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Abstract

MirMostafaee et al. (2019) proposed a continuous univariate distribution called Exponentiated Generalized Power Lindley
(EGPL) distribution and studied certain properties and applications of their distribution. Akdogan et al. (2019) introduced
a discrete distribution called Geometric-Zero Truncated Poisson (GZTP) distribution and provided its properties and
applications. The present short note is intended to complete, in some way, the works cited above via establishing certain
characterizations of the EGPL and GZTP distributions in different directions.

Keywords: discrete distributions, power Lindley distribution, zero truncated distribution, hazard function, characteriza-
tions

1. Introduction

Characterizations of distributions is an important research area which has recently attracted the attention of many re-
searchers. This short note deals with various characterizations of EGPL and GZTP distributions to complete, in some
way, the works of MirMostafaee et al. (2019) and Akdogan et al. (2019). These characterizations are based on: (i) a
simple relationship between two truncated moments; (ii) the hazard function; (iii) the reverse hazard function and (iv) the
conditional expectation of a function of the random variable. It should be mentioned that for characterization (i) the cd f
(cumulative distribution function) is not required to have a closed form.

MirMostafaee et al. (2019) proposed the EGPL distribution with cd f and pd f (probability density function) given,
respectively, by

F (x; β, λ, a, b) =
{

1 −
[(

1 +
λ

1 + λ
xβ

)
e−λxβ

]a}b

, x ≥ 0, (1)

and

f (x; β, λ, a, b) =
abβλ2

1 + λ
xβ−1

(
1 + xβ

)
e−λxβ

[(
1 +

λ

1 + λ
xβ

)
e−λxβ

]a−1

×
{

1 −
[(

1 +
λ

1 + λ
xβ

)
e−λxβ

]a}b−1

, x > 0, (2)

where β, λ, a, b are all positive parameters.

Akdigan et al. (2019) introduced the GZTP distribution with cd f and pm f (probability mass function) given, respectively,
by

F (x; θ, q) =
θqx − θ
1 − θ , x = 1, 2, . . . , (3)

and

f (x; θ, q) =
θqx − θqx−1

1 − θ , x = 1, 2, . . . , (4)
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where θ ∈ (0, 1) and q ∈ (0, 1) are parameters.

Remark 1.1. Clearly, one can write down the formulas for the hazard and reverse hazard functions corresponding to these
distributions as needed.

2. Characterizations of EGPL Distribution

We present our characterizations of EGPL in four subsections.

2.1 Characterizations Based on Two Truncated Moments

In this subsection we present characterizations of EGPL distribution in terms of a simple relationship between two trun-
cated moments. The first characterization result employs a theorem due to Glänzel (1987), see Theorem 2.1.1 below. Note
that the result holds also when the interval H is not closed. Moreover, as mentioned above, it could be also applied when
the cd f F does not have a closed form. As shown in Glänzel (1990), this characterization is stable in the sense of weak
convergence.

Theorem 2.1.1. Let (Ω,F ,P) be a given probability space and let H = [d, e] be an interval for some d < e(
d = −∞, e = ∞ might as well be allowed

)
. Let X : Ω → H be a continuous random variable with the distribution

function F and let g and h be two real functions defined on H such that

E
[
g (X) | X ≥ x

]
= E [h (X) | X ≥ x] ξ (x) , x ∈ H,

is defined with some real function ξ. Assume that g, h ∈ C1 (H), ξ ∈ C2 (H) and F is twice continuously differentiable
and strictly monotone function on the set H. Finally, assume that the equation ξh = g has no real solution in the interior
of H. Then F is uniquely determined by the functions g, h and ξ , particularly

F (x) =
∫ x

a
C

∣∣∣∣∣ ξ′ (u)
ξ (u) h (u) − g (u)

∣∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = ξ′ h
ξ h − g and C is the normalization constant, such that∫

H dF = 1.

Remark 2.1.1. The goal of Theorem 2.1.1 is for ξ (x) to have a simple form.

Proposition 2.1.1. Let X : Ω→ (0,∞) be a continuous random variable and let ,

h (x) =
(1+xβ)−1

[
(1+ λ

1+λ xβ)e−λxβ
]1−a

{
1−

[
(1+ λ

1+λ xβ)e−λxβ
]a}b−1 and g (x) = h (x) e−λxβ for x > 0. The random variable X has pd f (2) if and only if the

function ξ defined in Theorem 2.1.1 has the form

ξ (x) =
1
2

e−λxβ , x > 0.

