σ2
z

 . (15)

Censored subjects can be from either the non-exposure or exposure population. Assume Ri be the membership indicator
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with Ri = 1(0) for non-exposure (exposure) and Ri is known, based on (14) and (6), the joint likelihood for non-exposure
is given by

F(Yi = yi, Ri = 0) = ω
1
√

2πσ
exp

− [
yi− (β0 + β2)

]2

2σ2

 , (16)

and the joint likelihood for censored exposure is

F(Yi = yi,Zi < L,Ri = 1) =

∫ L

−∞

F(Yi = yi,Zi = t)dt

=

∫ L

−∞

(1 − ω)
2πσσz

exp
− [

yi− (β0 + β1t)
]2

2σ2 −
(t−µ)2

2σ2
z

 dt. (17)

The joint likelihood for the whole sample including non-exposure, censored exposure and non-censored exposure is given
by

n∏
i=1

[
F(Yi = yi, Ri = 0)

]Ri
[
F(Yi = yi,Zi < L)

](1−Ri )ci
[
F(Yi = yi,Zi = z)

](1−Ri )(1−ci) . (18)

Plugging (15), (16), (17) into (18), and apply MLE approach, the parameters (β0, β1, β2, µ, σ
2
z , σ

2) can be estimated and
inference can be conducted.

3. Simulation Studies

Simulation studies are conducted to investigate statistical issues of different methods for handling censored data. For cen-
sored data treated as the outcome, the data are considered from single exposure and heterogeneous populations separately.
Methods considered for handling the censoring issue include deletion, ‘fill-in’ by L or 1

2 L, and fitting the data with Tobit
and mTobit models. For data treated as a predictor, in addition to deletion or ‘fill-in’ by L or 1

2 L, we also consider joint
modeling for continuous outcome.

Different values for L are considered to reflect the varying amount of data censored. For data from heterogeneous popula-
tions, different prevalence (ω) of the non-exposure is also considered. In all the simulations, small (200), moderate (500)
and large (1000) sample sizes are considered and a Mont Carlo (MC) sample size of 1000 is used.

3.1 As Dependent Variable

For Tobit models, we use the R function ‘VGAM’ to estimate parameters. As there is no R package available for mTobit
models, we use a R function ‘optim’ to find the MLE of parameters based on (8).

3.1.1 From a Single Exposure Population

Let x, generated from N(0, 1), be a predictor of the underlying exposure z∗ through

z∗ = β0 + β1x + ε, ε ∼ N(0, 0.5), (19)

Let β0 = 0.5 and β1 = 1, and let the outcome z be obtained by censoring z∗ at L, where L is set to be −0.93,−0.44,−0.086,
0.22 and 0.50 in corresponding to 10%, 20%, 30%, 40% and 50% of data censored, respectively. The outcome z is fitted
by 1) deleting all the censored observations; 2) filling-in the censored observations by L or 1

2 L; 3) Tobit model; 4) mTobit
model to estimate β1, which is of our interest.

The mean of the estimated β1 across 1000 realizations for different methods are provided in Figure 1. Based on the figure,
all the methods except the Tobit model yield biased estimates with the deletion method performing the worst. As expected,
the bias becomes larger as more data censored. The patterns are similar across different sample sizes. In all the cases, the
Tobit model gives unbiased estimates regardless of the proportion of censored data and sample size. For outcome from
a single population, the mTobit model doesn’t converge for most (75% to 100%) of the cases because of the lack of a
non-exposure population (ω = 0).
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Figure 1. The mean of estimated β1 (β1 =1) for different methods when censored dependent variable from a single
exposure population

3.1.2 From Heterogeneous Populations

Outcomes from heterogeneous population are generated in two steps. Let ω be the prevalence of non-exposure. In the
first step, a membership Ri is generated to indicate whether subjects are exposed based on a Binomial (n, ω) distribution.
In the second step, for subjects who are exposed, the underlying exposure z∗i are generated as in (19). Specifically, the
outcome zi is generated by

zi =


z∗i if Ri = 0 and z∗i ≥ L,

censored if Ri = 0 and z∗i < L,
censored if Ri = 1.

Let ω range from 10% to 30%, and L be the same as in Section 3.1.1. The censored observations come from two sources,
one from all non-exposed subjects, and the other from exposed subjects with values under L. The same methods as in
Section 3.1.1 are considered.

