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Abstract

In this paper, we consider tests for sub-mean vectors and its simultaneous confidence intervals in two-sample problems.
We give the T? type test statistic and the simultaneous confidence intervals by using two approximate upper percentiles
of T? type test statistic. One of the approximate percentiles is obtained by normal approximation for a part of the 72 type
statistic, and the other is an approximation obtained by correcting the degrees of freedom of the F distribution. Finally, we
investigate the asymptotic behavior of the approximate upper percentiles of 72 type statistic by Monte Carlo simulation,
and we give an example to illustrate the simultaneous confidence intervals.

Keywords: approximate degrees of freedom, F' approximation, Monte Carlo simulation, simultaneous confidence inter-
val, two-sample problem, type I error

1. Introduction

Let x(li), x(zi) s xg,)(l) be p-dimensional random vectors from N,(u”, %), i = 1,2. we consider the following hypothesis
1 2) . 1 2 1 2 - 1 2
Hy :,u(1 ) :,u(l)glven ,u(2) =,u(2)vs.H1 :,u(l) i,u(l) given u;) =u;), @9)
where
@) (@)
Hy Hri
@) 0] 0]
S L) y M2
,u(’)=L‘(,-)),u({)= = =rts 2
px1 2 rx1 : sx1 :
w! )

For the problem of sub-mean vectors, Eaton and Kariya (1983) derived tests for the independence of two normally dis-
tributed sub-mean vectors for the case that an additional random sample is available. Provost (1990) obtained explicit
expressions for the case that the maximum likelihood estimators (MLEs) of all the parameters of the multi-normal ran-
dom vector are given, and the likelihood ratio statistic for testing the independence between sub-mean vectors has been
obtained. For the one-sample problem, Rao (1949) gave Rao’s U-statistic and additional information. The null distri-
bution of Rao’s U-statistic has been introduced by Siotani et al. (1985). A test for sub-mean vectors with two-step
monotone missing data was discussed by Kawasaki and Seo (2016). A test for sub-mean vectors in two-sample problem
was introduced by Rencher (2012). For the k-sample problem, Fujikoshi et al. (2010) gave an asymptotic expansion of
the distribution of the generalized U-statistic under normality. Gupta et al. (2006) gave an asymptotic expansion of the
distribution of the generalized U-statistic under a general condition. However, the problem for sub-mean vectors in terms
of simultaneous confidence intervals does not appear to have been discussed.

The aim of this article is to provide simultaneous confidence intervals for sub-mean vectors in two-sample problems. We
consider two procedures. The first procedure is to give the T2 type test statistic of testing two-normal sub-mean vectors
and its approximate upper percentile using normal approximation for a part of the test statistic in Section 2. The second
procedure is to obtain the asymptotic expansions of the moments of test statistic, and then the approximating the null
distribution of the T? type test statistic using an F distribution is also given in Section 2. In Sections 3, the approximate
simultaneous confidence intervals for all linear compounds of the difference of two-normal sub-mean vectors are outlined.
In Section 4, we investigate the asymptotic behavior of the approximate upper percentiles of the T2 test statistic by Monte
Carlo simulation. In Section 5, we give an example to illustrate simultaneous confidence intervals. This paper is a revised
version of the Technical Report Naito et al. (2018) and includes some of the content of the paper.
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2. T? Type Test Statistic for Sub-mean Vectors

In this section, we provide Hotelling’s 72 type test statistic for testing the hypothesis (1) and its simultaneous confidence

intervals. We partition x(’) into a r X 1 random vector and a s X 1 random vector, as x (’) = (x(’) (’) )’ where j =
1,2,...,N9, p=r+s. The hypothesis (1) is the same as the following hypothesis,
, 2 2
Hy iy = iy vs HY @iy # g1, 3)
where
) = 4 M _,@ 5_[Z1 Zn
Hip = 2:12222”2, Hy =Hy” = Hyos = (221 222) . (4)
First, we derive the maximum likelihood estimators (MLEs) of g and X.
We use the following transformed parameters (7, ¥),
n(i) ('l(lz)) [ (l) 212222/12) . (‘P]] “Plz] _ [ X2 2122521] 5)
1, Iy ’ Yo ¥ 2521 2o  n )

where i1, = Zj1 — 22251501, i = 1,2. We note that (5, V) is in one-to-one correspondence with (u”, £). Using the
transformed parameters (p”, ), the likelihood function is given by