Proof. Let X be a random variable with pd f (2), then

(1 − F (x)) E [h (X) | X ≥ x] =
abλ

1 + λ
e−λxβ , x > 0,

and

(1 − F (x)) E
[
g (X) | X ≥ x

]
=

abλ
2(1 + λ)

e−2λxβ , x > 0,

and finally

ξ (x) h (x) − g (x) = −1
2

h (x) e−λxβ < 0 f or x > 0.

Conversely, if ξ is given as above, then

s′ (x) =
ξ′ (x) h (x)

ξ (x) h (x) − g (x)
= λβxβ−1, x > 0,
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and hence

s (x) = λxβ, x > 0.

Now, in view of Theorem 2.1.1, X has density (2).

Corollary 2.1.1. Let X : Ω→ (0,∞) be a continuous random variable and let h (x) be as in Proposition 2.1.1. The pdf of
X is (2) if and only if there exist functions g and ξ defined in Theorem 2.1.1 satisfying the differential equation

ξ′ (x) h (x)
ξ (x) h (x) − g (x)

= λβxβ−1, x > 0.

The general solution of the differential equation in Corollary 2.1.1 is

ξ (x) = eλxβ
[
−

∫
λβxβ−1e−λxβ (h (x))−1 g (x) + D

]
,

where D is a constant. Note that a set of functions satisfying the above differential equation is given in Proposition 2.1.1
with D = 0. However, it should be also noted that there are other triplets (h, g, ξ) satisfying the conditions of Theorem
2.1.1.

2.2 Characterization Based on Hazard Function

It is known that the hazard function, hF , of a twice differentiable distribution function, F, satisfies the first order differential
equation

f ′(x)
f (x)

=
h′F(x)
hF(x)

− hF(x).

For many univariate continuous distributions, this is the only characterization available in terms of the hazard function.
The following proposition establishes a characterization of EGPL distribution, for b = 1, in terms of the hazard function,
which is not of the above trivial form.

Proposition 2.2.1. Let X : Ω → (0,∞) be a continuous random variable. The pd f of X is (2) , for b = 1, if and only if
its hazard function hF (x) satisfies the differential equation

h′F (x) − (β − 1) x−1hF (x) =
aβ2λ2x2(β−1)(
1 + λ + λxβ

)2 , x > 0,

with the initial condition hF (0) = 0 for β > 1.

Proof. If X has pd f (2), then clearly the above differential equation holds. Now, if the differential equation holds, then

d
dx

{
x−(β−1)hF (x)

}
= aβλ2 d

dx

{
1 + xβ

1 + λ + λxβ

}
,

or

hF (x) = aβλ2

 xβ−1
(
1 + xβ

)
1 + λ + λxβ

 , x > 0,

which is the hazard function of the EGPL distribution for b = 1.

2.3 Characterization Based on Reverse Hazard Function

The reverse hazard function, rF , of a twice differentiable distribution function, F, is defined as

rF (x) =
f (x)
F (x)

, x ∈ support o f F.
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In this subsection we present a characterization of EGPL distribution in terms of the reverse hazard function.

Proposition 2.3.1. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pdf (2) if and only
if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) + λxβ−1rF (x) =
(

abβλ2

1 + λ

)
e−λxβ d

dx

 xβ−1
(
1 + xβ

) [(
1 + λ

1+λ xβ
)

e−λxβ
]a−1

1 −
[(

1 + λ
1+λ xβ

)
e−λxβ

]a

 , x > 0.

Proof. If X has pdf (2), then clearly the above differential equation holds. If the differential equation holds, then

d
dx

{
eλxβrF (x)

}
=

(
abβλ2

1 + λ

)
d
dx

 xβ−1
(
1 + xβ

) [(
1 + λ

1+λ xβ
)

e−λxβ
]a−1

1 −
[(

1 + λ
1+λ xβ

)
e−λxβ

]a

 , x > 0,

from which we arrive at the reverse hazard function corresponding to the pd f (2).

