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Abstract

In this paper, we investigated on the stochastic epidemic model by incorporating viral load detectability. We derived HIV
and AIDS stochastic model from the deterministic counterpart model and presented a stochastic threshold in terms of
stochastic basic reproduction number. We showed that Rs

0 < 1 then the disease dies out exponentially and when Rs
0 > 1 the

disease persists in the population. We further derived the existence and uniqueness, extinction and persistence properties
of the stochastic model models, then the numerical simulation is done by using Milsten’s numerical scheme. The finding
shows that the random perturbation introduced in the stochastic model suppresses disease outbreak as compared to its
deterministic counterparts which provide some useful control strategies to eradicate the disease.

Keywords: stochastic epidemic model, existence, extinction, persistence, viral load detectability and itô formula

1. Introduction

As in the early stages of an epidemic, the number of infectious will be very small, randomness alone can be the source
of an epidemic to perish out, and it is much more significant particularly to include perturbation into models. Stochastic
models possibly will be an additional suitable technique for modelling disease epidemics in many circumstances which
gives a better understanding of transmission dynamics derived from its deterministic counterpart. It has similarly been
revealed that some stochastic epidemic models can deliver an extra degree of realism in contrast to the deterministic
model. Explicitly, the stochastic model suits well for disease extinction and disease persistence (Van Herwaarden and
Grasman, 1995).

There is a fair quite a number literature about stochastic models, for example, authors such as Cai et al. (2016) and Mao
et al. (2002) studied deterministic and stochastic models for ratio dependents transmission rates with the main focus on
how environmental perturbations particularly affects the dynamics of the diseases and others focus on the environment
with media effect. Also, Zhang et al. (2014), developed and gave an excellent clear investigation of non-linear incidence
rate, and analyzed the extinction, persistence, and stationary distribution of stochastic disease epidemic model. Similarly,
Song et al. (2018) developed SIRS stochastic model and particularly investigated extinction and persistence with saturated
incidence rate, most importantly they showed that large noise in the model reduces disease outbreak. Stochastic models
could be a more suitable way of modelling epidemics in many situations and many realistic stochastic models can be
deriving from their deterministic counterparts (Fan et al., 2017; Ji and Jiang, 2017; Zhang and Zhou, 2019; Zhao and
Yuan, 2016; Witbooi, 2013).

There are numerous ways of deriving a stochastic model from the deterministic model: parametric perturbation stochastic
model which introduces diffusion coefficient of the specific parameter(s) of interest to be perturbed, while on other hands
non-parametric perturbation stochastic model involves adding Brownian processes to each differentia equation and assume
that each compartment has uncertainty (Nsengiyumva et al., 2013; N’zi and Kanga, 2016; Miao et al., 2017). Several
authors have undertaken various stochastic models for HIV and AIDS including authors such as (Mbogo et al., 2013;
Zhang and Zhou, 2019; Fan et al., 2017). However, none of these models have considered stochastic models for HIV
and AIDS particular by incorporating viral load detectability in the model, and the stochastic model is derived from
deterministic counterpart as considered by Tengaa et al. (2020). This paper is arranged as follows:- In section 2, we
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formulated a stochastic model from deterministic as considered by Tengaa et al. (2020). In section 3, we investigate the
quantitative analysis of the model such as deriving the existence and uniqueness, extinction, and persistence properties of
the stochastic model models. Section 4 shows the numerical solution of the model and lastly, in section 5 is the concluding
remark.

2. Model Formulation

2.1 Description of the Model

The model is divided into five compartmental models which includes Susceptibles population (S t), Infected population(It),
AIDS population on treatment(At), Detectable(Dt) and Undetectable(Ut) viral load population. The frequency dependent
transmission is assumed with force of infection λ = β I

N(t) , where β is the rate of transmission. It can be increase by the
proportion (1 − ρ) from infected mothers who give birth to infected children, also It can progress to At with a rate of θ1.
Moreover, At after failure of therapy they can either join Dt with detectable viral load failure rate of ψ or can join Ut with a
rate of (1−ψ). In turn with HIV and AIDS viral load test or drug resistance tests while also HIV replicates at an extremely
rapid rate then individuals in Dt can be treated with a rate θ2 and individuals in Ut can be treated with a rate of θ3 to move
back to At on treatment class, whilst µ is the natural mortality rate while α is the death due to AIDS individuals. The
normalized deterministic model as considered by Tengaa et al. (2020)

ds
dt

= ρΛ − [βi + Λ − α(a + d + u)]s
di
dt

= (1 − ρ)Λ + [βs − θ1 − Λ + α(a + d + u)]i
da
dt

= θ1i + θ2d + θ3u − [α + ω + Λ − α(a + d + u)]a
dd
dt

= ψωa − [α + θ2 + Λ − α(a + d + u)]d
du
dt

= (1 − ψ)ωa − [α + θ3 + Λ − α(a + d + u)]u

(2.1)

subject to condition s + i + a + d + u = 1. All the feasible solutions of system (2.1) enters the region of biological interest
defined by

Ω =
{
(s, i, a, d, u) ∈ <5

+ : s + i + a + d + u = 1
}

that is positive-invariant solution. We consider the dynamics of the flow generated by system (2.1) in Ω. In this re-
gion, therefore the model (2.1) is considered to be both biologically and mathematically well posed with a deterministic

reproduction number given as Rd
0 =

βρ

(θ1 + Λ)
as used by Tengaa et al. (2020).

We introduce randomness into model system (2.1) by replacing the parameters β and ω by β −→ β + σ1dB1 and ω −→
ω + σ2dB2 respectively which is parametric perturbation stochastic model.

