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Abstract  

In this paper, we developed D-optimal design in linear model with two explanatory variables in the presence of 

heteroscedasticity. A sequential method of getting D-optimal design was adopted. Two different structures were used 

based on the literatures; it was found that the optimal design takes the extreme values of the design region. The results 

of simulated data was justified with real life data from the kinematic viscosity of a lubricant, in stokes, as a function of 

temperature and pressure which was used as discussed in Linssen (1975). The relative efficiency of other designs with 

respect to D-optimal designs was determined. Three correction methods was adopted from weighted least square 

method for heteroscedasticity problem, it was found that the correction method tagged HCW1 performed better. 

Keywords: D-optimal design, Heteroscedasticity, experimental design, sequential method, correction measure  

1. Introduction 

Experimentation is the process of planning a study to meet specified objectives which constitutes a foundation of the 

empirical sciences (Zhu, 2012). One major advantage of experiment is its ability to control the experimental conditions; 

as well as to determine the variables to include in a study (FackleFornius, 2008). Since the introduction of experimental 

design principle in the first half of the 1930, optimal experimental designs have been gaining attention and had become 

useful tools among researchers in various fields (Atkinson and Donev, 1992; Atkinson, 1996; Atkinson, Donev and 

Tobias, 2007; Berger and Wong, 2009). There are various design criteria, D-optimality has been the most frequently 

used; and often performs better than other criteria (Zocchi and Atkinson, 1999; Atkinson et al., 2007).  Hence, the 

D-optimality has become one of the most popular criteria which involve designs that minimize the generalized variance 

of the parameter vector. The D-optimal designs seek to minimize |(X′X)−1| (dispersion matrix) or equivalently 

maximise the determinant of the information matrix (X′X) of the design through some forms of statistical modeling 

such as regression model. One of the important assumptions of the standard regression model is that the variance of the 

error terms (disturbance term, 𝑢𝑖)  must be equal across the observations which is refers to as homoscedastic with the 

model𝑦 = 𝑥𝛽 + 𝑢𝑖  where [𝐸(𝑢𝑖
2) = 𝜎2     𝑖 = 1,2, ⋯ , 𝑛]. However, in real life situations, this assumption is often 

violated and the variances of the error terms are not the same. The condition where error terms have different variances 

is termed heteroscedasticity [𝐸(𝑢𝑖
2) = 𝜎𝑖

2     𝑖 = 1,2, ⋯ , 𝑛] that is, unequal variance across the observations (Lambert, 

2013; Knaub, 2017). Heteroscedasticity, which is often referred to as a “problem” that needs to be “solved” or 

“corrected” is the change in variance of predicted y, given different values of the independent variables (Knaub, 2011, 

2017). The aim of this research work is to examine D- optimal Designs with different heteroscedastcity Structures and 

the objectives are to construct D-optimal design with different heteroscedasticity structures, to obtain the relative 

efficiencies of other designs with respect to D-optimal design, to determine the heteroscedasticity correction measure 

that will produce the most efficient D-optimal design in the different structures, determining the relative efficiencies of 

the parameters of the D-Optimal design model and to establish the best heteroscedasticity correction measure to achieve 

the most Efficient Parameter Estimation for D-Optimal Design.  

Yan and Raymond (2001) presented D-optimal designs for two- variable logistic regression models where two-variable 

were fitted in the logistic regression models.Jafari (2013) found locally D-optimal design for a logit model in discrete 

choice experiment where there are many alternative set for people to make their choice using D-optimal design for the 

combination of the level of attributes to create alternatives. Jafari, et.al,(2014) worked on D-optimal design for logistic 

regression model with three independent variables; they obtained a locally D-optimal design for several specific states, 

presented certain designs with different points and calculated the subject optimality based on space of the parameters.  
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Jafari and Maram (2015) explored the notion of Bayesian D-optimal design for logistic regression model with 

exponential distribution for random intercept and obtained Bayesian D-optimal design; the method to maximize the 

Bayesian D-optimal criterion which is a function of the quasi- information matrix that depends on the unknown 

parameters of the model. 