L. q®, W) =@y Wl ¥l 6)
2 N")
<[ Tlexp{-5 Z(x“ Wiy, - gy W () - Wioxy) - p) ] (7)
i=1 =
2 N(”
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Then, we will derive the MLEs as follows:
i H T =0 —_ - = 1 —~ =
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where
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Therefore, using the relation that (5", p®, ) is in one-to-one correspondence with (uV, u®, %), the MLEs of ", u®,
and X are given by

—(i) —(0) _ v 3-1~=0 _ =
. S _
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H b %)
1 -
. F” ’2\12] NV11-2+2122221221 2V12V 222 s
il SO < 1 D == =yl
X Xp ZZZVEZI Vo N {V22 + Z(f(z) _ xz)(x(z) - X3) }
i=1



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 9, No. 1; 2020

2.1 T? Type Test Statistic and Approximation Upper Percentile

For sub-mean vectors, we construct a test statistic based on Hotelling’s T? statistic structure:

12— 1) A o - 7 6
where
—— N(N -3)
) =)\ _
Cov (”1.2 I’l1~2) - N(])N(Z)(N_z)(N_ 5 — 3) V11'2’ (17)

ﬁﬁ and C/(;/(ifll; —ﬁlz;) are the estimators of u(li?z and Cov (ﬂ{ll; —Zflzi), respectively. We call this test statistic the

Hotelling’s T2 type statistic. We note that under Hj in (3), 7% is asymptotically distributed as a y* distribution with r
degrees of freedom. However, when the sample is not large, the x? distribution is not a good approximation of the upper
percentile of T2.

Let

_ _ P _ N(N -3)
_ =) _ = L= =@n . _
u=x'-x"-VpVy(x, —x;), c= NONOWN s —3)° (18)

We can then rewrite T2 as

ZWlz

T>=(N-2c'WViu=2W'z=z772"-2=, (19)
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where z = ¢35 Lu, W = 2, 2,8 1122, 1),
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We note that u is distributed on N,(y(l]) - u(f), cZ112) when NO,N® — oo, Therefore, the distribution of 7'z is a y?
distribution with r degrees of freedom. We note that under H), (N — p — s — DT?/{(N - 2)r} is approximately distributed
as a F distribution with r and N — p — s — 1 degrees of freedom. Using this result, the approximate upper 100« percentile
of the T? statistic is given by

(N - 2)r

2
t e S —
(@) N-p-s—-1

Fr,N—p—s—l(a'), (21)
where F,.y_,_s_1(@) is the upper 100« percentiles of the F distribution with » and N — p — s — 1 degrees of freedom. The
details of result follow from Naito et al. (2018).

2.2 Approximate Degrees of Freedom

In this session, we consider the approximate distribution of 72. By approximating the distribution of z’z and z’z/z’ W'z
as

’ 2
’ 2 x4 XV
S ~ =, 22
R T = )
we have
7~ %, 23)
e
where &, v, and ¢ are unknown constants. It follows from (22) that
2
, 7'z v 7'z v(v +2)
Elz'zl = ¢ El———1~ —, ~ . 24
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We consider the asymptotic expansion of the first and second order moment of 77 in a situation when
N®
Vi = N — positive constants (25)
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as Ns tend to infinity. Therefore, without loss of generahty, we assume that ) = 0, X = I, hereafter. In our derivations,
we consider the asymptotic expansions of z'z and z'z/z’W~'z in terms of

=) (i) 1 1
"= oS =k N e A (26)
x, NO Z, VN -2 ﬁUm I + ﬁUzz

Then, )?(li) - V2V, ! () and z can be expanded as

1 ; 1 1
— ViV ®D = —(z<'> - —=Unzy + L UnUnz; )+0 (N7, 27)
242 \/N_’)’l 1 \/N P
1 1 _
z=( sz(ll) - \/711(12)) - W(V%Ulzz(zl) - \/71U121(22)) + N(\/}ZUlezzz(zl) - \/)’_1U12U221(22)) +0,(N?), (28)

respectively. We have
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By calculating the expectations of z’z and 7 W 4 7> We obtain
1
E[z'z] = r+ Zrs+ O(N” 312y, B[ ,W ol=1- —(p +3)+ O(N ), (36)
7z \ 2
E =1-—(p+2)+ON?). 37
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By equating (24), (36) and (37) to the N ~! terms, the coefficients &,v, and ¢ are determined as