Therefore, the stochastic model for nondimensionalized system of equations (2.1) becomes:

ds = [ρΛ − (βi + Λ − α(a + d + u))s]dt − σ1isdB1(t)
di = [(1 − ρ)Λ + (βs − θ1 − Λ + α(a + d + u))i]dt + σ1isdB1(t)
da = [θ1i + θ2d + θ3u − (α + ω + Λ − α(a + d + u))a]dt − σ2adB2(t)
dd = [ψωa − (α + θ2 + Λ − α(a + d + u))d]dt + σ2ψadB2(t)
du = [(1 − ψ)ωa − (α + θ3 + Λ − α(a + d + u))u]dt + σ2(1 − ψ)adB2(t)

(2.2)

where Bi(t)(i = 1, 2) are independent standard Brownian Motions and σi(i = 1, 2) are constant intensities of environmental
fluctuations respectively. We define bounded set Ω as

Ω =
{
(s, i, a, d, u) ∈ <5

+ : 0 < (s + i + a + d + u) ≤ 1
}

Throughout this paper, let (Ω,F , P) be a complete probability space with filtration {Ft}t∈<+
satisfying the usual condi-

tions(right continous and increasing while F0 contains all P-null sets). We denote as

x(t) = (s, i, a, d, u) := (x1(t), x2(t), x3(t), x4(t), x5(t))

and denote C2,1(<5 × (0,∞) : <+) as the family of all nonnegative functions V(x, t) defined on<5 × (0,∞) such that they
are continously twice differentiable in x and differentiable once in t.
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3. Model Analysis

3.1 Existence and Uniqueness of Stochastic Model

To investigate the behaviour of the system (2.2) we need to consider the system is positive and ensure the existence of
global behaviour. In order to get stochastic model which has unique global solution(no explosion in finite time) for a
given initial values, the coefficient of the equation are required to satisfy the linear growth condition and the Lipschitz
condition. But according to system (2.2), the linear growth condition is not satisfied, but the system is locally Lipschitz
and the solution of the system (2.2) may explode at finite time.

Theorem 3.1. There is a unique solution (s(t), i(t), a(t), d(t), u(t)) of system (2.2) t ≥ 0 for any initial value

(s(0), i(0), a(0), d(0), u(0)) ∈ <5
+

and the solution remain in<5
+ with probability 1, namely, (s(t), i(t), a(t), d(t), u(t)) ∈ <5

+ for all t ≥ 0 a.s.

Proof. Since the coefficients of the equation are locally Lipschitz continuous for any given initial value

(s(0), i(0), a(0), d(0), u(0)) ∈ <5
+

, there is a unique local solution (s(t), i(t), a(t), d(t), u(t)) on t ∈ (0, τe) where τe is the explosion time. To show that
the solution of the system (2.2) is global, we need to show that τe = ∞ a.s. Let k0 ≥ 0 be sufficiently large such that
(s(0), i(0), a(0), d(0), u(0)) lies within the interval [ 1

k0
, k0] . For each integer k ≥ k0 we define the stopping time as follows

τk = in f
{

t ∈ [0, τe] : min {(s(t), i(t), a(t), d(t), u(t))} ≤
1
k

}
or max {(s(t), i(t), a(t), d(t), u(t))} ≥ k

(3.1)

Note that according to definition, τk is increasing as k −→ ∞, by setting τ∞ = lim
k−→∞

τk, where τ∞ ≤ τe a.s. Required to

show τ∞ = ∞ a.s, then τe = ∞ and (s(t), i(t), a(t), d(t), u(t)) ∈ <5
+ a.s. But if this condition is false, then there exist a pair

of constants T > 0 and ε ∈ (0, 1) such that
P {τ∞ ≤ T } > ε

Therefore, there is an integer k1 ≥ k0 such that

P {τk ≤ T } ≥ ε, for t ≤ τk, for each k (3.2)

d(s(t), i(t),a(t), d(t), u(t)) = [ρΛ − (βi + Λ − α(a + d + u))s]dt − σ1isdB1(t)
+ [(1 − ρ)Λ + (βs − θ1 − Λ + α(a + d + u))i]dt + σ1isdB1(t)
+ [θ1i + θ2d + θ3u − (α + ω + Λ − α(a + d + u))a]dt − σ2adB2(t)
+ [ψωa − (α + θ2 + Λ − α(a + d + u))d]dt + σ2ψadB2(t)
+ [(1 − ψ)ωa − (α + θ3 + Λ − α(a + d + u))u]dt + σ2(1 − ψ)adB2(t)

Upon simplifying we get;

d(s(t), i(t), a(t), d(t), u(t)) = [Λ − Λ(a + d + i + s + u)+
α(a + d + u)(1 − (a + d + i + s + u))]dt (3.3)

and then,
d(s(t), i(t), a(t), d(t), u(t)) ≤ [Λ + α(a + d + u)(1 − (a + d + i + s + u))]dt

Let Z = (s(t), i(t), a(t), d(t), u(t)) then

Z =


Λ

α
if s(0) + i(0) + a(0) + d(0) + u(0) ≤ Λ

α

s(0) + i(0) + a(0) + d(0) + u(0) if s(0) + i(0) + a(0) + d(0) + u(0) > Λ
α

Let C2,1 be twice continuously differentiable in x and once continuously differentiable in t and let lyapunov function
candidate be V : <5

+ −→ <+ by

V(s, i, a, d, u) = (s − 1 − log s) + (i − 1 − log i) + (a − 1 − log a) + (d − 1 − log d) + (u − 1 − log u)
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We define the differential oparetor L associated with 5-dimensional stochastic differential equations dx = f (x, t)dt +

g(x, t)dB(t) as

L =
∂

∂t
+

5∑
i=1

fi(x, t)
∂

∂xi
+

1
2

5∑
i, j=1

[gT g(x, t)]i, j
∂2

∂xi∂x j

If L acts on a function V ∈ C2,1(<5 × (0,∞) : <+ then we denote

LV(x, t) = Vt(x, t) + Vx(x, t) f (x, t) +
1
2

trace[gT (x, t)Vxx(x, t)]

where T means transposition, Vt =
∂V
∂t
,Vx = (

∂V
∂x1 · · ·

,
∂V
∂x5

),Vxx = (
∂2V
∂xi∂x j

)5×5. By Itô general formula we have

dV(s, i, a, d, u) =
∂V(s, i, a, d, u)

