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Abstract

In this paper, we propose new families of generalized Lomax distributions named T-Lomax{Y}. Using the methodology
of the Transformed-Transformer, known as T-X framework, the T-Lomax families introduced are arising from the quan-
tile functions of exponential, Weibull, log-logistic, logistic, Cauchy and extreme value distributions. Various structural
properties of the new families are derived including moments, modes and Shannon entropies. Several new generalized
Lomax distributions are studied. The shapes of these T-Lomax{Y} distributions are very flexible and can be symmetric,
skewed to the right, skewed to the left, or bimodal. The method of maximum likelihood is proposed for estimating the
distributions parameters and a simulation study is carried out to assess its performance. Four applications of real data sets
are used to demonstrate the flexibility of T-Lomax{Y} family of distributions in fitting unimodal and bimodal data sets
from different disciplines.
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1. Introduction

The Lomax distribution, also known as Pareto type-II distribution, is one of the important continuous distributions with
a heavy tail defined by one shape and one scale parameters. The Lomax distribution was first used in Lomax (1954) to
analyze business failure data. After that, researchers turned to using the Lomax distribution extensively in applications in
the different fields of sciences; this included but was not limited to modeling business records by Atkinson and Harrison
(1978), reliability and life testing studies by Hassan and Al-Ghamdi (2009). Bryson (1974) suggested the use of the
Lomax distribution as an alternative to exponential, gamma and Weibull distributions. Other applications of the Lomax
distribution can be found in modeling heavy tailed data in wealth, income, business and biological sciences.

Over the past decade, many researchers have studied Lomax distribution properties and applications in depth to have a
better understanding of its modelling capabilities. Other researchers used several methodologies for generating general-
ized families of distributions to introduce extensions and generalizations of the two parameters Lomax distribution. The
different generalizations vary between adding one, two, or three extra parameters to increase Lomax flexibility to model
the different shapes of real-world data.

The development of several methodologies for generating generalized families of distributions initiated the interest in
extending the Lomax distribution. Some of the known techniques to generalize distributions in the recent decades are
introduced by Marshall and Olkin (1997), Eugene, Lee and Famoye (2002), Shaw and Buckley (2009), Alzaatreh, Lee,
and Famoye (2013), and Alzaghal, Famoye, and Lee (2013). Generalization examples of the Lomax distribution include
the Multivariate Lomax distribution of mixing exponential variables, which was introduced by Nayak (1987), and the beta-
Lomax as defined by Rajab, Aleem, Nawaz, and Daniyal (2013). Using Zografos and Balakrishnans technique (2009),
gamma Lomax distribution was proposed by Cordeiro, Ortega, and Popović (2015). Additionally, the McDonald Lomax
distribution was proposed by Lemonte and Cordeiro (2013), the Weibull-Lomax was introduced by Alzaghal, Ghosh and
Alzaatreh (2016), and another Lomax extension was defined by Mead (2016) who investigated the beta exponentiated
Lomax. More recently, the Gompertz Lomax distribution with increasing, decreasing and constant failure rates was
developed by Oguntunde, Khaleel, Ahmed, Adejumo, and Odetunmibi (2017).

The probability density function (PDF) of the Lomax distribution is given by

f (x;α, λ) = (α/λ) (1 + x/λ)−α−1, x > 0. (1)
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where α > 0 is a shape parameter and λ > 0 is a scale parameter. The cumulative distribution function (CDF) correspond-
ing to Equation (1) is

F(x;α, λ) = 1 − (1 + x/λ)−α, x > 0. (2)

Alzaatreh et al. (2013) developed a new class, named the T-X family, of distributions as an extension to the beta-
generated family of distributions proposed by Eugene et al. (2002). Let T be a continuous random variable such that
T ∈ [a, b], −∞ ≤ a < b ≤ ∞. The CDF of the T-X family of distributions is given as

