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Abstract

This paper considers biased estimation for partially linear varying coefficient model to overcome the problem of multi-
collinearity. By the Liu estimation approach, we construct a profile Liu estimator for the constant coefficients. Further-
more, a restricted profile-Liu estimator is proposed for the situation that some additional linear restrictions are available.
The properties of the proposed estimators are investigated.
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1. Introduction

Over the last three decades, nonparametric and semiparametric models have attracted much attention. We consider the
following semiparametric partially linear varying coefficient model

yi = xT
i β + zT

i α(ui) + εi, i = 1, 2, · · · , n (1.1)

with y,is are responses; xi = (xi1, xi2, · · · , xip)T, zi = (zi1, zi2, · · · , ziq)T and ui are associated covariates; β = (β1, β2, · · · , βp)T

is a vector of unknown regression coefficients and α(·) = (α1(·), α1(·), · · · , αq(·))T are unknown nonparametric functions;
ε,is are independent random errors with E(εi|xi, zi, ui) = 0 and σ2 = E[ε2

i |xi, zi, ui].

For model (1.1), how to estimate the unknown regression coefficients is an interesting and important problem. Several
methods have been proposed, such as local polynomial estimator of Zhang et al. (2002), series estimator of Ahmad et al.
(2005), and local linear based profile least-squares approach of Fan and Huang (2005). However, the problem of multi-
collinearity was not considered by the above literatures. The problem of multi-collinearity of linear regression model
may cause serious problem for least squares estimators of the regression coefficients. To solve this problem, some biased
estimators including ridge estimator and Liu estimator as well as principal components regression estimator have been
proposed.

In the last two decades, biased estimation in semiparametric models has received much attention. For partially linear
models, Hu (2005), Akdeniz and Tabakan (2009) and Roozbeh and Arashi (2013) proposed the ridge estimators of the
parametric components. Akdeniz and Akdeniz Duran (2010) developed a Liu-type estimator. For partially linear additive
models, Wei and Wang (2016) proposed Liu estimator and restricted Liu estimator for the parametric components. For
partially linear varying coefficient model (1.1), Liu et al. (2017) constructed a stochastic restricted ridge estimator for the
parametric components. Following the idea of Akdeniz and Akdeniz Duran (2010) and Wei and Wang (2016), we will
construct Liu estimator for the parametric component β.

The Liu estimator is constructed in Section 2. In Section 3, the restricted Liu estimator is proposed. Conclusion is given
in Section 4. Section 5 offers the proofs of the main results.

2. Liu Estimator of the Parametric Components

To apply the Liu estimation approch for model (1.1), we first introduce profile least-squares approach.

If β is known, then model (1.1) can be rewritten as the following varying coefficient model

y∗i = α1(ui)zi1 + · · · + αq(ui)ziq + εi, i = 1, 2, · · · , n (2.1)

with y∗i = yi − xT
i β. The local linear method was applied to estimate the varying coefficient functions of model (2.1). For
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u in a small neighborhood of u0, then we have

α j(u) ≈ α j(u0) + α′j(u0)(u − u0) j = 1, 2, · · · , q (2.2)

Then, the estimators of {(α j(u0), α′j(u0)), j = 1, 2, · · · , q} can be obtained by minimizing

n∑
i=1

y∗i − q∑
j=1

{α j(u0) + α′j(u0)(u − u0)}zi j

2 Kh(ui − u0) (2.3)

where K is a kernel function, h is a bandwidth and Kh(·) = K(·/h)/h.

Denote

X =


xT

1
xT

2
...

xT
n

 =


x11 · · · x1p

x21 · · · x2p
...
. . .

...
xn1 · · · xnp

 ,Z =


zT
1

zT
2
...

zT
n

 =


z11 · · · z1q

z21 · · · z2q
...
. . .

...
zn1 · · · znq

 ,

Y =


y1
y2
...

yn

 , M =


zT

1α(u1)
zT

2α(u2)
...

zT
nα(un)

 , Du0 =


zT

1 zT
1

u1−u0
h

zT
2 zT

2
u2−u0

h
...

...
zT

n zT
n

un−u0
h


and

ε = (ε1, · · · , εn)T,Wu0 = diag{Kh(u1 − u0),Kh(u2 − u0), · · · ,Kh(un − u0)}.
Then varying coefficient model (2.1) can be written as

Y − Xβ =M + ε. (2.4)

The solution the problem (2.3) is given by

[α̂1(u0), · · · , α̂p(u0), hα̂′1(u0), · · · , hα̂′p(u0)]T = {DT
u0

Wu0 Du0 }−1DT
u0

Wu0 (Y − Xβ), (2.5)

We can define the estimator of M as
M̄ = S(Y − Xβ),

where

S =


(zT

1 0){DT
u1

Wu1 Du1 }−1DT
u1

Wu1

(zT
2 0){DT

u2
Wu2 Du2 }−1DT

u2
Wu2

...
(zT

n 0){DT
un

Wun Dun }−1DT
un

Wun

 .
Replacing M of (2.4) by M̄, we can get the following linear regression model

Ȳ = X̄β + ε. (2.6)

where Ȳ = (In − S)Y, X̄ = (In − S)X. Then, the profile least-squares (PLS) estimator for parametric component β can be
obtained as

β̂P = arg min
β∈Rp

[
(Ȳ − X̄β)T(Ȳ − X̄β)

]
= (X̄TX̄)−1X̄TȲ. (2.7)

Based on the linear model (2.6) and the Liu estimation approach, we define the following objective function:

F1(β) = (Ȳ − X̄β)T(Ȳ − X̄β) + (dβ̂P − β)T(dβ̂P − β). (2.8)

Then, we have
∂F1(β)
∂β

= −2X̄TȲ + 2X̄TX̄β − 2dβ̂P + 2β = 0. (2.9)

We can obtain the following profile least-squares Liu estimator by solving equation (2.9) as

β̂PL(d) = (X̄TX̄ + Ip)−1(X̄TȲ + dβ̂P). (2.10)
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For β̂PL(d), we have the following properties.

