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Abstract

In the last two decades, regression analysis with interval-valued type data has received more and more attention. For
the interval-valued symbolic data regression, the Minmax method and the center and range (CR) method are two widely
used popular estimating approaches. In this paper, to improve the estimating efficiency of these two estimating methods,
seemingly unrelated regression approach has been applied to take account of the dependence information of two regression
models of the Minmax method or the CR method. Finally, real data sets are analysed to examine the performance of our
proposed procedure.

Keywords: interval-valued data, minmax method, center and range method, seemingly unrelated regression, generalized
least squares estimation

1. Introduction

Interval-valued data as a more general class of data type called symbolic data are observed as ranges instead of single
values and frequently appear in some fields, such as finance, engineering, and medicine. In the last two decades, regression
analysis with interval-valued type data has received more and more attention. Several approaches have been proposed to
estimate the regression models with interval-valued data. The center method of Billard and Diday (2000) uses interval
midpoints of both response and the associated explanatory variables to build the regression, and apply the fitted model
to the lower and upper bounds of the independent variables to generate predictions respectively. In order to use more
interval information than that of the center method, Billard and Diday (2002) proposed a MinMax method, which suggests
modelling the lower and upper bounds of the intervals of both response and the associated explanatory variables by two
linear regression models independently. Using two different models to predict lower and upper bounds can improve the
linear fit and give an intuitive response interpretation. To include the information given by both the centre and the range of
an interval on a linear regression model to improve the model prediction performance, Lima Neto and De Carvalho (2008)
proposed a center and range (CR) method using two independent models: one for the interval midpoints and another for
the semi-length of the interval. Other estimating approaches can be found in Xu (2010), Giordani (2015) and Souza et al.
(2017). Furthermore, some generalized interval data models have been proposed, examples including additive models of
Lim (2016), partially linear models of Wei et al. (2015).

It is noted that both the MinMax method and CR method analyze the interval data based on two independent linear
regression models, and the assumption of independence between two regression models is not always true in practice.
If these two regression models have some relationship, then, to solve this problem, how to combine the two regression
models is an interesting topic. As we all know, the seemingly unrelated regression (SUR) introduced by Zellner (1962)
is an important tool to analyze multiple equations with correlated disturbances. The SUR specification is expressed as a
set of linear regressions where the disturbances in the different equations are correlated. Therefore, to take account of the
dependence information of two regression models, we propose a seemingly unrelated regression approach based on the
MinMax method or the CR method to modelling interval data.

The rest of this paper is organized as follows. We introduce the MinMax and CRM methods in Section 2. The proposed
SUR approach is given in Section 3. Real interval-valued data sets are analyzed in Section 4 to illustrate the performance
of the proposed approach. Conclusion is presented in Section 5.

2. Minmax and CR Methods for Linear Models With Interval-Valued Data

Let E = {e1, e2, · · · , en} be a set of objects that are described by the p+1 symbolic interval-valued variables Y, X1, X2, · · · , Xp.
Each example ei ∈ E(i = 1, 2, · · · , n) is represented as an interval quantitative feature vector zi = (xi, yi). xi =
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(xi1, xi2, · · · , xip)T, where xi j = [ai j, bi j] ∈ = = {[a, b] : a, b ∈ <, a ≤ b}( j = 1, 2, · · · , p) and yi = [yLi, yUi] ∈ = are
the ith observed values of X j and Y , respectively. Let us work with the matrix notation. Denote

YL =


yL1
yL2
...

yLn

 ,YU =


yU1
yU2
...

yUn

 ,XL =


1 a11 · · · a1p

1 a21 · · · a2p
...

...
. . .

...
1 an1 · · · anp

 ,XU =


1 b11 · · · b1p

1 b21 · · · b2p
...

...
. . .

...
1 bn1 · · · bnp

 ,
2.1 MinMax Method

By Billard and Diday (2002), we consider X1, X2, · · · , Xp related to Y according to the following linear regression rela-
tionship

yLi = βL
0 + βL

1 ai1 + βL
2 ai2 + · · · + βL

paip + εLi, (1)

yUi = βU
0 + βU

1 bi1 + βU
2 bi2 + · · · + βU

p bip + εUi. (2)

Model (1) (2) can be written in the matrix form as

Ym = Xmβm + εm, (3)

where

Ym =

[
YL

YU

]
, Xm =

[
XL 0
0 XU

]
, βm =

[
βL

βU

]
, εm =

[
εL

εU

]
,

and βL =
(
βL

0 , β
L
1 , · · · , β

L
p

)T
,βU =

(
βU

0 , β
U
1 , · · · , β

U
p

)T
, εL = (εL1, · · · , εLn)T , εU = (εU1, · · · , εUn)T .