G(x) =

∫ W(F(x))

a
r(t)dt = R{W(F(x))},

where R(t) is the CDF of the random variable T. The W(F(x)) is a monotonic and absolutely continuous function of
the CDF F(x) of any random variable X. Several W(F(x)) functions were defined in Alzaatreh et al. (2013). Later,
Alzaatreh, Lee, and Famoye (2014) gave a unified notation for the definition of the T-X family and named it the T-
R{Y} family. The definition of the T-R{Y} family is as following: Let T, R, and Y be random variables with the CDFs
FT (x) = P (T ≤ x) , FR (x) = P (R ≤ x) , and FY (x) = P (Y ≤ x) where the PDFs of the T, R, and Y are fT (x), fR(x),
and fY (x), respectively. Also, define the quantile function as QZ(p) = inf{z : FZ(z) ≥ p}, 0 < p < 1. Then, the
corresponding quantile function for the random variable Y is QY (p). If X is a random variable that follows the T-R{Y}
family of distribution, then the CDF and the PDF of the random variable X are respectively defined as

FX(x) =

∫ QY (FR(x))

a
fT (t)dt = FT (QY (FR(x))) , and (3)

fX(x) = fR(x) ×
fT (QY (FR(x)))
fY (QY (FR(x)))

. (4)

The T-R{Y} framework is a broad methodology for developing flexible generalized distributions. For example, the T-
normal{Y} family of distributions studied by Alzaatreh et al. (2014) is a family of generalized normal distributions. The
T-Pareto{Y} family of distributions studied by Hamed, Famoye and Lee (2018) defined new families of generalized Pareto
distributions.

This article proposes new families of generalized Lomax distributions by using the T-R{Y} methodology. The motivation
of this initiative is to improve the flexibility of the known right tailed Lomax distribution to fit a variety of shapes of
data including unimodal (left skewed or symmetric), as well as bimodal from different disciplines. The strength of this
generalization is shown consistently by providing better fits than other generated distributions having the same or higher
number of parameters.

The rest of the article is outlined as follows: Section 2 introduces new families of Lomax distribution named the T-
Lomax{Y}. In Section 3, some structural properties of the proposed families are discussed. Some new members of these
new families are studied in Section 4. A simulation analysis to study the performance of the Maximum Likelihood Esti-
mation (MLE) method in estimating the parameters for the Normal-Lomax{Cauchy} distribution is presented in Section
5. The usefulness of the new proposed families is illustrated through applications to real data sets in Section 6. Lastly,
Section 7 provides a summary for this article.

2. Some T-Lomax{Y} Families of Distributions

In this section, six different closed form quantile functions are used to define six generalized T-Lomax{Y} families of
distributions. Table 1 lists the different quantiles used in this paper and the domain of the corresponding T random
variable that can be combined with each one of them.

Table 1. Some quantile functions of Y and the domains of T

Random variable Y The quantile function QY (p) Domain of T
(i) Exponential − log(1 − p) (0,∞)
(ii) Weibull γ(− log(1 − p))1/k, γ, k > 0 (0,∞)
(iii) Log-logistic [p/(1 − p)]1/β, β > 0 (0,∞)
(iv) Logistic γ log[p/(1 − p)], γ > 0 (−∞,∞)
(v) Cauchy tan(π(p − 0.5)) (−∞,∞)
(vi) Extreme value log(− log(1 − p)) (−∞,∞)

The CDF and PDF of each of the T-Lomax{Y} families of distributions resulting of these quantiles are derived using
Equations (3) and (4), respectively, and are defined as following:
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(i) The T-Lomax{exponential} family of distributions: By using the quantile function of exponential distribution given
in Table 1, QY (p) = − log(1 − p), in equations (3) and (4). The CDF and PDE of the T-Lomax{exponential} family
are respectively given by

FX(x) = FT {− log(1 − FR(x) )} = FT
{
α log (1 + x/λ)

}
, and (5)

fX(x) =
fR(x)

1 − FR(x)
fT

{
− log(1 − FR(x) )} = (α/λ)(1 + x/λ)−1 fT

{
α log (1 + x/λ)} ,

where FR(x) and fR(x) are the CDF and PDF of Lomax random variable given in Equations (1) and (2). The CDF
and PDF of the T-Lomax{exponential} family can be written as FX(x) = FT (HR(x)) and fX(x) = hR(x) fT (HR(x)),
where hR(x) and HR(x) are the hazard and cumulative hazard functions of the Lomax distribution, respectively.
This shows that the T-Lomax{exponential} family of distributions arises from the hazard function of the Lomax
distribution. A member of this family, the Weibull-Lomax{exponential} distribution, was defined and studied by
Alzaghal et al. (2016) by taking T to be a Weibull random variable.