The mean of the estimated β1 for different L and ω across 1000 realizations are presented in Figure 2. All the methods
except the mTobit model yield biased estimates. Unlike the data from a single exposure population, when the outcome is
from heterogeneous populations, the Tobit model yields biased estimates with less bias for smaller non-exposure group.
In all the cases, only the mTobit model gives unbiased estimates.

54



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 9, No. 4; 2020

non−exposure=10%
0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50

Sample Size=200

non−exposure=10%
0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50

Sample Size=500

non−exposure=10%
0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50

Sample Size=1000

non−exposure=20%

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50

E
st

im
a
te

 o
f 

β
1

non−exposure=20%

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50

non−exposure=20%

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50

non−exposure=30%

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50

non−exposure=30%

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50

Under−detection−limit (%)

non−exposure=30%

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50

Deletion mTobit Model Sub. by L Sub. by L/2 Tobit model

Figure 2. The mean of estimated β1 (β1 =1) for different methods when censored dependent variable from heterogenuous
populations

3.2 As Independent Variable

3.2.1 From a Single Exposure Population

Let z∗ be the underlying exposure and generated similarly as in (19). Specifically, z∗ is generated from N(0.5, 0.5), due to
DL, with the predictor z censored at L; i.e., z = z∗ if z∗ ≥ L; otherwise z is censored.

Suppose the outcome yi is associated with z∗i through yi = β0 + β1z∗i + εi with εi ∼ N(0, 0.5), β0 = −1.0 and β1 = 1.0. The
outcome yi is observed for all subjects, but zi is censored for some subjects. In addition to deletion and ‘fill-in’ methods,
joint modelling based on (13) is applied to estimate β1.

Figure 3A summarizes the mean of the estimated β1 across 1000 realizations. When the censored data are ‘filled-in’ by
L or 1

2 L, the estimates are biased, and the bias becomes worse with more data censored. When the censored observations
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are deleted or the data is fitted by joint modeling, the estimates are unbiased. However, the joint modeling yields more
efficient estimates, with the relative efficiency ranging from 70% to 30% of that of the joint model when censoring ranges
from 10% to 50% (see Figure 3B).

Figure 3. The mean of estimated β1 (β1 =1) for different methods when outcome is continuous and the predictor is from
a single exposure population (A), and the relative efficiency of Deletion over the Joint Model (B)

3.2.2 From Heterogeneous Populations

The predictor zi from a heterogeneous population is generated similarly as in Section 3.1.2. Specifically, a binary indicator
Ri is first generated from Binomial (n, ω) to indicate if a subject is exposed or not. For subjects exposed, the underlying
exposure z∗ is generated from N(0.5, 0.5), but censored at L, i.e.,

zi =


z∗i if Ri = 0 and z∗i ≥ L

censored if Ri = 0 and z∗i < L
censored if Ri = 1

L is still set to be −0.93,−0.44,−0.086, 0.22 and 0.50 to correspond to 10%, 20%, 30%, 40% and 50% of data censored
for the exposure population, respectively. We assume outcome y is associated with the exposure and non-exposure through

yi =

{
β0 + β1zi + N(0, 0.5), for exposure ,
β0 + β2 + N(0, 0.5) for non-exposure, (20)
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to reflect different relationships of exposure and non-exposure with outcome, where β0 = −1.0, β1 = 1.0 and β2 = −1.0.

We consider two scenarios. In the first scenario, the predictor is treated from a single population, i.e, all the censored
observations are treated as the same and from the exposure population. In the second scenario, we assume that the
membership is known, and we use the non-exposure (Ri = 1) to estimate β2, but use the data from exposure population
(Ri = 1) to estimate β1 based on joint modeling.