∂t
dt +

5∑
i=1

∂V(s, i, a, d, u)
∂Xi

dXi +
1
2

5∑
i=1

∂2V(s, i, a, d, u)
∂Xi

d[Xi]t

dV(s, i, a, d, u) = LV1dt + σidB(t) (3.4)

5∑
i=1

∂V(s, i, a, d, u)
∂Xi

dXi =
∂V
∂s

dst +
∂V
∂i

dit +
∂V
∂a

dat +
∂V
∂d

ddt +
∂V
∂u

dut

= (1 −
1
s

)[ρΛ − (βi + Λ − α(a + d + u))s]dt − (1 −
1
s

)σ1isdB1(t)

+ (1 −
1
i

)[(1 − ρ)Λ + (βs − θ1 − Λ + α(a + d + u))i]dt + (1 −
1
i

)σ1isdB1(t)

+ (1 −
1
a

)[θ1i + θ2d + θ3u − (α + ω + Λ − α(a + d + u))a]dt − (1 −
1
a

)σ2adB2(t)

+ (1 −
1
d

)[ψωa − (α + θ2 + Λ − α(a + d + u))d]dt + (1 −
1
d

)σ2ψadB2(t)

+ (1 −
1
u

)[(1 − ψ)ωa − (α + θ3 + Λ − α(a + d + u))u]dt + (1 −
1
u

)σ2(1 − ψ)adB2(t)

Simplifying gives

5∑
i=1

∂V(s, i, a, d, u)
∂Xi

dXi = ρΛ + Λ −
ρΛ

s
− βsi + βi − Λs + αs(a + d + u)−

α(a + d + u) + 2Λ + θ1 −
(Λ − ρΛ)

i
+ βsi − θ1i − Λi + αi(a + d + u) − βs

− αs(a + d + u) + θ1i − (
θ1i + θ2d + θ3u

a
) − αa − ωa − Λa + αa(a + d + u) + α

+ ω + Λ − α(a + d + u) −
ψωa

d
+
ψωa

u
− αd − αu − Λd − Λu + αd(a + d + u)+

αu(a + d + u) + 2α + θ3 + θ2 + 3Λ − 3α(a + d + u)
5∑

i=1

∂V(s, i, a, d, u)
∂Xi

dXi ≤ 6Λ + ρΛ + ω + 2α + θ3 + θ2 + θ1 − (4α + ω + 5Λ)M−

(s − 1)σ1idB1 + (i − 1)σ1sdB1 + (a − 1)σ2adB2 + (d − 1)σ2ψadB2+

(u − 1)σ2(1 − ψ)adB2

(3.5)

Similarly the quadratic variation becomes;

1
2

5∑
i=1

∂2V(s, i, a, d, u)
∂Xi

d[Xi]t = −
1
2

[
1
s2 d[s]t +

1
i2

d[i]t +
1
a2 d[a]t +

1
d2 d[d]t +

1
u2 d[u]t

]

= −
1
2

[σ2
1i2 + σ2

1s2 + σ2
2 +

σ2
2ψ

2a2

d2 +
σ2

2(1 − ψ2)a2

u2 ]dt

(3.6)
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From equation (3.4), substituting (3.5) and (3.6) and considering the drift part we get

LV ≤ [Λ + ρΛ + ω + 2α + θ3 + θ2 + θ1 − (4α + ω + 5Λ)M−
1
2

(σ2
1i2 + σ2

1s2 + σ2
2+

σ2
2ψ

2a2

d2 +
σ2

2(1 − ψ2)a2

u2 )]dt

LV ≤ Λ + ρΛ + ω + 2α + θ3 + θ2 + θ1 − (4α + ω + 5Λ)M := K

where,M is a positive constant and K is a constant which independent of variables, therefore from (3.4) we have;

dV = Kdt − (s − 1)σ1idB1 + (i − 1)σ1sdB1 + (a − 1)σ2adB2 + (d − 1)σ2ψadB2+

(u − 1)σ2(1 − ψ)adB2
(3.7)

Integrating both sides of (3.7) from 0 to τk ∧ T , for τk ∧ T = min {τk,T } we have∫ τk∧T

0
dV =

∫ τk∧T

0
Kdr −

∫ τk∧T

0
(s − 1)σ1idB1(r) +

∫ τk∧T

0
(i − 1)σ1sdB1(r)+∫ τk∧T

0
(a − 1)σ2adB2(r) +

∫ τk∧T

0
(d − 1)σ2ψadB2(r)+∫ τk∧T

0
(u − 1)σ2(1 − ψ)adB2(r)

(3.8)

Applying expectation both sides gives

E[V(s(τk ∧ T ), i(τk ∧ T ),a(τk ∧ T ), d(τk ∧ T ), u(τk ∧ T ))] ≤ V(s(0), i(0), a(0),
d(0), u(0)) + KE τk ∧ T

≤ V(s(0), i(0), a(0), d(0), u(0)) + KE τk ∧ T

≤ V(s(0), i(0), a(0), d(0), u(0)) + KT

(3.9)

Set Ωk = {τk ≤ T } for k ≥ k1 and by (3.2), P(Ωk) ≥ ε, and note that for every ω ∈ Ωk, there is atleast one of s(τk ∧