(ii) The T-Lomax{Weibull} family of distributions: By using the quantile function of the Weibull distribution given in
Table 1, QY (p) = γ(− log(1 − p))1/k, in Equations (3) and (4).The CDF and PDE of the T-Lomax{Weibull} family
are respectively given by

FX(x) = FT

{
γ[− log(1 − FR(x)) ]1/k

}
= FT

{
γ
[
α log (1 + x/λ)

]1/k
}
, and

fX(x) =
λ fR(x)[− log(1 − FR(x))](1−k)/k

k(1 − FR(x))
fT

{
λ[− log(1 − FR(x)) ]1/k

}
= (αγ/λk) (1 + x/λ)−1[α log (x/λ)

](1−k)/k fT
{
γ
[
α log (x/λ)

]1/k
}
.

Note that when k = 1, the T-Lomax{Weibull} family of distributions is reduced to the T-Lomax{exponential} family
of distributions.

(iii) The T-Lomax{log-logistic} family of distributions: By using the quantile function of log-logistic distribution given
in Table 1, QY (p) = [p/(1 − p)]1/β, in (3) and (4). The CDF and PDE of the T-Lomax{log-logistic} family are
respectively given by

FX(x) = FT

{
[FR(x)/(1 − FR(x))] 1/β

}
= FT

{[
(1 + x/λ)α − 1

]1/β
}
, and (6)

fX(x) =
fR(x)

βFR
(β−1)/β(x)(1 − FR(x))(β+1)/β fT

{
[FR(x)/(1 − FR(x))] 1/β

}
= α(λβ)−1(1 − (1 + x/λ)−α

)(1−β)/β(x/λ)(α−β)/β fT
{[

(x/λ)α − 1
]1/β

}
. (7)

If β = 1, then the T-Lomax{log-logistic} is consider a family arising from the odds of Lomax distribution with the
following PDF:

fX(x) = (α/λ) (x/λ)(α−1) fT
{[

(x/λ)α − 1
]}
.

(iv) The T-Lomax{logistic} family of distributions: By using the quantile function of logistic distribution given in Table
1, QY (p) = γ log[p/(1 − p)], in Equations (3) and (4). The CDF and PDE of the T-Lomax{logistic} family are
respectively given by

FX(x) = FT
{
γ log[FR(x)/(1 − FR(x)) ]} = FT

{
γ log

[
(1 + x/λ)α − 1

]}
, and

fX(x) =
λ fR(x)

FR(x)(1 − FR(x))
fT

{
γ log[FR(x)/(1 − FR(x)) ]}

= αγλ−1(1 + x/λ)−1(1 − (1 + x/λ)−α
)−1 fT

{
γ log

[
(1 + x/λ)α − 1

]}
.

When γ = 1, the T-Lomax{logistic} family of distributions is considered a family arising from the logit function of
the Lomax distribution.
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(v) The T-Lomax{Cauchy} family of distributions: By using the quantile function of Cauchy distribution given in Table
1, QY (p) = tan(π(p − 0.5)), in Equations (3) and (4). The corresponding CDF and PDE of the T-Lomax{Cauchy}
family are respectively given by

FX(x) = FT {tan[π(FR(x) − 0.5 )]} = FT
{
tan

[
π
(
0.5 − (1 + x/λ)−α

)]}
, and

fX(x) = π fR(x)sec2[π(FR(x) − 0.5)] fT {tan[π(FR(x) − 0.5 )]}

= αγλ−1(1 + x/λ)−1(1 − (1 + x/λ)−α
)−1 fT

{
γ log

[
(1 + x/λ)α − 1

]}
. (8)

(vi) The T-Lomax{extreme value} family of distributions: By using the quantile function of extreme value distribution
in Table 1, QY (p) = log(− log(1 − p)), in Equations (3) and (4). The CDF and PDE of the T-Lomax{extreme value}
family are respectively given by

FX(x) = FT
{
log[− log(1 − FR(x)) ]} = FT

{
log

[
α log (1 + x/λ)

]}
, and

fX(x) =
fR(x)

−[1 − FR(x)] log[1 − FR(x)]
fT

{
log[− log(1 − FR(x)) ]}

= λ−1(1 + x/λ)−1(log (1 + x/λ)
)−1 fT

{
log

[
α log (1 + x/λ)

]}
.