Theorem 2.1 For the profile least-squares Liu estimator β̂PL(d), denote M = m1 +m2, we have

Bias(β̂PL(d)) = −(1 − d)(X̄TX̄ + Ip)−1β + ∆X̄T(In − S)M, Cov(β̂PL(d)) = ∆Φ∆T,

where ∆ = (X̄TX̄ + Ip)−1(X̄TX̄ + dIp)(X̄TX̄)−1, Φ = σ2X̄T(In − S)(In − S)TX̄ .

Theorem 2.2 Under the assumptions 1-5 in Section 5, βPL(d) is asymptotically normal, namely,

√
n(β̂PL(d) − β)

D−→ N(0, σ2Σ−1),

where Σ = E(XXT) − E[Φ(U)Γ−1(U)Φ(U)T], Γ(U) = E
[
ZZT|U

]
, Φ(U) = E

[
XTZ|U

]
.

3. Restricted Profile Least-Squares Liu Estimator

In this section, we consider the following additional restrictions on the parametric component

Aβ = b, (3.1)

with A is a k × p matrix of known constants, b is a k−vector of known constants, we assume that rank(A) = k.

Based on the linear model (2.6) with restriction conditions (3.1), we define the following Lagrange function

F2(β, λ) = (Ȳ − X̄β)T(Ȳ − X̄β) + (dβ̂P − β)T(dβ̂P − β) + 2λT(Aβ − b).

By differentiating F2 with respect to β and λ, then we obtain the following system of vector equations: ∂F3(β,λ)
∂β = −2X̄TȲ + 2X̄TX̄β − 2dβ̂P + 2β + 2ATλ = 0,

∂F3(β,λ)
∂λ = 2(Aβ − b) = 0.

Solving the above equations, the restricted profile least-squares Liu estimator of β is obtained as

β̂
R
PL = β̂PL(d) − (X̄TX̄ + Ip)−1AT

[
A(X̄TX̄ + Ip)−1AT

]−1 [
Aβ̂PL(d) − b

]
.

The following theorem gives the asymptotic normality of β̂
R
PL.

Theorem 3.1 Under the assumptions 1-5 in Section 5, the restricted profile least-squares Liu estimator β̂
R
PL is asymp-

totically normal, namely,
√

n(β̂
R
PL − β)

D−→ N(0, σ2Ω),

with Ω = Σ−1 − Σ−1AT
(
AΣ−1AT

)−1
AΣ−1.

4. Conclusions

For partially linear varying coefficient models, this paper proposed a Liu-type biased estimator for the parametric com-
ponent as well as a restricted Liu estimator for multi-collinearity and linear restrictions. The properties of the proposed
estimators are given.

5. Proof of the Main Results

We consider the following assumptions of Fan and Huang (2005).

Assumption 1. The random variable U has a bounded support Ψ. Its density function f (·) is Lipschitz continuous and
bounded away from 0 on its support.

Assumption 2. The q × q matrix E(ZZT|U) is non-singular for each U ∈ Ψ. E(ZZT|U), E(ZZT|U)−1 and E(ZXT|U)
are all Lipschitz continuous.

Assumption 3. There is an s > 2 such that E ∥ X ∥2s< ∞ and E ∥ Z ∥2s< ∞ and n2k−1h→ ∞ for some k < 2 − s−1.

Assumption 4. {α j(·), j = 1, · · · , q} have continuous second derivatives in U ∈ Ψ.

Assumption 5. The function K(·) is a symmetric density function with compact support and the bandwidth h satisfies
nh8 → 0 and nh2/(log n)2 → ∞.

Lemma 5.1 Under the assumptions 1-4, the profile least-squares estimator of βP is asymptotically normal, namely,

√
n(β̂P − β)

D−→ N(0, σ2Σ−1)),
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This lemma is Theorem 4.1 of Fan and Huang (2012).

Proof of Theorem 2.1. By the definition of β̂PL(d), we can get

β̂PL(d) = (X̄TX̄ + Ip)−1(X̄TȲ + dβ̂P) = (X̄TX̄ + Ip)−1(X̄TX̄ + dIp)β̂P
= β − (1 − d)(X̄TX̄ + Ip)−1β + ∆X̄T(In − S)M + ∆X̄T(In − S)ε.

Then, it is easy to prove that

Bias(β̂PL(d)) = −(1 − d)(X̄TX̄ + Ip)−1β + ∆X̄T(In − S)M, Cov(β̂PM(d)) = ∆Φ∆T.

Proof of Theorem 2.2. Like the proof of Theorem 2.2 of Wei and Wang (2016), by the definition of β̂PL(d), we can get
√

n(β̂PL(d) − β) = (X̄TX̄ + Ip)−1(X̄TX̄ + dIp)
√

n(β̂P − β) − (1 − d)
√

n(X̄TX̄ + I)−1β

and
1
n

(
X̄TX̄ + Ip

) p
−→ Σ, 1

n

(
X̄TX̄ + dIp

) p
−→ Σ, (1 − d)

√
n(X̄TX̄ + Ip)−1β = Op(n−1/2), (12)

By the Lemma 5.1 and the Slutsky theorem, we have
√

n(β̂PL(d) − β)
D−→ N(0, σ2Σ−1).

Proof of Theorem 3.1. By the similar way in the proof of Theorem 3.1 of Wei and Wang (2016), we can proof Theorem
3.1, we omit the details.
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