ω), i(τk ∧ ω), a(τk ∧ ω), d(τk ∧ ω) and u(τk ∧ ω) that equals to either k or 1
k and thus V(s(τk ∧ ω), i(τk ∧ ω), a(τk ∧

ω), d(τk ∧ ω), u(τk ∧ ω)) is not less than

k − 1 − logk or
1
k
− log(

1
k

) =
1
k
− 1 + logk

Consequently, V(s(τk ∧ ω), i(τk ∧ ω), a(τk ∧ ω), d(τk ∧ ω), u(τk ∧ ω) ≥ [k − 1 − logk] ∧ [ 1
k − logk]

It then follows from (3.2) and (3.9) that

V(s(0), i(0), a(0), d(0), u(0)) + KT ≥ E[1Ωk (ω)V(s(τk ∧ ω), i(τk ∧ ω), a(τk ∧ ω),
d(τk ∧ ω), u(τk ∧ ω))]

≥ ε[(k − 1 − logk) ∧ (
1
k
− 1 + logk)]

�

where 1Ωk is the indicator function of Ωk. By letting k −→ ∞ results to the contradiction∞ > V(s(0), i(0), a(0), d(0), u(0))+
KT =∞. We must therefore have τ∞ = ∞ almost surely.

3.2 Stochastic Boundedness

We are required to show that for any initial condition X(0) ∈ <5
+ the solution of model (2.2) is always positive and remains

in<5
+

Definition 3.1. The solution X(t) of the system (2.2) is called stochastically ultimately bounded or ultimately bounded in
probability if for any ε ∈ (0, 1) there is a constant X = X(ε > 0) such that for any initial solution X(0) ∈ Γ, then the
solution of the system (2.2) has the property that

lim sup
t−→∞

P {||X(t)|| > X} ≤ ε
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Lemma 3.3. For any initial value X(0) ∈ Γ and θ > 1, ∃ k = k(θ) such that the solution of the system (2.2) satisfies
condition

lim sup
t−→∞

E
{
||X(t)||θ

}
< k(θ) (3.10)

Proof. Let V(st, it) = et(sθ + iθ + aθ + dθ + uθ), then by using Itô formula, we have

dV =
∂V
∂t

dt +
∂V
∂X

dX +
∂2V
∂X2 [X]t

dV(st, it, at, dt, ut) = LVdt + QdBt (3.11)

From system equation (2.2), let define V1(st, it) = et(sθ + iθ), then we have a drift part as:

LV1 = et(sθ + iθ) + et[θsθ−1ds +
1
2
θ(θ − 1)sθ−2(σ2

1i2s2) + θiθ−1di+

1
2
θ(θ − 1)iθ−2(σ2

1i2s2)]

= et[sθ + iθ + θsθ−1(ρΛ − (βi + Λ − α(a + d + u))s) +
1
2
θ(θ − 1)sθ−2(θ2

1i2s2)+

θiθ−1((1 − ρ)Λ + (βs − θ1 − Λ + α(a + d + u))i) +
1
2
θ(θ − 1)iθ−2(θ2

1i2s2)]

Similarly, let V2(at, dt, ut) = et[aθ + dθ + uθ]

LV2 = et(aθ + dθ + uθ) + et[θaθ−1da +
1
2
θ(θ − 1)aθ−2(σ2

2a2) + θdθ−1dd+

1
2
θ(θ − 1)dθ−2(σ2

2ψ
2a2) + θuθ−1du +

1
2
θ(θ − 1)uθ−2(1 − ψ)2σ2

2a2]

= et[(aθ + dθ + uθ) + θaθ−1(θ1i + θ2d + θ3u − (α + ω + Λ − α(a + d + u))a)+
1
2
θ(θ − 1)aθ−2(σ2

2a2) + θdθ−1(ψωa − (α + θ2 + Λ − α(a + d + u))d)+

1
2
θ(θ − 1)dθ−2(σ2

2ψ
2a2) + θuθ−1((1 − ψ)ωa − (α + θ3 + Λ − α(a + d + u))u)+

1
2
θ(θ − 1)uθ−2(1 − ψ)2σ2

2a2]

Thus, the drift part can be rewritten as

LVdt = (LV1 +LV2)et (3.12)

The diffusion part fo the system (2.2) is given as:

Q = −etθsθ−1σ1isdB1(t) + etθiθ−1σ1isdB1(t) − etθaθ−1σ1σ2adB2(t)+

etθdθ−1σ1σ2ψadB2(t) + etθuθ−1σ1σ2(1 − ψ)adB2(t)

Q = etθ[σ1is(sθ−1 + iθ−1)dB1(t) − σ1σ2a(aθ−1 − ψdθ−1 − (1 − ψ)uθ−1)dB2(t)]

(3.13)

Substituting (3.12) and (3.13) into (3.11) we have,

dV = etLVdt + etQdBt

dV = Cetdt + etθ[σ1is(sθ−1 + iθ−1)dB1(t) − σ1σ2a(aθ−1− (3.14)

ψdθ−1 − (1 − ψ)uθ−1)dB2(t)] (3.15)
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Integrating on both sides [0, t ∧ τk], we get∫ t∧τk

0
dV =

∫ t∧τk

0
Cetds +

∫ t∧τk

0
etθ[σ1is(sθ−1 + iθ−1)dB1(s)−

σ1σ2a(aθ−1 − ψdθ−1 − (1 − ψ)uθ−1)dB2(s)]

V(st, it, at, dt, ut) = V(s(0), i(0), a(0), d(0), u(0)) +

∫ t∧τk

0
Cetds+∫ t∧τk

0
etθ[σ1is(sθ−1 + iθ−1)dB1(s) − σ1σ2a(aθ−1 − ψdθ−1−

(1 − ψ)uθ−1)dB2(s)]