3. Some Properties of the T-Lomax{Y} Family of Distributions

In this part of the paper, various statistical properties of the proposed T-Lomax{Y} families of distributions are investigated.

Lemma 1 (Transformation) Consider any random variable T with PDF fT (x), then the random variable

X = QR(FY (T )) = λ
{
(1 − FY (T ))−1/α − 1

}
,

where QR(·) is the quantile function of the Lomax distribution, follows the T-Lomax{Y} distribution.

Corollary 1 Based on Lemma 1, we have

(i) X = λ
{
eT/α − 1

}
follows the distribution of T-Lomax{exponential} family.

(ii) X = λ
{
e(T/γ)k/α − 1

}
follows the distribution of T-Lomax{Weibull} family.

(iii) X = λ
{(

1 + T β
)1/α
− 1

}
follows the distribution of T-Lomax{log-logistic} family.

(iv) X = λ
{
eT/α − 1

}
follows the distribution of T-Lomax{logistic} family.

(v) X = λ
{
eT/α − 1

}
follows the distribution of T-Lomax{Cauchy} family.

(vi) X = λ
{
eT/α − 1

}
follows the distribution of T-Lomax{extreme value} family.

If X follows the T-Lomax{Y} distribution, then Corollary 1 can be used to generate a random sample of the random
variable X using a specific random variable T and a specific quantile function QY (p).

Lemma 2 (Quantiles) Let QX(p), 0 < p < 1, denote a quantile function of the random variable X. Then, the quantile
function for a specific T-Lomax{Y} family of distributions is given by

QX(p) = QR {FY (QT (p)} = λ
{
(1 − FY (QT (p))−1/α − 1

}
.

Corollary 2 Based on Lemma 2, the quantile functions for the (i) T-Lomax{exponential}, (ii) T-Lomax{Weibull}, (iii)
T-Lomax{log-logistic}, (iv) T-Lomax{logistic}, (v) T-Lomax{Cauchy}, and (vi) T-Lomax{extreme value} distributions, re-
spectively, are given by

(i) QX(p) = λ
{
e(QT (p)/α) − 1

}
,

(ii) QX(p) = λ
{
e([QT (p)/γ]k

/α) − 1
}
,

(iii) QX(p) = λ
{(

(QT (p))β + 1
)1/α
− 1

}
,
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(iv) QX(p) = λ
{(

e(QT (p)/γ) + 1
)1/α
− 1

}
,

(v) QX(p) = λ
{
(0.5 − arctan (QT (p)) /π)−1/α − 1

}
, and

(vi) QX(p) = λ
{
e(eQT (p)/α) − 1

}
.

Theorem 1 The mode(s) of the T-Lomax{Y} family are the solutions of

(x + λ) Ψ
{
fT

(
Qy (FR(x))

)}
= α + 1 + (x + λ) Ψ

{
fy

(
Qy (FR(x))

)}
,

where Ψ (f)=f’/f.

Proof. The derivative of fX(x) with respect to x can be written as f ′X(x) = fX(x)R(x), where R(x) = −(α + 1)/(x + λ) +

Ψ
{
fT

(
Qy (FR(x))

)}
− Ψ

{
fy

(
Qy (FR(x))

)}
. The mode(s) of fX(x) can be obtained by setting R(x) = 0, and then solving for

x.

Corollary 3 Based on Theorem 1, the mode(s) of the (i) T-Lomax{exponential}, (ii) T-Lomax{Weibull}, (iii) T-Lomax{log-
logistic}, (iv) T-Lomax{logistic}, (v) T-Lomax{Cauchy}, and (vi) T-Lomax{extreme value} distributions, respectively, are
the solutions of the equations

(i) (x + λ) Ψ
{
fT

(
α log (1 + x/λ)

)}
= 1,

(ii) (x + λ) Ψ
{
fT

(
γ
{
α log (1 + x/λ)

}1/k
)}

= 1 + 2α − (1 − 1/k)
{
1/ log (1 + x/λ)

}
,

(iii) (x + λ) Ψ
{
fT ((1 + x/λ)α − 1)1/β

}
= α + 1 − α(β+1)(1+x/λ)α−2αβ

β((1+x/λ)α−1) ,

(iv) (x + λ) Ψ

{
fT

(
tan

{
π
(
0.5 − (1 + x/λ)