2.4 Characterizations Based on Conditional Expectation

The following propositions have already appeared in (Hamedani, 2013), so we will just state them here which can be used
to characterize the EGPL distribution.

Proposition 2.4.1. Let X : Ω→ (c, d) be a continuous random variable with cd f F. Let ψ (x) be a differentiable function
on (c, d) with limx→c+ ψ (x) = 1. Then for δ , 1 ,

E
[
ψ (X) | X ≥ x

]
= δψ (x) , x ∈ (c, d) ,

if and only if

ψ (x) = (1 − F (x))
1
δ−1 , x ∈ (c, d) .

Proposition 2.4.2. Let X : Ω→ (c, d) be a continuous random variable with cd f F. Let ψ1 (x) be a differentiable function
on (c, d) with limx→d− ψ1 (x) = 1. Then for δ1 , 1 ,

E
[
ψ1 (X) | X ≤ x

]
= δ1ψ1 (x) , x ∈ (c, d) ,

implies that

ψ1 (x) = (F1 (x))
1
δ−1 , x ∈ (c, d) .

Remarks 2.4.1. (A) For (c, d) = (0,∞) , b = 1, ψ (x) =
(
1 + λ

1+λ xβ
)

e−λxβ and δ = a
a+1 , Proposition 2.4.1 provides a

characterization of EGPL distribution. (B) For (c, d) = (0,∞) , ψ1 (x) = 1−
[(

1 + λ
1+λ xβ

)
e−λxβ

]a
and δ1 =

b
b+1 , Proposition

2.4.2 provides a characterization of EGPL distribution. (C) Of course there are other suitable functions than the ones we
mentioned above, which are chosen for the sake of simplicity.

3. Characterizations of GZTP Distribution

We present our characterizations of GZTP via the following two Propositions.

Proposition 3.1. Let X : Ω→ N be a random variable. The pm f of X is (4) if and only if

E
{[(
θqX
+ θqX−1)] | X ≤ k

}
= θqk

+ θ , k ∈ N. (5)

Proof. If X has pm f (4), then the left-hand side of (5) will be

1
1 − θ (F (k))−1

k∑
x=1

{(
θ2qX − θ2qX−1)}

=
θ2qk − θ2

θqk − θ
= θqk

+ θ, k ∈ N.
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Conversely, if (5) holds, then

k∑
x=1

{(
θqx
+ θqx−1)

f (x)
}
= F (k)

(
θqk
+ θ

)
. (6)

From (6), we also have

k−1∑
x=1

{(
θqx
+ θqx−1)

f (x)
}
= F (k − 1)

(
θqk−1
+ θ

)
= {F (k) − f (k)}

(
θqk−1
+ θ

)
. (7)

Now, subtracting (7) from (6), we arrive at

F (k)
[((
θqk
+ θ

)
−

(
θqk−1
+ θ

))]
= F (k)

[(
θqk − θqk−1)]

=
[(
θqk
+ θqk−1) − (

θqk−1
+ θ

)]
f (k)

=
(
θqk − θ

)
f (k) .

From the last equality, we have

rF (k) =
f (k)
F (k)

=

(
θqk − θqk−1

)(
θqk − θ

) ,

which, is the hazard function corresponding to the pm f (4).

Proposition 3.2. Let X : Ω→ N be a random variable. The pm f of X is (4) if and only if its reverse hazard function, rF ,
satisfies the following difference equation

rF (k + 1) − rF (k) =

(
θqk−1 − θ

)(
θqk − θ

) − (
θqk − θ

)(
θqk+1 − θ

) , k ∈ N, (8)

with the initial condition rF (0) = 1.

Proof. Clearly, if X has pm f (4), then (8) holds. Now, if (8) holds, then

x−1∑
k=1

{rF (k + 1) − rF (k)} =
x−1∑
k=1



(
θqk+1 − θqk

)(
θqk+1 − θ

) − (
θqk − θqk−1

)(
θqk − θ

) 
 ,

or

rF (x) − rF (0) =
θqx − θqx−1

θqx − θ − 1,

or, in view of the initial condition rF (0) = 1, we have

rF (k) =
θqx − θqx−1

θqx − θ , k ∈ N,

which is the reverse hazard function corresponding to the pm f (4)
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