AN-p-37°  2N(N-p-3)

= + — y = . = . 38
C= T NS Y S N p e IN —(p+3)7 (38)

Using this results, for N > (p + 3)?/2, the approximate upper 100« percentile of the T statistic is given by
t(@) = %‘ﬁFﬁv(a). (39)

3. Simultaneous Confidence Intervals

In this section, we consider the simultaneous confidence intervals for any and all linear compounds of the sub-mean. Using

the upper percentiles of T? from Section 2.1, for any nonnull vector @ = (a;,a,- - ,a,), the simultaneous confidence
intervals for a (y(l) ”1 2) are given by
’ ¢ m_ 0 / | ¢ r
a'u— N—2 (y —Hy) <du+ mM,Vae]R—{O}, 40)
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where M = (tz(a)a’Vll.za)%, and #*(a) is the upper 100« percentiles of the T? test statistic. However, it is not easy to
obtain (a).

Therefore, as the first method, using the approximate upper 100« percentiles of the 77 test statistic, #> (@) by (21), the

app
approximate simultaneous confidence intervals for a (ﬂ(l) [J(Izg) can obtained by

’ ¢ 1 2 r
au—JN_z M, <a@) - u(];)<au+1/ 5 Mo Ya €R' — {0}, 1)

where M,,, = (i ()@’ Vi12a)?.

app

As a second method, using the approximate upper 100a percentiles of the T2 test statistic, #2(a) by (39), the approximate
simultaneous confidence intervals for a’(y(1 > ”1 2) can obtained by

1/ g Ma < ()~ p) < au+ /ﬁMﬁ, Va e R - {0}, (42)

where M, = (A(@)a’Vy1.2a)?.
4. Simulation Studies

In this section, we perform a Monte Carlo simulation (with 10° runs) in order to evaluate the asymptotic behavior of the
F approximations and the accuracy of the approximate upper 100a percentiles of the T statistic.

Tables 1 and 2 present the simulated upper 100« percentile of the T? test statistic, #>(e), the approximate upper 100

percentile of the T2 test statistic, 2 (@) and £2(a) for the two-sample problem;

(p.r,9) =(4,1,3),(4,2,2),(4,3,1),(8,2,6),(8,4,4),(8,6,2);« = 0.05,0.01; (43)

and for the following two cases of (N, N@):
¢, ), € =20,40,100,200,400

(N(l), N(2)) — ) (44)
€,20), € ="20,40,100,200

Tables 1 and 2 present the type I errors for the upper 100 percentile of the y? distribution with r degrees of freedom and
the approximate upper 100« percentile of the T test statistic given by
= Pr(T? > x2(@)), @y = Pr(T? > £ (@), a3 = Pr(T? > 2(a)), (45)

app

respectively. It may be noted from Tables 1 and 2 that the simulated values approach closer to the upper percentile of the y?
distribution when both of the sample sizes N and N® become large. In addition, it can be seen from both tables that the
proposed approximation values are good for all cases even when the sample size is small. The results for the type I error
of the proposed approximation value are closer than those of the x? value for all cases. Since #2 has restrictions on sample
size and dimensions, there are combinations in which values cannot be obtained. However, it is a better approximation
than tfpp, especially when the r dimension corresponding to hypothesis “given” is small. Also, comparing @, and a3, it can
be seen that in the case of 0.01, @3 is a better approximation even when the sample size is small. On the other hand, it can
be seen that t2 is a stable good approximation. t2 can be used in more cases than 72 because it has less sample size and
dlmensmnahty constraints. However, it should be noted that tﬂzpp is a result obtained using the assumption that u# from (18)

is normally distributed.
5. Numerical Example

In this section, we discuss an example to illustrate the results. In this example, we utilize the data in the iris plant taken
from Fisher (1936). The data consists of four different measurements, x;: petal width, x,: petal length: , x3: sepal width,
and x4: sepal length, for three irises, however, we use two irises, virginica and versicolor. The population mean vectors
are ¥ = (ﬂ(l') , pg) (u(]'), u(z'), u(;), u4))’ where /1 : mean of petal length, u(zi): mean of sepal length, ,u(;): mean of