−α
)})1/β

}
= α + 1 − 2πα(1 + x/λ)

−α

cot
(
π(1 + x/λ)

−α
)
,

(v) (x + λ) Ψ
{
fT

(
γ log {(1 + x/λ)α − 1}

)}
= α + 1 +

α{−2+(1+x/λ)α}
−1+(1+x/λ)α , and

(vi) (x + λ) Ψ
{
fT

(
log

{
− log

(
(1 + x/λ)−α

)})}
= 1 + 1/ log(1 + x/λ).

The Normal-Lomax{Cauchy} distribution provided in Section 4 is an example of a bimodal distribution, which means that
Corollary 3 (v) could have more than one solution to represent a bimodal distribution.

The entropy of a random variable X is a measure of variation of uncertainty. Entropy has several applications in engineer-
ing, chemistry, physics, and information theory. The Shannons entropy (Shannon, 1948) for a continuous random variable
X with PDF f (x) is defined as ηX = E

[
− log f (x)

]
.

Theorem 2 The Shannon entropy for the T-Lomax{Y} family of distributions in Equation (4) is given by

ηX = ηT + E
(
log fY (T )

)
+ log(λ/α) + (α + 1)E

(
log (1 + X/λ)

)
,

where ηT is the Shannon entropy for the random variable T.

Proof. By the definition of the Shannon entropy,

ηX = E(− log[ fX(X)]) = E
{
− log fT

(
Qy {FR(X)}

)}
+ E

{
log fY

(
Qy {FR(X)}

)}
− E

{
log fR(X)

}
.

Since the random variable T = Qy {FR(X)} for the T-Lomax{Y} family, we have

E
{
− log fT

(
Qy {FR(X)}

)}
= E

{
− log fT (T )

}
= ηT , and E

{
log fY

(
Qy {FR(X)}

)}
= E

{
log fY (T )

}
.

Now, log( fR(x)) = log (α/λ) − (α + 1) log (1 + x/λ), which gives

E
{
log fR(X)

}
= log(α/λ) − (α + 1)E

(
log (1 + X/λ)

)
,

Hence, ηX = ηT + E
(
log fY (T )

)
+ log(λ/α) + (α + 1)E

(
log (1 + X/λ)

)
.

Corollary 4. Based on Theorem 2, The Shannon entropies for the (i) T-Lomax{exponential}, (ii) T-Lomax{Weibull}, (i-
ii) T-Lomax{log-logistic}, (iv) T-Lomax{logistic}, (v) T-Lomax{Cauchy}, and (vi) T-Lomax{extreme value} distributions,
respectively, are given by

(i) ηX = ηT + log(λ/α) + (µT /α),
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(ii) ηX = ηT + log(λk/αγk) + αE
(
T k

)
/γk + (k − 1)E(log T ),

(iii) ηX = ηT + log(βλ/α) + ((1 − α)/α) E
(
log

(
1 + T β

))
+ (β − 1)E(log T ),

(iv) ηX = ηT + log(λ/αγ) + ((1 − α)/α)E
(
log

(
eT/γ + 1

))
+ µT /γ,

(v) ηX = ηT + log(λ/πα) − (1 + 1/α) E
(
log (0.5 − (arctan(T )/π))

)
− E

(
log(T 2 + 1)

)
, and

(vi) ηX = ηT + log(λ/α) + E(eT )/α + µT .

Here, µT and ηT are the mean and the Shannon entropy for the random variable T.

Theorem 3 Let X be a random variable that follows the T-Lomax{Y} family. Assume that E(Xr) < ∞ for all r, then

E (Xr) ≤
[
λr γ (α − r) γ (1 + r) /γ(α)

]
E

(
{F̄Y (T )}−1)

,

whenever α > r.

Proof. If fR(x) is the PDF of a non-negative random variable R, then the rth non-central moment of the random variable
T-R{Y} satisfies E (Xr) ≤ E(Rr)E

(
{F̄Y (T )}−1)

. (see Theorem 1, Aljarrah, Lee, and Famoye (2014)). The result follows
using the fact that the rth non-central moment of the Lomax distribution with parameters λ and α is

E (Rr) = λr γ (α − r) γ (1 + r) /γ(α).