(3.16)

where C is a suitable constant, then taking expectation (3.16) on both sides, we get

E[V(st∧τk , it∧τk , at∧τk , dt∧τk , ut∧τk )] ≤ E[V(s(0), i(0), a(0), d(0), u(0))]+

CE
∫ t∧τk

0
etds

(3.17)

Upon letting k −→ ∞, we get

E[V(st, it, at, dt, ut)] ≤ V(s(0), i(0), a(0), d(0), u(0)) + C(et − 1)
which implies that
E[V(st, it, at, dt, ut)] ≤ e−tV(s(0), i(0), a(0), d(0), u(0)) + C

Note that,

|X(t)|θ = (s2 + i2 + a2 + d2 + u2)
θ
2

|X(t)| ≤ 5
θ
2 max

{
sθ, iθ, aθ, dθ, uθ

}
|X(t)| ≤ 5

θ
2

{
sθ + iθ + aθ + dθ + uθ

} (3.18)

Then we get,

E|X(t)|θ ≤ 5
θ
2 (e−tV(s(0), i(0), a(0), d(0), u(0)) + C) (3.19)

which means that,

lim sup
t−→∞

E|X(t)|θ ≤ 5
θ
2C (3.20)

and it follows that

lim sup
t−→∞

E|X(t)|θ ≤ 5
θ
2C ≤ k(θ) < ∞

lim sup
t−→∞

E|X(t)|θ ≤ k(θ) < ∞
(3.21)

where k(θ) = 5
θ
2C. �

Using the above lemma (3.3) we showed that the solution of system (2.2) is stochastically ultimately bounded.

Theorem 3.2. For any initial value X(0) ∈ Γ, the solution of the system (2.2) is stochastically ultimate bounded

Proof. ∃ a positive constant δ1 such that

lim sup
t−→∞

E|
√

X(t)| < δ1 (3.22)

For any ε > 0, and upon setting δ =
δ2

1
ε2 , then by using Chebyshev’s inequality we get,

P {|X(t)| > δ} ≤
E|
√

X(t)|
√
δ

(3.23)
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Thus, it follows that

lim sup
t−→∞

P
{
|
√

X(t)| > δ
}
≤

δ1
√
δ

= ε (3.24)

�

3.4 Stochastic Extinction of the Disease

We will focus on the conditions which guarantee the extinction of disease i(t). We are going to explore the conditions
which lead to the extinction of diseases of the system (2.2) under a white noise stochastic disturbance. Consider the
following theorem regarding the extinction of disease for stochastic model.

Theorem 3.3. For any initial value (s(0), i(0), a(0), d(0), d(0)) ∈ <5
+, the system (2.2) has a unique positive solution

(s(t) + i(t) + a(t) + d(t) + u(t)) ∈ <5
+ for t ≥ 0 a.s.

Then the solution of the system (s(t) + i(t) + a(t) + d(t) + u(t)) following properties: If R0 =
βρ

(Λ + θ1)
< 1 and

σ =
β

√
2(Λ + θ1)

or σ2 =
β2

2(Λ + θ1)

then,

lim
t−→∞

i(t)
t

= 0 a.s (3.25)

and

lim sup
t−→∞

ln i(t)
t
≤ 0 a.s (3.26)

also

lim
t−→∞

∫ t
0 i(t)dB1(r)

t
= 0 a.s (3.27)

Theorem 3.4. Assume that σ2
2 =

β2

2(Λ + θ1)
. Let (s(t) + i(t) + a(t) + d(t) + u(t)) ∈ <+ be the solution of system (2.2) with

initial values (s(0) + i(0) + a(0) + d(0) + u(0)) ∈ <5
+

If R0 =
βρ

(Λ + θ1 +
σ2

1
2 )

< 1 then,

lim sup
t−→∞

ln i(t)
t
≤ (Λ + θ1 +

1
2
σ2

1)(Rs
0 − 1) < 0 a.s (3.28)

which means the disease dies out with probability one.

Proof. From the first equation of the system (2.2), we have

s(t) − s(0)
t

= [ρΛ − (β〈i〉 + Λ − α(〈a〉 + 〈d〉 + 〈u〉))〈s〉] −
σ1

t

∫ t

0
i(r)s(r)dB1(r) (3.29)

which means that

s(t) − s(0)
t

= ρΛ − β〈s〉〈i〉 − Λ〈s〉 + α〈s〉(〈a〉 + 〈d〉 + 〈u〉) −M

〈s〉 = ρ − β
[〈s〉〈i〉 + α〈s〉(〈a〉 + 〈d〉 + 〈u〉)−

Λ
] −M−

s(t) − s(0)
Λt

Let M =
σ1

Λt

∫ t

0
i(r)s(r)dB1(r)

(3.30)
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From (3.25) and (3.27) it follows that,

lim
t−→∞
M = 0 a.s

Hence lim sup
t−→∞

s(t)
t
≤ ρ a.s

(3.31)

By using Itô formula, from (2.2) , let consider infected it is C2,1(<5 × (0,∞) : <+)

di = [(1 − ρ)Λ + (βs − θ1 − Λ + α(a + d + u))i]dt + σ1isdB1(t)

Let Xt = ln it,
∂Xt

∂t
= 0,

∂Xt

∂i
=

1
i
,
∂X2

t

∂i2
= −

1
i2

d ln i(t) =
1
it

dit −
1
2

(
1

i(t)2 )[di]t

[di]t = −
1
2
σ2

1s(t)2dt

d ln i(t) =
[(1 − ρ)Λ + (βs − θ1 − Λ + α(a + d + u))i]dt + σ1isdB1(t)

i
−

1
2
σ2

1s(t)2dt

d ln i(t) = [βs − θ1 − Λ + α(a + d + u) −
1
2
σ2

1s(t)2]dt + σ1sdB1(t)