By applying the least squares approach to model (4), we can get the Minmax estimator of βm as

β̂
mm

=

 β̂
L

β̂
U

 =
[
XT

mXm

]−1
XT

mYm =


[
XT

LXL

]−1
XT

LYL[
XT

UXU

]−1
XT

UYU

 . (4)

Specifically, the MinMax estimators of βL and β̂U are

β̂
L

=
[
XT

LXL

]−1
XT

LYL, β̂
U

=
[
XT

UXU

]−1
XT

UYU .

2.2 The Centre and Range Method

Let yc
i = (yLi + yUi)/2, yr

i = (yUi − yLi)/2, xc
i j = (ai j + bi j)/2, xr

i j = (bi j − ai j)/2. Lima Neto and De Carvalho (2008)
considered the following two regression models

yc
i = βc

0 + βc
1xc

i1 + βc
2xc

i2 + · · · + βc
pxc

ip + εc
i (5)

yr
i = βr

0 + βr
1xr

i1 + βr
2xr

i2 + · · · + βr
pxr

ip + εr
i (6)

Denote

Yc =


yc

1
yc

2
...

yc
n

 ,Yr =


yr

1
yr

2
...

yr
n

 ,Xc =


1 xc

11 · · · xc
1p

1 xc
21 · · · xc

2p
...

...
. . .

...
1 xc

n1 · · · xc
np

 ,X
r =


1 xr

11 · · · xr
1p

1 xr
21 · · · xr

2p
...

...
. . .

...
1 xr

n1 · · · xr
np

 ,
Combing models (5) and (6), we have the following model

Ycr = Xcrβcr + εcr, (7)

where

Ycr =

[
Yc

Yr

]
, Xcr =

[
Xc 0
0 Xr

]
, βcr =

[
βc

βr

]
, εcr =

[
εc

εr

]
.

and Yc =
YL+YU

2 ,Xc =
XL+XU

2 ,Yr =
YL−YU

2 ,Xr =
XL−XU

2 , βc = (βc
0, β

c
1, · · · , β

c
p)T,βr = (βr

0, β
r
1, · · · , β

r
p)T, εc = (εc

1, ε
c
2, · · · , ε

c
n)T,

and εr = (εr
1, ε

r
2, · · · , ε

r
n)T.
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Then, by applying the least squares approach to model (7), we can obtain the CR estimator for βcr as

β̂
cr

=

[
β̂

c

β̂
r

]
=

[
XT

crXcr

]−1
XT

crYcr =


[
(Xc)TXc

]−1
(Xc)TYc[

(Xr)TXr
]−1

(Xr)TYr

 . (8)

Specifically, the Centre-Range estimators of βc and β̂
r

can be written as

β̂
c

=
[
(Xc)TXc

]−1
(Xc)Tyc =

[
(XU + XL)T(XU + XL)

]−1
(XU + XL)T(YU + YL)

=
(
XT

UXU + XT
LXL + XT

LXU + XT
UXL

)−1 (
XT

UYU + XT
LYL + XT

LYU + XT
UYL

)
,

β̂
r

=
[
(Xr)TXr

]−1
(Xr)Tyr =

[
(XU − XL)T(XU − XL)

]−1
(XU − XL)T(YU − YL)

=
(
XT

UXU + XT
LXL − XT

LXU − XT
UXL

)−1 (
XT

UYU + XT
LYL − XT

LYU − XT
UYL

)
.

3. The Efficient SUR-Based Estimation

For both the Minmax and CR method, we can improve the estimating efficiency by considering the dependence between
their two models. We propose the SUR-based Minmax estimator by applying the SUR method to models (1) and (2)
directly. Similarly, we propose the SUR-based CR estimator by applying the SUR method to models (5) and (6) directly.
It is noted that models (5) and (6) are derived by models (1) and (2), then we construct a two-step SUR-based CR estimator
based on the relation between models (1)-(2) and models (5)-(6).

3.1 The Efficient SUR-Based Minmax Estimator

For models (1)-(2), we assume that

E(εLi) = 0,D(εLi) = σLL,E(εUi) = 0,D(εUi) = σUU ,Cov(εLi, εL j) = 0,Cov(εUi, εU j) = 0, i , j.