Jesús López-Fidalgo and Garcet-Rodríguez, (2004) considered the problem of constructing optimal designs for 

regression models when the design space is a product space and some of the variables are not under the control of the 

practitioner.Zhide and Douglas (2004) found locally D-optimal designs for multistage models and heteroscedastic 

polynomial regression model where they considered the construction of locally D-optimal designs for non-linear, 

multistage model in which one observes a binary response variable.Gaviriaa and López-Ríosb (2014) worked on locally 

D-optimal designs with Heteroscedasticity: a comparison between two methodologies, it was found that the optimal 

design point takes the extreme values for both methods. These prior studies were more particular about the construction 

of the optimal designs with different models under some assumptions of the explanatory variables. In this study, 

construction of D-optimal designs in linear model with two explanatory variables in which there is a problem of 

heteroscedasticity in the model were examined. Different structures were used and the effects were also found on the 

optimal design. 

2. Material and Method  

2.1 Simulation Study  

Starting with a linear regression model of the form (2.1) 

   𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝑒𝑖               (2.1) 

Where 𝑒𝑖 is the error term which is a stochastic term assumed to be normally distributed with mean zero and variance 

𝜎𝑖
2  i.e. 𝑒𝑖~𝑁(0, 𝜎𝑖

2).These 𝑥𝑖𝑠  are fixed independently variables and 𝑦𝑖  is the dependent variable and 𝛽𝑖  are 

parameters that are known. The generations of the data used for independent variables are random variables that are 

normally distributed  

𝑥1 = ((1 − 𝐾^2)^0.5) ∗ 𝐸1 + 𝐾 ∗ 𝐸2                              (2.2) 

𝑥2 = ((1 − 𝐾^2)^0.5) ∗ 𝐸2 + 𝐾 ∗ 𝐸2                              (2.3) 

Where K is the correlation between the explanatory variables, 𝐸1 𝑎𝑛𝑑 𝐸2  are the independent standard normal 

distribution with mean zero and the unit variance. The response variable was therefore obtained with equation 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝑒𝑖                    (2.4)  

Where 𝑒𝑖 = 𝑍𝑖√𝑉𝑎𝑟(𝑒𝑖) , 𝑍𝑖~𝑁(0,1)       𝑖 = 1, 2. 

  𝑒1~𝑁(0, 𝑋2𝑖
2 ) (Park, 1966, White, 1980, Guajarati et. al 2012) 

  𝑒𝑖~𝑁(0, 𝐸𝑥𝑝(𝑥2
2)) (Box and Hill, 1974, Harvey, 1976) 

The 𝑉𝑎𝑟(𝑒𝑖) took any of the structures in equations 2 and 3. The simulations were carried out in one thousand times 

(1000) at eight sample sizes of 10, 20, 30, 40, 50, 100, 250 and 500. 

In order to correct the heteroscedasticity problem with the selected structures, the weighted least square methods was 

adopted and the 𝑙𝑜𝑔𝑒̂𝑖
2 𝑤𝑎𝑠 regress 𝑜𝑛 (𝑥1, 𝑥2)  to have Heteroscedasticity Correction Weighted 1 (HCW1), 

𝑙𝑜𝑔𝑒̂𝑖
2 𝑜𝑛 (𝑥1,  𝑥2, 𝑥1

2, 𝑥2
2)  to have Heteroscedasticity Correction Weighted 2 (HCW2) and 

𝑙𝑜𝑔𝑒̂𝑖
2 𝑜𝑛 (𝑥1,   𝑥2, 𝑥1

2,   𝑥2
2,  𝑥1𝑥2) to have Heteroscedasticity Correction Weighted 3 (HCW3).  

2.2 Construction of D-optimal Design 

There are several methods at hand on the practices of determining the optimal design. These include algorithms, 

sequential, analytical, numerical and graphical methods, used separately or in combinations.  There is no method that 

is generally favorable; it depends on the problem at hand. The method selected in this research work is sequential 

method of getting D-optimal design; we find the D-optimal design for model with different variance structure of the 

error term was essentially obtained. For the model (2.1) used in this study, the number of p is 3. Therefore the partial 

derivative for the model is                                                    

𝑓′(𝑥𝑖) = (1, 𝑥1, 𝑥2)                      (2.5)  

The information matrix is now  

     𝑀(𝜉) = ∑ 𝑤𝑖𝑓(𝑥𝑖) 𝑓′(𝑥𝑖)                  (2.6) 

Beginning with p-point design, we get 3 × 3 design matrix of the form 
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𝑋3 = [
1.000000 1.000000 0.322035
1.000000 −0.494439  0.413935
1.000000 −0.235592 −0.026634

]             (2.7) 