The estimated β1 are summarized in Figure 4A. The ‘filled-in’ methods yield biased estimates, and results in greater
bias for larger non-exposure populations and increased censored data from the exposure population. The joint modelling
produces biased estimates if the censored data is treated as the same, i.e., the censored observations are not differentiated
between exposure and non-exposure, while when the membership is known, i.e., if the censored observations from the
exposure group can be differentiated from non-exposure, the joint modelling yields unbiased estimates. The deletion
method also gives unbiased estimates as deleting the censored observations doesn’t change the relationship between the
exposure and the outcome. However, the joint modelling is more efficient than the deletion method. The efficiency of
the deletion is 70% to 30% of that under joint modeling when the censored data for the exposure population ranges from
10% to 50% (Figure 4B). Similar patterns are found for sample sizes 200 and 500, see Figure S1 and Figure 2 in the
online supplementary material. Another advantage is that the joint modelling can estimate the relationship between the
non-exposure and outcome, which is often important, both conceptually and clinically.

Figure S1. The mean of estimated β1 (β1 =1) for different methods when outcome is continuous and the predictor is from
heterogenous populations (A), and the relative efficiency of Deletion over Joint Model K (B) with sample size 200

Note: K: the membership is known.

Single: the predictor is treated as from a single population
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Figure S2. The mean of estimated β1 (β1 =1) for different methods when outcome is continuous and the predictor is from
heterogenous populations (A), and the relative efficiency of Deletion over Joint Model K (B) with sample size 500

Note: K: the membership is known.

Single: the predictor is treated as from a single population.

4. Case Studies

Next we use two examples to illustrate the methods, the urine triclosan exposure and participants’ BMI in NHANES
2003-2010 Study and the serum metabolites and BMI in the Bogalusa Heart Study. The two examples used here are not
intended to make formal inferences, but are for the purpose of illustration.

4.1 NHANES 2003-2010 Study

NHANES is a continuous program that examines a nationally representative sample of about 5000 persons each year to as-
sess health and nutritional status of adults and children in the general population of the USA (http://www.cdc.gov/nchs/nha-
nes.htm). Demographic, socioeconomic, dietary, and health-related data were collected via interviews. Blood and urine
samples were also collected for laboratory testing. In four surveys conducted between 2003 and 2010, urinary triclosan
concentration was measured in a random sample of 3659 children (6-19 years old) and 6566 adults (20 years or older).
Of these, 2898 children and 5066 adults had detectable levels of urinary triclosan, which means that there are about 22%
participates with their triclosan concentration undetected, and thus censored.

We examine the relationships of urine triclosan with age and BMI by treating triclosan as the outcome variable, with
gender, race, cotinine and creatinine controlled, i.e., we consider

Triclosan ∼ β0 + β1Age + β2Gender + β3Race + β4BMI + β5Cotinine + β6Creatinine.

Because of the skewed distribution of triclosan, a logarithm transformation is first applied.

Table 1 summaries the point estimates and the associated p-value from different methods. The deletion and ‘fill-in’
methods detect significant association between age and triclosan, however no association is detected between BMI and
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triclosan for all the methods. Based on the simulation studies, the Tobit model is preferred to the deletion and ‘fill-
in’ methods. The mTobit model doesn’t converge, which is likely due to lack of non-exposure population. This is not
surprising as the study participants are 6 years or older, it’s very likely everyone has been exposed to triclosan to some
degree. This also coincide with the results provided in (He et al., ress) that no non-exposure population was detected in
urine triclosan measurement.

Table 1. The estimated associations of triclosan with age/BMI for different methods for handling the censored data

Variable
Method age BMI

Estimate P-value Estimate P-value
Deletion 0.0066 < 0.001 -0.0054 0.0589
Sub. by L 0.0028 0.0016 -0.0004 0.8821
Sub. by 1

2 L 0.0024 0.0107 0.0003 0.9138
Tobit model 0.0016 0.1495 0.0020 0.5575
mTobit model Does not converge

4.2 Bogalusa Heart Study

Founded in 1973, the Bogalusa Heart Study (BHS) focuses on the early natural history of cardiovascular disease since
childhood. More details about the BHS can be found here (https://www.clersite.org/bogalusaheartstudy/). In the current
BHS study, a total of 1202 metabolites for 1261 unique BHS participants from the 2013-2016 visit cycle are obtained after
quality control procedures and data cleaning. Among the 1202 metabolites, 167 have a below detection rate > 50% and
1035 have below detection rate ≤ 50%. Among the 1035 metabolites, 398, 401, 77, 56, 52 and 51 metabolites had 0%,
<10%, 10-20%, 20-30%, 30-40% and 40-50% of below detection rate, respectively. We examine associations between
metabolites and BMI with metabolites treated as outcome. For illustration purposes, we only consider 12 metabolites with
known super-pathway and under-detection rate between 45% and 50%. The model considered is

Metabolites ∼ β0 + β1Age + β2Gender + β3Race + β4BMI.