Using the upper bound provided in Theorem 3, Theorem 4 provides the rth non-central moment for T-Lomax{Y} family
of distributions.

Theorem 4 The rth non-central moments for the T-Lomax{Y} family of distributions is given by

E(Xr) = λr
r∑

n=0

anE
[
(1 − FY (T ))−n/α

]
,

where an =

(
r
n

)
(−1)r−n.

Proof. Using Lemma 1, E (Xr) = E(QR(FY (T )))r where QR(p) is the quantile function of the Lomax distribution. By

applying the generalized binomial expansion, (QR(p))r can be written as (QR(p))r = λr
r∑

n=0
an p−n/α, where an defined in

the statement of Theorem 4, which in turn implies the result.

Corollary 5. Based on Theorem 4, the rth non-central moments for the (i) T-Lomax{exponential}, (ii) T-Lomax{Weibull},
(iii) T-Lomax{log-logistic}, (iv) T-Lomax{logistic}, (v) T-Lomax{Cauchy}, and (vi) T-Lomax{extreme value} distributions,
respectively, are given by

(i) E (Xr) = λr
r∑

n=0
anMT (n/α), exists if MT (n/α) < ∞,

(ii) E (Xr) = λr
r∑

n=0
anMT k (n/γkα), exists if MT k (n/γkα) < ∞,

(iii) E (Xr) = λr
r∑

n=0

∞∑
j=0

an

(
n/α
j

)
E(T )β j, exists if E(T )β j exist.

(iv) E (Xr) = λr
r∑

n=0

∞∑
j=0

an

(
n/α
j

)
MT (n/γ), exists if MT (n/γ) < ∞.

(v) E (Xr) = λr
r∑

n=0
(2)n/α

∞∑
j=0

an

(
−n/α
j

)
(−2/π) jE(arctan T ) j, exists if E(arctan T ) j exist.

(vi) E (Xr) = λr
r∑

n=0
anMeT (n/α), exists if MeT (n/α) < ∞,
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where MX(t) = E(etX).

Theorem 5 The mean deviation from the mean, Dµ, and the mean deviation from the median, DM , for the T-Lomax{Y}
family of distributions, respectively, are given by

Dµ = 2µ FT (QY (FR(µ))) − 2Iµ, and DM = µ − 2IM ,

where µ and M are the mean and median of the random variable X, and Iq = λ
∞∑

n=0
an

∫ QY (FR(q))
−∞

fT (u)
(
Fy(u)

)n
du.

Proof. For a nonnegative random variable X, we have

Dµ = E (|X − µ|) = 2µ FX(µ) − 2Iµ, and DM = E (|X − M|) = µ − 2IM , where Iq =
∫ q

0 x fX(x) dx.

From Equation (4) and Lemma 1, we have Iq =
∫ QY (FR(q))
−∞

fT (u) QR(FY (u)) du. By using the series expansion of QR(·) we
obtain the result in Theorem 5.

Corollary 6. Based on Theorem 5, the Iqs for (i) T-Lomax{exponential}, (ii) T-Lomax{Weibull}, (iii) T-Lomax{log-logistic},
(iv) T-Lomax{logistic}, (v) T-Lomax{Cauchy}, and (vi) T-Lomax{extreme value} distributions, respectively, are

(i) Iq = λ
∞∑

n=0

n∑
j=0

an

(
n
j

)
(−1) jS eu (q, 0,− j),

where S ξ(q, a, b) =
∫ QY (FR(q))

a ξb fT (u)du, and QY (FR(q)) = − log(1 − FR(q)) for exponential distribution.

(ii) Iq = λ
∞∑

n=0

n∑
j=0

an

(
n
j

)
(−1) jS e(u/γ)k (q, 0,− j),

where QY (FR(q)) = λ(− log(1 − FR(q)))1/k for Weibull distribution.

(iii) Iq = λ
∞∑

n=0

n∑
j=0

an

(
n
j

)
(−1) jS 1+uβ (q, 0,− j),

where QY (FR(q)) = (FR(q)/(1 − FR(q)))1/β for log-logistic distribution.