It should be noted that the procedure requires a sufficient number of observations because we have to ensure that the 

inverse |𝑋𝑁
′ 𝑋𝑁|−1 exist. A simple condition that will guarantee the inverse exists is to have the number of different 

design points greater than or equal to the number of parameters, that is 𝑁 ≥ 𝑝 

The design points are selected within the range of −1 ≤ 𝑥 ≤ 1 for the variables. The largest 𝑠(𝑥𝑎 , 𝜉) is found for 

𝑥1 = 1.00000 𝑎𝑛𝑑𝑥2 = −1.000000, so these design points were added to design matrix  𝑋3 and the design matrix is 

now  

𝑋4 = [

1.000000 1.000000 0.322035
1.000000 −0.494439 0.413935
1.000000
1.000000

−0.235592
1.000000

−0.026634
−1.000000

]                         (2.8)  

The iteration continued until the condition for getting optimal design was reached. The maximum 𝑠(𝑥𝑖 , 𝜉) value 

decreases as N increases, according to the general equivalence theorem (Kiefer and Wolfowitz, 1960), a D-optimal 

design satisfies the condition that 𝑠(𝑥𝑎 , 𝜉) ≤ 𝑝.  

2.3 Relative Efficiencies of D-optimal to Other Designs 

The Efficiency of D-optimal design 𝜉𝐷 with respect to the other design is  

𝐷𝑒𝑓𝑓 = (
|𝑀(𝜉)|

|𝑀(𝜉𝐷|)
)

1
𝑝⁄

               (2.9) 

Where p is the number of parameters of the model and 𝑀(𝜉) denotes the information matrix of the design 𝜉 which is 

another design different from D-optimal design. Relative efficiencies of the parameters of the D-optimal design and non 

optimal designs models were also done to establish the result of D-optimal designs point. The design points for all the 

structures were obtained with respect to the probability, number of iteration, the standardized variance. 

2.4 Most Efficient Correction Method 

The best correction method among the one named HCW1, HCW2 and HCW3 was determined. This was done by 

calculating the variances for the probabilities of the D-optimal designs taking the design points as 𝑥  and the 

probabilities as 𝑓(𝑥). The minimum variances were selected for the structures for all the sample sizes and the method 

that has highest values was chosen to be the most efficient.   

2.5 Real Life Application  

Construction of D-optimal design in the presence of heteroscedasticity for the model (1) was applied to a real life data, a 

secondary data from the kinematic viscosity of a lubricant, in stokes, as a function of temperature(𝑜𝐶), and pressure in 

atmospheres (atm), was used as discussed in Linssen (1975) where y is predicted In (viscosity), 𝑥1 is temperature, and 

𝑥2 is pressure to justify the simulated data. 

3. Result and Discussion  

In this work, D-optimal designs with two different heteroscedasticity structures were constructed when there is no 

heteroscedasticity (No H) and when there is (HR). It was generally found that the D-optimal designs take the extreme 

values of the response variables which follow uniform distribution of the experimental units 

Table 3.1. D-Optimal Designs for the Structures 

        Structures        (-1, -1)    (-1, 1)       (1, -1)   (1, 1) 

 

𝝈𝟐𝑿𝟐𝒊
𝟐  

No H 44(0.25143) 44(0.25143) 44(0.25143) 43(0.24571) 

HR 28(0.24138) 30(0.25862) 295(0.25000) 29(0.25000) 

𝝈𝟐𝑬𝒙𝒑(𝒙𝟐
𝟐) No H 44(0.25143) 44(0.25143) 43(0.24571) 44(0.25143) 

HR 22(0.23656) 24(0.25806) 24(0.25806) 23(0.24731) 

Table 3.1 presents the construction of the D-optimal when there is no heteroscedasticity and when there is 

heteroscedasticity for the error structures. It can be seen that the D-optimal designs when there is no heteroscedasticity 

for the two structures were same reason being that the error term have equal variance. The optimal designs even though 

the model has three parameters the design consists four points which are the extreme points of the regression 

range.From the table, it can been seen that  
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𝜉∗ = {
(−1, −1) (−1,1)
0.24138 0.25862

(1, −1) (1,1)
0.25000 0.250000

}                (3.1) 

if there are 116 experimental units, 28 should be allocated to when 𝑥1 = −1 and𝑥2 = −1, 30 should be for when 

𝑥1 = −1 and𝑥2 = 1. In the same vein, 29 should be allocated to when 𝑥1 = 1 and 𝑥2 = −1 and when𝑥1 = 1 and𝑥2 =
1. 