petal width, ,u(’) mean of sepal width, u(’) (u(l'), u(z'), u(;))’ and u(’) = uf:) We assume that these data are distributed
QY] (2)

normality, and pt, = iy’ = p5”. Therefore, we have the data of NV = N@ =50, p = 4,r = 3, s = 1. The hypothesis (3)
is considered on this example. We computed 72 = 320.20. For this example case, the simulated upper 100a percentiles
pf T? type statistic is £2(0.05) = 8.37, the null hypothesis is rejected. When we use t%pp(O 05) = 8.45 and #2(0.05) = 8.72,
the null hypothesis is also rejected. Table 3 gives 95% simultaneous confidence intervals using three different upper
percentiles t2 ,(0.05) is very similar results to the true values that are given by the simulated upper percentiles of T2,
£2(0.05). £2(0. 05) is almost similar, and the result is the same as the other two. Therefore, our approaches are able to give

very good approximation to the true results in this example.
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Table 1. (), 2 (@) and £2(a) when p = 4

app

Sample Size a = 0.05 a =0.01

NY  N® P (@ @ o a a3 Ala) (@) @ @ a 3
(r,s) =(1,3), )(%(0.05) = 3.84, )(%(0.01) =6.64

20 20 4.48 493 5.05 0.068 0.040 0.038 8.06 8.91 8.79 0.018 0.007 0.008

40 40 4.13 4.31 442 0.058 0.045 0.043 7.27 7.58 6.64 0.014 0.009 0.008

100 100 394 4.01 4.07 0.053 0.048 0.047 7.15 7.37 7.05 0.013 0.009 0.009

200 200  3.89 3.92 395 0.052 0.049 0.049 6.84 6.98 6.84 0.011 0.009 0.010

400 400 3.88  3.88 390 0.051 0.050 0.050 676 6.80 6.74 0.011 0.010 0.010

20 40 423 449 463 0062 0044 0041 755 797 807 0015 0.008 0.008

40 80 404 414 422 0056 0047 0045 7.05 723 734 0012 0009 0.008

100 200 392 395 399 0052 0049 0048 680 686 691 0011 0010 0.009

200 400 388 390 392 0051 0050 0049 671 675 677 0010 0010 0.010
(r, $) = (2,2), ¥2(0.05) = 5.99, x2(0.01) = 9.1

20 20 7.0 757 7.83 0077 0042 0038 1145 1223 1223 0022 0.008 0.008

40 40 650 667 689 0062 0046 0042 1020 1049 1073 0.015 0.009 0.008

100 100 6.19 624 634 0.055 0.049 0.047 960 968 980 0012 0.010 0.009
200 200 6.07 6.11 6.16 0.052 0.049 0.048 938 944 950 0.011 0.010 0.010
400 400 6.03  6.05 599 0.051 0.049 0.049 930 932 921 0.010 0.010 0.010

20 40 668 694 550 0067 0.045 0040 10.63 1101 1125 0018 0.009 0.008

40 80 632 643 599 0.058 0048 0044 986 1002 921 0013 0009 0.008

100 200 612 616 599 0053 0049 0048 946 952 921 0011 0010 0010

200 400 605 607 611 0051 0049 0049 932 936 941 0011 0010 0.010
(r,$) = (3, 1), x2(0.05) = 7.82, x2(0.01) = 11.35

20 20 937 9.67 10.12 0.085 0.045 0.039 1438 14.81 15.02 0.026 0.009 0.008
40 40 853  8.63 895 0.066 0.048 0.042 12.68 12.83 1322 0.017 0.009 0.008
100 100 8.09 812 826 0.056 0.049 0.046 11.84 11.89 12.08 0.012 0.010 0.009
200 200 794 796 7.82 0.053 0.049 0.048 11.59 1161 1135 0.011 0.010 0.009
400 400 787 7.89 792 0.051 0.050 0.049 1143 1148 11.53 0.010 0.010 0.010