Integrating both sides from [0, t] gives,∫ t

0
d ln i(t) =

∫ t

0
[βs − θ1 − Λ + α(a + d + u) −

1
2
σ2

1s(t)2]dr + σ1

∫ t

0
sdB1(r)

ln i(t) = ln i(0) + [βs − (θ1 + Λ +
σ2

1

2
) +

σ2
1

2
−
σ2

1s2

2
+ α(a + d + u) −

1
2
σ2

1s(t)2]t+

1
t
σ1

∫ t

0
sdB1(r)

(3.32)

Let M = σ1
∫ t

0 sdB1(r). Then, M is a martingale Khasminskii (2011). This implies that quadrartic variation of
stochastic integral becomes:

〈M,M〉t = σ1

∫ t

0
sdB1(r) = σ2

1ρ
2t (3.33)

by the Strong Law of Large Numbers for martingales, we have

lim sup
t−→∞

〈M,M〉t
t

< ∞ a.s =⇒ lim
t−→∞

M

t
= 0 a.s

Upon dividing both sides by t we have,

ln i(t)
t

=
ln i(0)

t
+ [βs − (θ1 + Λ +

σ2
1

2
) +

σ2
1

2
−
σ2

1s2

2
+ α(a + d + u) −

1
2
σ2

1s(t)2] +
M

t
ln i(t)

t
=

ln i(0)
t

+ (Λ + θ1 +
1
2
σ2

1)(
βs

(Λ + θ1 + 1
2σ

2
1)
− 1) +

σ2
1

2
−
σ2

1s2

2
+ α(a + d + u)−

1
2
σ2

1s(t)2 +
M

t
ln i(t)

t
≤ (Λ + θ1 +

1
2
σ2

1)(Rs
0 − 1) +

M

t

(3.34)

Taking the limit superior on both sides leads to

lim sup
t−→∞

ln i(t)
t
≤ (Λ + θ1 +

1
2
σ2

1)(Rs
0 − 1) < 0 a.s (3.35)

�

which indicates that lim
t−→∞

i(t)
t

= 0 then disease will go to extinction exponentially with probability one, then (Rs
0 − 1) < 0

implying that Rs
0 < 1. We conclude that the number of infected population will also tend to zero exponentially almost

surely.
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3.5 Stochastic Persistence of the Disease

In this subsection we will show the condition when the disease prevails, we shall investigate the persistence of the disease.

Theorem 3.5. If R̄S
0 =

βρ
σ2

2
2 (Λ + θ1 +

σ2
1

2 )
> 1 then for any initial value (s(0), i(0), a(0), d(0), u(0)) ∈ <5

+, the disease i(t) of

the model system (2.2) has the property that

lim inf
t−→∞

〈i(t)〉 ≥
Λσ2

2

β2ρ

(
R̃S

0 − 1
) θ1 + Λ +

σ2
1

2

 a.s (3.36)

That is to say, the disease will prevail if R̄S
0 > 1

Proof. We employ the stochastic Lyapunov method, let set V1 = −a1 log s − log i − log a − log d − log u as our Lyapunov
function, where positive constant a1 to be determined later.

From the generalized Itô formula we have,

dV1 = LV1dt + a1σ1idB1(t) − a1σ1sdB1(t) + σ2dB2(t) −
σ2ψa

d
dB2(t)

−
σ2(1 − ψ)a

u
dB2(t) (3.37)

where

LV1 = L(−a1 log s − log i − log a − log d − log u)

LV1 = −
a1ρΛ

s
− a1(α(−(a + d + u)) + βi + Λ) −

Λ(1 − ρ)
i

+ βs − θ1 − Λ + α(a + d + u)

−
θ2d + θ1i + θ3u

a
+ α + ω + Λ − α(a + d + u) −

aψω
d

+ α + θ2 + Λ − α(a + d + u)−

a(1 − ψ)ω
u

+ α + θ3 + Λ − α(a + d + u) −
σ2

2

(
a2ψ2

)
2d2 −

σ2
2

(
a2

(
1 − ψ2

))
2u2 +

1
2

a2
1i2σ2

1−

1
2
σ2

1s2 −
σ2

2

2

(3.38)

Upon simplifying we have,

LV1 ≤ αa1(a + d + u) − a1βi − a1Λ − a1Λ + 3α − θ1 + θ2 + θ3 + 2Λ + βs −
σ2

2

2
+ ω

Adding and substracting σ2
1

2 , and let a1 =
βρ

2Λσ2
2

2

LV1 ≤ αa1(a + d + u) − a1βi − 2a1Λ + 3α + βs − θ1 + θ2 + θ3 + 3Λ − Λ +
σ2

1

2
−

σ2
1

2
+ ω

LV1 ≤ αa1(a + d + u) + 3α −
2(βρ)Λ

2Λσ2
2

2

+ βρ − θ1 + θ2 + θ3 −
ββρi
2Λσ2

2
2

+ 3Λ − Λ +
σ2

1

2
−

σ2
1

2
+ ω

LV1 ≤ 3α −
θ1 + Λ +

σ2
1

2


1 − βρ

1
2σ

2
2

(
θ1 + Λ +

σ2
1

2

)
 + βρ + θ2 + θ3 +

i
(
β2ρ

)
Λσ2

2

+

3Λ +
σ2

1

2
+ ω

LV1 ≤ −
(
1 − R̃S

0

) θ1 + Λ +
σ2

1

2

 + 3α + βρ + θ2 + θ3 +
i
(
β2ρ

)
Λσ2

2

+ 3Λ +
σ2

1

2
+ ω
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From (3.37) we have

dV1 ≤ [−
(
1 − R̃S

0

) θ1 + Λ +
σ2

1

2

 + 3α + βρ + θ2 + θ3 +
i
(
β2ρ

)
Λσ2

2

+ 3Λ +
σ2

1

2
+ ω]dt+

a1σ1idB1(t) − a1σ1sdB1(t) + σ2dB2(t) −
σ2ψa

d
dB2(t) −

σ2(1 − ψ)a
u

dB2(t)