The results are summarized in Table 2. Based on the results, the mTobit model does not converge except for two metabo-
lites, which implies that the two metabolites likely have a non-exposure group. These findings are consistent with the
results presented in (He et al., ress), where the tests indicate that there is a non-exposure group in metabolites. For the two
metabolites, the estimated associations are different between Tobit and mTobit model, but the results from mTobit model
should be preferred because of the existence of non-exposure.

Table 2. The estimated associaton between BMI and metabolites with different methods for handling the censored data

Deletion Sub. by L Sub. by 1
2 L Tobit model mTobit model

Metab. Est. P-value Est. P-value Est. P-value Est. P-value Est. P-value
Y 16378a 0.0153 0.2186 0.0128 0.0539 0.0134 0.0465 0.0329 0.0032 - -
Y 12249a -0.0235 0.0830 -0.0093 0.2485 -0.0091 0.2584 0.0005 0.9729 - -
Y 11590a 0.0021 0.5625 -0.0057 0.0285 -0.0062 0.0205 -0.0145 0.0015 - -
Y 11250b -0.0061 0.8733 -0.0197 0.3573 -0.0201 0.3482 -0.0804 0.0264 - -
Y 12015b -0.1553 0.0893 -0.1001 0.0516 -0.1003 0.0513 -0.1984 0.0215 - -
Y 13185c -0.0099 0.0114 -0.0096 0.0001 -0.0106 0.0001 -0.0182 0.0000 - -
Y 13641c -0.0124 0.0001 -0.0135 0.0000 -0.0150 0.0000 -0.0257 0.0000 -0.0267 0.0000
Y 14601d 0.0007 0.8227 -0.0015 0.5462 -0.0016 0.5367 -0.0036 0.4223 -0.0004 0.9151
Y 16089d -0.0179 0.0758 -0.0131 0.0252 -0.0132 0.0248 -0.0218 0.0380 - -
Y 16264d 0.0218 0.5596 0.0073 0.7213 0.0073 0.7240 -0.0242 0.4896 - -
Y 12153d -0.0302 0.7635 -0.0121 0.8138 -0.0121 0.8137 -0.0286 0.7496 - -
Y 848d 0.0430 0.7367 -0.0096 0.8879 -0.0096 0.8879 -0.1902 0.1043 - -

a: Amino Acid super-pathway
b: Lipid super-pathway
c: Peptide super-pathway
d: Xenobiotics super-pathway
−: indicates that the mTobit model doesn’t converge.
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5. Discussion

In this paper, we investigate statistical issues in analyzing censored data due to detection limits via intensive simulation
studies. Based on the simulation studies, when the data is treated as a dependent variable, the deletion and ‘fill-in’ methods
yield biased estimate and thus shouldn’t be used. Only Tobit and mTobit models should be opted for. If the outcome is
from a single exposure population, the Tobit model can be applied, while for outcomes from heterogeneous populations
such as exposure and non-exposure, the mTobit model should be used.

When the censored data are treated as predictors, the ‘fill-in’ method always yield biased estimates and hence shouldn’t
be used. The deletion method usually produces unbiased estimates, but it is highly inefficient. For censored predictors
from a single population, joint modeling yields unbiased estimates, and is much more efficient than the deletion method,
and hence should be preferred. For predictors from heterogeneous populations, the joint modeling needs to differentiate
the two populations in order to achieve unbiased estimates.

In the paper, the censored predictor is considered as the only predictor. When other predictors/covariates need to be
included, and the censored predictor is correlated with other predictors/covariates, joint modeling is much more involved
and needs to be developed to achieve both unbiasedness and efficiency. Joint modeling becomes even more challenging
for censored predictors from heterogeneous populations with unknown membership, which is a universal case. However,
regardless of if the censored data is treated as an outcome or a predictor, a foremost question is to test if the data is from a
single exposure population or from heterogeneous populations in order to choose an appropriate method. Available tests
for testing if there is a non-exposure population can be found in (He et al., ress), where three tests including Wald test,
likelihood ratio test and score test are developed.
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