20 40 877 894 7.82 0071 0.047 0.040 13.14 1343 1135 0.019 0.009 0.008
40 80 827 836 856 0.060 0.049 0.045 12.18 1229 12.58 0.014 0.010 0.008
100 200 799 8.01 7.82  0.054 0.050 0.047 11.66 11.70 11.35 0.012 0.010 0.009
200 400 791 7091 796 0.052 0.050 0.049 1154 1152 11.59 0.011 0.010 0.010
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Table 2. #%(a), 2 (@) and tfr(a) when p =8

app

Sample Size a = 0.05 a =0.01
N ON® ) () o) o) o ) (@) (@) a; 1o a;
(r,s) =(2,6), )(%(0.05) =5.99, )(%(0.01) =9.21
20 20 8.13  10.29 - 0.103 0.025 - 13.36 1693 - 0.035 0.004 -
40 40 6.87 7.53 7.37 0.072 0.038 0.041 10.82 11.87 11.29 0.019 0.007 0.009
100 100  6.31 6.52 6.54 0.058 0.045 0.045 9.75 10.11 10.07 0.013 0.009 0.009
200 200 6.13 6.24 6.26 0.054 0.047 0.048 9.49 9.64 9.64 0.011 0.009 0.009
400 400  6.06 6.11 6.13 0.052 0.049 0.049 9.35 9.42 9.43 0.011 0.010 0.010
20 40 7.24 8.26 - 0.082 0.034 - 11.55 13.17 - 0.024  0.006 -
40 80 6.53 6.93 691 0.064 0.042 0.042 10.17 10.82 10.64 0.015 0.008 0.008
100 200  6.19 6.33 6.36  0.055 0.047 0.047 9.60 9.79 9.79  0.012 0.009 0.009
200 400 6.08 6.16 6.17 0.052 0.048 0.048 9.38 9.49 9.50 0.011 0.009 0.009
(1, 5) = (4,4), ¥2(0.05) = 9.49, x2(0.01) = 13.28
20 20 13.16 15.36 - 0.129  0.028 - 19.69 23.11 - 0.048  0.005 -
40 40 11.00 11.68 11.55 0.082 0.040 0.042 15.80 16.82 1620 0.023 0.007 0.009
100 100 10.02 10.25 1033 0.061 0.046 0.045 14.15 1449 1453 0.014 0.009 0.009
200 200  9.75 9.85 991 0550 0.048 0.047 13.74 1385 1390 0.012 0.010 0.009
400 400 9.61 9.67 9.70  0.052 0.049 0.048 13.52 13,56 13.59 0.011 0.010 0.009
20 40 11.62 12.68 - 0.096 0.036 - 16.92 18.50 - 0.030 0.006 -
40 80 1043 10.84 10.89 0.067 0.043 0.043 14.89 1544 1532 0.018 0.008 0.009
100 200 9.84 9.98 823 0.057 0.047 0.046 1391 14.06 14.11 0.013  0.009 0.009
200 400 9.65 9.73 9.77 0.530 0.048 0.048 13.56 13.66 13.70  0.011 0.010 0.009
(r,s) = (6,2), ,\/é(0.0S) =12.59, ,\/é(().()l) =16.81

20 20 17.79 19.12 - 0.152  0.038 - 2549  27.51 - 0.062  0.007 -
40 40 1471 15.15 15.12 0.091 0.044 0.044 20.27 20.86 2032 0.027 0.008 0.010
100 100 13.35 13,50 13.65 0.064 0.048 0.046 1798 18.22 1835 0.015 0.009 0.009
200 200 1295 13.03 13.12 0.057 0.049 0.047 17.38 1749 1759 0.011 0.010 0.009
400 400 12.80 12.80 1294 0.054 0.050 0.048 17.07 17.14 17.33 0.010 0.010 0.010
20 40 1559 16.27 - 0.109 0.042 - 21.74  22.69 - 0.036  0.008 -
40 80 1393 14.18 1433 0.076 0.046 0.044 1895 19.30 19.31 0.020 0.009 0.009
100 200 13.10 13.18 1330 0.059 0.049 0.047 1757 17.72 17.85 0.013 0.009 0.009
200 400 12.80 12.80 12.86 0.054 0.050 0.049 17.20 17.26 1720 0.012 0.010 0.010
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Table 3. 95% Simultaneous confidence intervals

a (1,0,0) 0,1,0) 0,0,1)
e T e A S s
mean 0.700 1.292 0.144

2(0.05)  (0.469,0.727) (0.648,0.991) (~0.261,0.241)
2(0.05)  (0.469,0.726) (0.648,0.991) (~0.262,0.243)

app

2(0.05)  (0.467,0.730) (0.645,0.994) (~0.266,0.247)
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