dV1 ≤ [−
(
1 − R̃S

0

) θ1 + Λ +
σ2

1

2

 + 3α + βρ + θ2 + θ3 +
i
(
β2ρ

)
Λσ2

2

+ 3Λ +
σ2

1

2
+ ω]dt

+M(t)

integrating both sides and dividing by t, we obtain
V1(s(t), i(t), a(t), d(t), u(t)) − V1(s(0), i(0), a(0), d(0), u(0))

t
≤

−
(
1 − R̃S

0

) θ1 + Λ +
σ2

1

2

 + 3α + βρ + θ2 + θ3 +
〈i〉β2ρ

Λσ2
2

+ 3Λ +
σ2

1

2
+ ω +

M(t)
t

We compute 〈i〉 in terms of others

−
〈i〉β2ρ

Λσ2
2

≤ −
V1(s(t), i(t), a(t), d(t), u(t)) − V1(s(0), i(0), a(0), d(0), u(0))

t
−

(
1 − R̃S

0

) θ1 + Λ +
σ2

1

2

 + 3α + βρ + θ2 + θ3 + 3Λ +
σ2

1

2
+ ω +

M(t)
t

〈i〉β2ρ

Λσ2
2

≥
(
1 − R̃S

0

) θ1 + Λ +
σ2

1

2

 − [3α + βρ + θ2 + θ3 + 3Λ +
σ2

1

2
+ ω]

by the strong law of large numbers for martingale from (3.26) and (3.27) it follows that

lim
t−→∞

[
V1(s(t), i(t), a(t), d(t), u(t)) − V1(s(0), i(0), a(0), d(0), u(0))

t
] = 0 a.s

where M(t) =

∫ t

0
[a1σ1idB1(t) − a1σ1sdB1(t) + σ2dB2(t) −

σ2ψa
d

dB2(t)−

σ2(1 − ψ)a
u

dB2(t)]

Regarding the quadratic variations of the stochastic integral, this implies that the quadrartic variation is given as:

〈M,M〉t =

∫ t

0
[a1σ1idB1(t) − a1σ1sdB1(t) + σ2dB2(t) −

σ2ψa
d

dB2(t) −
σ2(1 − ψ)a

u
dB2(t)]

= a2
1σ

2
1i2 − a2

1σ
2
1s2 + σ2

2 − (
σ2ψa

d
)2 − (

σ2(1 − ψ)a
u

)2

by strong law of large numbers for martingales

lim
t−→∞

M(t)
t

= 0 a.s

Applying limit infimum throughout

lim inf
t−→∞

[
〈i〉β2ρ

Λσ2
2

] ≥
(
1 − R̃S

0

) θ1 + Λ +
σ2

1

2

 − [3α + βρ + θ2 + θ3 + 3Λ +
σ2

1

2
+ ω]

lim inf
t−→∞

[
〈i〉β2ρ

Λσ2
2

] ≥
(
R̃S

0 − 1
) θ1 + Λ +

σ2
1

2

 + [3α + βρ + θ2 + θ3 + 3Λ +
σ2

1

2
+ ω]

thus,

lim inf
t−→∞

〈i(t)〉 ≥
Λσ2

2

β2ρ

(
R̃S

0 − 1
) θ1 + Λ +

σ2
1

2

 a.s

that is to say, the disease will prevail if R̄s
0 > 1, which is the required assertion. �

Remark 3.6. It is noted that Rs
0 < Rd

0 means the dieases dies out. Similarly, if R̃d
0 > 1 then Rd

0 > 1 means the disease
persists .That is to say that, if for stochastic model the disease persists, then it also persists for a deterministic model.
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4. Numerical Simulations

To illustrate the various theoretical results presented above, the system (2.2) is simulated for various sets of parameters.
In this section, we give some numerical simulations to show the effect of noise on the dynamics of the S IADU models by
using the Milstein numerical Method as mention by Higham (2001).

4.1 Milstein Numerical Scheme

The stochastic model model of model (2.2) can be rewritten as the following discretization equations:

sk+1 = sk + [ρΛ − (βik + Λ − α(ak + dk + uk))sk]∆t − σ1ik sk
√

∆tηk + 0.5σ2
1ik sk(η2

k − 1)∆t
ik+1 = ik + [(1 − ρ)Λ + (βsk − θ1 − Λ + α(ak + dk + uk))ik]∆t + σ1ik sk

√
∆tζk+

0.5σ2
1ik sk(ζ2

k − 1)∆t
ak+1 = ak + [θ1ik + θ2dk + θ3uk − (α + ω + Λ − α(ak + dk + uk))ak]∆t − σ2ak

√
∆tzk+

0.5σ2
2Ak(z2

k − 1)∆t
dk+1 = dk + [ψωak − (α + θ2 + Λ − α(ak + dk + uk))dk]∆t + σ2ψak

√
∆tξk+

0.5σ2
2ψ

2Ak(ξ2
k − 1)∆t

uk+1 = uk + [(1 − ψ)ωak − (α + θ3 + Λ − α(ak + dk + uk))uk]∆t + σ2(1 − ψ)ak
√

∆tek+

0.5σ2
2(1 − ψ)2Ak(e2

k − 1)∆t

(4.1)

where time increment ∆t > 0, and ηk, ζk, zk, ξk and ek are N(0, 1) independent Gaussian random variables. In order to
verify the analytical conditions mentioned in theorem (3.4) we choose the parameters as follows: θ1 = 0.5, θ2 = 0.2, θ3 =