Then, we have
Cov(εL) = EεLε

T
L = σLLIn,Cov(εU) = EεUε

T
U = σUUIn, (9)

Different to Billard and Diday (2002) and Lima Neto and De Carvalho (2008), for the models (1)(2), we consider the
following assumptions of their disturbances

E(εLiεU j) =

{
σLU , i = j,
0, otherwise,

for 1 ≤ i, j ≤ n. Then, we have
Cov(εL, εU) = EεLε

T
U = σLUIn, (10)

with In is the identity matrix of order n. Therefore, the 2n × 1 disturbance vector εm = (εT
L, ε

T
U)T has the following

variance-covariance matrix
Ωm = E(εmε

T
m) = ΣLU ⊗ In, (11)

with

ΣLU =

[
σLL σLU

σLU σUU

]
.

By applying the generalized least squares estimation method for linear regression model (3) with (9), we can obtain the
seeming unrelated regression-based Minmax estimator of βm as

β̂
mm
S UR =

 β̂L
S UR

β̂
U
S UR

 =
[
XT

mΩ
−1
m Xm

]−1
XT

mΩ
−1
m Ym. (12)

However, the covariance matrix Ωm is unknown, then β̂
mm
S UR is infeasible. To solve this problem, we can replace the

unknown elements Ωm by their estimators respectively. Define

σ̂LL =
(YL − XLβ̂

L
)T(YL − XLβ̂

L
)

n − p
, σ̂UU =

(YU − XU β̂
U

)T(YU − XU β̂
U

)
n − p

,

3
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and

σ̂LU =
(YL − XLβ̂

L
)T(YU − XU β̂

U
)

n
,

where β̂
L

and β̂
U

are the Minmax estimators which were defined in equation (4). Then we can define the feasible SUR-
Minmax estimator for β as

β̂
mm
FS UR =

 β̂L
FS UR

β̂
U
FS UR

 =

[
XT

mΩ̂
−1
m Xm

]−1
XT

mΩ̂
−1
m Ym. (13)

with Ω̂m = Σ̂LU ⊗ In,

Σ̂LU =

[
σ̂LL σ̂LU

σ̂LU σ̂UU

]
.

By the classic theory of linear regression model, we know that the generalized least-squares estimator β̂
mm
FS UR is efficient

than the ordinary least-squares estimator β̂
mm

. If σLU = 0, they are equal. In practice, We can first to test whether σLU = 0
is or not. we can use the Lagrange multiplier test method of Breusch and Pagan (1980) to this testing problem.

3.2 The Efficient SUR-Based CR Estimator

Similarly, for the linear regression models (5) and (6), the feasible SUR-based CR estimator for βcr can be defined as

β̂
cr
FS UR =

[
β̂

c
FS UR

β̂
r
FS UR

]
=

[
XT

crΩ̂
−1
cr Xm

]−1
XT

crΩ̂
−1
cr Ycr. (14)

with Ω̂cr = Σ̂cr ⊗ In, Σ̂cr =

[
σ̂cc σ̂cr

σ̂cr σ̂rr

]
, σ̂cr =

(Yc−Xcβ̂
c
)T(Yr−Xr β̂

r
)

n , and

σ̂cc =
(Yc − Xcβ̂

c
)T(Yc − Xcβ̂

c
)

n − p
, σ̂rr =

(Yr − Xrβ̂
r
)T(Yr − XU β̂

r
)

n − p
,

where β̂
c

and β̂
r

are the CR estimators which were defined in equation (8).

3.3 The Two-Step SUR-Based CR Estimation

The direct SUR-based CR estimatior (13) is obtained on the assumption that model (5)-(6) are data generating models.
However, it is not ture. Model (5)-(6) are generated from model (1)-(2). Then, the variance and covariance of εc and εr

can be computed by the assumptions (9) and (10). We can show that

Φc = Cov(εc) = Cov
(
εU +εL

2

)
= 1

4 E
[
(εU + εL)(εU + εL)T

]
= 1

4 E(εUε
T
U + εLε

T
L + 2εUε

T
L)

=
σUU +σLL+2σUL

4 In,

Φr = Cov(εr) = Cov
(εU − εL

2

)
=
σUU + σLL − 2σUL

4
In,

Φcr = Cov(εc, εr) = 1
4 E

[
(εU + εL)(εU − εL)T

]
= 1

4 E(εUε
T
U − εLε

T
L)

=
σUU−σLL

4 In.

Therefore, the 2n × 1 disturbance vector εcr = (εT
c , ε

T
r )T has the following variance-covariance matrix

Λcr = Cov(εcr) =

[
Φc Φcr

Φcr Φr

]
.