Considering D-optimal design for the second structure, 

                                                𝜉∗ = {
(−1, −1) (−1,1)
0.23656 0.25806

(1, −1) (1,1)
0.25806 0.24731

}               (3.2) 

Equation shows that if there are 93 experimental units, 22 should be allocated to when  𝑥1 = −1 and 𝑥2 = −1, 24 

should be for when 𝑥1 = −1 and 𝑥2 = 1and when𝑥1 = 1 and 𝑥2 = −1, 23 for when 𝑥1 = 1 and 𝑥2 = 1. 

Table 3.2. D-optimal Designs for the real life data  

    (-1,-1)    (-1,1)       (1,-1)     (1,1) 

 HR 16(0.30000) 11(0.20000) 16(0.30000) 11(0.20000) 

The results still revealed that the D-optimal design for the real life data presented above affirmed the result from 

simulated data in the sense that the design point takes the extreme values of the design region. 

The relative efficiencies of D-optimal design with respect to other designs that are not optimal using the same method 

of construction of D-optimal design from the starting design matrix of point 4 is given below for the structures.  

Table 3.3. Relative Efficiency Table 

𝜎2𝑋2𝑖
2  𝜎2𝐸𝑥𝑝(𝑥2

2) 

No of Iteration D-efficiency No of Iteration D-efficiency 

4 0.0019 4 0.0043 

5 0.0225 5 0.0329 

6 0.0331 6 0.0453 

⋮ ⋮ ⋮ ⋮ 

114 0.9829 91 0.9788 

115 0.9914 92 0.9894 

Table 3.3 shows that the D-optimal design has close efficiency to other design especially the one closed to the design 

point meaning that the closer the D-efficient to one, the better. The no of iteration for D-optimal design for the first 

structure is 116 and for the second structure 93. Next table present the D-efficiency of the real life data.  

Table 3.4. Relative Efficiencies of other Designs for real life data 

I 𝑫𝒆𝒇𝒇 

4 0.002128 

5 0.003511 

6 0.004728 

⋮ 
⋮ 

901 

  0.9869 

902   0.9931 

To determine the best correction method, the variances of the probability in the design point of the D-optimal design 

were calculated using different sample sizes. The best method was chosen on the basis of the one with minimum 

variance. Table 3.5 presented the variances of design points. 
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Table 3.5. Determination of the best Correction Method 

 

Forms 

Correction 

Methods 

Sample size 

10 20 30 40 50 100 250 500 

 

𝝈𝟐𝑿𝟐𝒊
𝟐  

HCW1 1.24996 1.26050 1.24407 1.23217 1.24290 1.24434 1.24407 1.25584 

HCW2 1.24978 1.25912 1.25000 1.24386 1.24113 1.25762 1.25584 1.24172 

HCW3 1.24995 1.25969 1.24362 1.24386 1.25718 1.25000 1.25598 1.24223 

 

 

𝝈𝟐𝑬𝒙𝒑(𝒙𝟐
𝟐) 

 

 

HCW1 1.25774 1.26146 1.24362 1.23030 1.24362 1.25534 1.24481 1.25628 

HCW2 1.25786 1.25868 1.23777 1.24401 1.24144 1.25786 1.25546 1.25739 

HCW3 1.27398 1.25899 1.21102 1.2386 1.25899 1.25718 1.25523 1.25762 

From the table, number of appearance of minimum variance values in HCW1 is more than the other two. Therefore 

HCW1 is assumed to be performing better. 

4. Conclusion 

In the study, constructions of D-optimal designs in the presence of Heteroscedasticity for two different structures were 

considered with when there is no Heteroscedasticity in the data.  

It was generally found that the D-optimal designs take the extreme values of the response variables which follow 

uniform distribution of the experimental units which can be interpreted as taking the least and the highest values of the 

explanatory variables in order to get best output through the response variable. To verify the above findings, a set of real 

life data (secondary data) was used and the design points for D-optimal designs were same with simulated data.  

The relative efficiencies of other designs under different Heteroscedasticity structures were found to prove the strength 

of the design. Determination of the best correction method was also found. This was achieved by comparing the 

variances of the selected correction methods with respect to sample sizes for all the structures used in the study. It was 

found that the correction method with minimum variance that showed the efficiency of the method represented by 

(HCW1) which was done by regressing 𝑙𝑜𝑔𝑒̂𝑖
2 on the linear combinations of 𝑥1 𝑎𝑛𝑑 𝑥2performed better than the 

remaining two. 
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