0.1, σ1 = 0.9, σ2 = 0.8,Λ = 0.8, ω = 0.4, ψ = 0.3, α = 0.33, ρ = 0.8, β = 0.4

4.2 Disease Extinction

For the stochastic model, we have stochastic reproduction number as:

Rs
0 =

βρ

(θ1 + Λ +
σ2

1
2 )

Rs
0 =

0.4 × 0.8

0.5 + 0.8 + 0.92

2

Rs
0 = 0.1877 < 1

thus, according to theorem (3.4), we conclude that for a given initial values (s(0) = 0.9, i(0) = 0.7, a(0) = 0.5, d(0) =

0.15, u(0) = 0.35) ∈ <5
+ then I(t) obeys equation (3.35) as:

lim sup
t−→∞

ln i(t)
t
≤ (Λ + θ1 +

1
2
σ2

1)(Rs
0 − 1) < 0 a.s

lim sup
t−→∞

ln i(t)
t
≤ (

0.4 × 0.8

0.5 + 0.8 + 0.92

2

)(0.1877 − 1)

lim sup
t−→∞

ln i(t)
t
≤ −0.1523 < 0 a.s

That is to say that, I(t) will tend to zero exponentially with probability one as observed in figure (1). Therefore the
stochastic model (2.2) has disease extinction with choise of stochastic noise intensities σ1 = 0.9 and σ2 = 0.8 showing
that white noise is helpful for disease control.
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Figure 1. Stochastic trajectories for SIADU epidemic model, with σ1 = 0.9, σ2 = 0.8 with initial values
(s(0) = 0.9, i(0) = 0.7, a(0) = 0.5, d(0) = 0.15, u(0) = 0.35) giving Rs

0 = 0.1877 < 1

4.3 Disease Persistence

To see the disease dynamics of model (2.2) we decrease the noise intensity say (σ1 = 0.2,σ2 = 0.3), θ1 = 0.1 and Λ = 0.4
while keeping other parameters unaltered. Then from theorem (3.4) we have stochastic reproduction number as:

Rs
0 =

βρ

(Λ + θ1 +
σ2

1
2 )

Rs
0 =

0.4 × 0.7

(0.4 + 0.1 + 0.22

2 )

Rs
0 =

0.4 × 0.7

(0.4 + 0.1 + 0.22

2 )
= 1.2115 > 1

Therefore, the condition of theorem (3.4) is not satisfied. In this case, numerical simulations suggest that I(t) is stochasti-
cally persistent and the disease will prevail as in figure (2).
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Figure 2. Stochastic trajectories for SIADU epidemic model with σ1 = 0.2,Λ = 0.4, θ1 = 0.1 with initial values
(s(0) = 0.9, i(0) = 0.7, a(0) = 0.5, d(0) = 0.15, u(0) = 0.35) giving Rs

0 = 1.2115 > 1

4.4 Stochastic vs Deterministic Model Solution

4.4.1 Comparing General Solution of the System

Dynamic behaviaral comparisons between deterministic and the stochastic S IADU model by investigating the basic re-
production number. For stochastic model system in (2.2) with parameter and the initial values as (s(0) = 0.9, i(0) =

0.7, a(0) = 0.5, d(0) = 0.15, u(0) = 0.35) ∈ <5
+ we obained Rs

0 = 0.1877 < 1 while for the deterministic model (2.1)
by using the same parameters, we obtained the reproduction number as R0 = 0.2462 < 1. This shows that the stochastic
model (2.2) supresses the disease outbreak.

(a) Stochastic model with Rs
0 = 0.1877 < 1 (b) Deterministic model with Rd

0 = 0.2462 < 1

Figure 3. The trajectories of the solution of system of stochastic model with Rs
0 = 0.1877 < 1 and Time evolutions of the

deterministic SIADU model Rd
0 = 0.2462 < 1
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4.4.2 Comparing Individual Solution of the Models

Figure 4. The trajectories of the individual solution for the stochastic model and Time evolutions of the deterministic
SIADU model

5. Concluding Remark

In this paper, we discussed the properties of a stochastic model for HIV and AIDS by incorporating the viral load de-
tectability, we derived from its deterministic counterpart. We investigated analytically the existence, uniqueness, and
positivity of the stochastic model, similarly, we established sufficient conditions for stochastic disease extinction and per-
sistence for the HIV and AIDS model. We used Milstein numerical method to obtain numerical results in order to illustrate
the main analytical results, and by using stochastic basic reproduction number shown in theorem (3.4), we investigated
the stochastic extinction as shown in figure (1) which exhibit diseases extinction with R0= 0.4223 < 1, showing that the
disease dies out exponentially if the condition is met. Meanwhile using theorem (3.5) we showed that figure (2) exhibits
diseases persistence with R0= 1.2115 > 1 that the disease will prevail in the population. Moreover, figure (3) and (4)
clearly shows the stochastic trajectories and time evolution for the deterministic model. Additionally, with initial values
(s(0) = 0.9, i(0) = 0.7, a(0) = 0.5, d(0) = 0.15, u(0) = 0.35) we investigated on the effects of noise strength intensity level,
and the results revealed that the high noise intensity level results into disease suppression whilst on other hands low level
of noise strength into the model does not suppress diseases.

Finally, the study concurs to the studies done by (Zhang and Zhou, 2019; Fan et al., 2017; Zhao and Yuan, 2016) showing
that stochasticity in the model suppresses the outbreak of diseases. Therefore, as the reproduction number affected by
random perturbation is smaller as compared to the reproduction number for the deterministic case, then the stochasticity
present in the model (2.2) suppresses disease outbreak, hence useful for disease control and eradication.
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