Then, the two-step efficient SUR-based CR estimators are

β̂
cr
TS UR =

[
β̃

c
TS UR
β̃

r
TS UR

]
=

[
XT

crΛ
−1
cr Xcr

]−1
XT

crΛ
−1
cr Ycr. (15)

4
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Table 1. Mushroom interval-valued data set

Species Y X Z Species Y X Z
1 [3,8] [4,9] [0.5,2.5] 13 [3.5,8] [4,10] [1,2]
2 [6,21] [4,14] [1,3.5] 14 [7,14] [8,14] [1.5,2.5]
3 [4,8] [5,11] [1,2] 15 [8,20] [9,19] [3,5]
4 [6,7] [4,7] [3,4.5] 16 [2.5,4] [2.5,4.5] [0.4,0.7]
5 [5,12] [2,5] [1.5,2.5] 17 [7,19] [8,15] [2,3.5]
6 [5,15] [4,10] [2,4] 18 [5,15] [6,15] [2.5,3.5]
7 [4,11] [3,7] [0.4,1] 19 [8,12] [6,12] [1.5,2]
8 [5,10] [3,6] [1,2] 20 [2,6] [3,7] [0.4,0.8]
9 [2.5,4] [3,5] [0.4,0.7] 21 [6,12] [6,12] [1.5,2]
10 [2.5,6] [1.5,3.5] [1,1.5] 22 [6,12] [6,16] [1,2]
11 [1.5,2.5] [3,6] [0.25,0.35] 23 [5,17] [4,14] [1,3.5]
12 [4,15] [4,15] [1.5,2.5]

Table 2. Performance of the methods

Method RMSEL RMSEU r2
L r2

U
Minmax 1.131198 3.241086 0.6241114 0.6146621
SUR-Minmax 1.132775 3.169804 0.6308301 0.6275454
CR 1.479281 3.003173 0.5105622 0.6631535
SUR-CR 1.351316 2.898771 0.5473502 0.6813018
Two-step SUR-CR 1.348811 2.852429 0.5540649 0.7014462

The corresponding feasible estimator is

β̂
cr
FTS UR =

[
β̃

c
FTS UR
β̃

r
FTS UR

]
=

[
XT

crΛ̂
−1
cr Xcr

]−1
XT

crΛ̂
−1
cr Ycr, (16)

where Λ̂ is defined as Λ by replacing unknown parameters σUU , σUU , σUL by their estimators, respectively.

It is noted that if σUL = 0, model (1) and (2) are independence, we have β̂
mm
S UR = β̂

mm
. If σUU , σLL, model (5) and (6)

are not independence as Φcr =
σUU−σLL

4 In , 0n, then β̃cr
TS UR , β̂

cr
. If σUU = σLL, then Φcr =

σUU−σLL
4 In = 0n, we have

β̂
cr
TS UR = β̂

cr
.

4. Real Data Analysis

In this section, we shall analyse a real data to illustrate the finite sample properties of the proposed procedures.

Mushroom data set consists of a set of 23 species described by 3 interval variables, where the response variable Y is the
stipe thickness, and the covariates X is the stipe length, Z is the pileus cap width. These mushroom species are members
of the genus Agaricies. The specific variables and their values are extracted from the Fungi of California Species. The
data set given in Table 1 was obtained from Billard and Diday (2006).

The performance assessment of the above estimating approaches will be based on the following measures: the lower
boundary root mean-square error (RMSEL) and the upper boundary root mean-square error (RMSEU ), the square of the
lower bound correlation coefficient (r2

L) and the square of the upper bound correlation coefficient (r2
U) These measures,

calculated from the observed values [yLi, yUi] and their corresponding leave-one-out cross-validation predicted values
based on Minmax, SUR-Minmax, CR, SUR-CR and Two step SUR-CR estimating methods. They are defined by

RMSEL =

√√√√ n∑
i=1

(yLi − ŷLi)2

n
,RMSEU =

√√√√ n∑
i=1

(yUi − ŷUi)2

n
, r2

L = ρ2(YL, ŶL), r2
U = ρ2(YU , ŶU).

The results can be found in Table 2. Thus, we conclude that the SUR-MinMax method outperforms the MinMax method,
the two-step SUR-CR method outperforms the SUR-CR method while the SUR-CR method outperforms the CR method.

5
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5. Conclusion

This paper applied the SUR method to improve the efficiency of Minmax method and CR method. Real data sets are
analysed to examine the performance of our proposed methods and the results are satisfactory.

For the Minmax method and CR method, we have some comments. In the simulation studies of Lima Neto and De
Carvalho (2008) and other literatures, the interval data sets are often constructed in two different ways, the first with
values of the centre and range of the intervals simulated independently, the second with values of the interval mid-points
and ranges related according to a linear relationship. However, these assumptions are usually not satisfied in real data
analysis.
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