(iv) Iq = λ
∞∑

n=0
anS 1+e−u/γ (q,−∞,− j),

where QY (FR(q)) = γ log (FR(q)/(1 − FR(q))) for logistic distribution.

(v) Iq = λ
∞∑

n=0

n∑
j=0

(
n
j

)(
1
2

)n− j an
π j S arctan(u) (q,−∞, j),

where QY (FR(c)) = tan (π(FR(c) − 0.5)) for Cauchy distribution.

(vi) Iq = λ
∞∑

n=0
anS 1+e−u/γ (q,−∞,− j),

where QY (FR(c)) = log
(
− log(1 − FR(c))

)
for extreme value distribution.

Theorem 5 and Corollary 6 can be used to obtain the mean deviations for T-Lomax{exponential}, T-Lomax{Weibull},
T-Lomax{log-logistic}, T-Lomax{logistic}, T-Lomax{Cauchy}, and T-Lomax{extreme value} distributions.

4. Some New Generalized Lomax Distributions

Based on the general format of the different T-Lomax{Y} families of distributions provided in Section 2, the Weibull-
Lomax{log-logistic}, the gamma-Lomax{log-logistic}, the Exponentiated Weibull-Lomax{exponential}, and the Normal-
Lomax{Cauchy} distributions are investigated in this section.

4.1 The Weibull-Lomax{Log-logistic} Distribution

If the random variable T follows the Weibull distribution with the CDF FT (x) = 1 − e−xk
, where x ≥ 0 and k > 0. Using

Equation (6), the CDF of the Weibull-Lomax{log-logistic} (W-L{LL}) distribution can be defined as

FX(x) = 1 − e−{−1+(1+x/λ)α}k/β .

Setting c = k/β and using Equation (7), the PDF of the W-L{LL} distribution is given by

fX(x) =
αc
λ

(1 + x/λ)α−1
{
−1 + (1 + x/λ)α}c−1 e−{−1+(1+x/λ)α}c , x > 0, α, λ, c > 0.
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When α = 1, the W-L{LL} reduces to the Weibull distribution with the parameters c and λ, and when α = c = 1,
the W-L{LL} reduces to the exponential distribution with the parameter 1/λ. In Figure 1, various plots of the W-L{LL}
are provided for different values of the parameters α, λ and c. The graphs show that the W-L{LL} with the two shape
parameters α and c can be unimodal with monotonically decreasing (reversed J-shape), skewed to the right, symmetric,
or skewed to the left.

 

Figure 1. PDFs of W-L{LL} for various values of α, λ and c

Based on Section 2, some properties of W-L{LL} distribution are derived from the general properties of the T-Lomax{log-
logistic} family as follows:

(i) The quantile function: By using Corollary 1 part (iii), the quantile function of the W-L{LL} distribution is given by

QX(p) = λ
{({
− log(1 − p)

}1/c
+ 1

)1/α
− 1

}
.

(ii) The mode: By using Corollary 3 part (iii), the unique mode of W-L{LL} distribution is the solution of the following
equation

(1 + x/λ)α
{
αc

(
−1 + (−1 + (1 + x/λ)α)c)

+ 1
}

= (3α + 1),

which can be evaluated numerically.

(iii) The moments: By using Corollary 5 part (iii), the rth non-central moments of W-L{LL} distribution are given by

E (Xr) = λr
r∑

n=0

∞∑
j=0

an

(
n/α
j

)
γ ( j/c + 1) .

(iv) The mean deviations: By using Corollary 6 part (iii), the Dµ and the DM of W-L{LL} distribution are given by

Dµ = 2µ FT (QY (FR(µ))) − 2Iµ, and DM = µ − 2IM ,

where Iq is given by Iq = λ
∞∑

n=0

n∑
j=0

∞∑
i=0

(−1) j jiγi

i!

(
n
j

)
an γ

[
1 + i/k,

(
α
γ

log(1 + q/λ)
)k
]
, and γ(α, x) =

∫ x
0 uα−1e−udu is

the incomplete gamma function.

4.2 The Gamma-Lomax{Log-logistic} Distribution

Let the random variable T follow the gamma distribution with parameters c and θ with the PDF fT (x) = 1
γ(c)θc xc−1e−x/θ,

x > 0. Using Equation (7), the PDF of the gamma-Lomax{log-logistic}(G-L{LL}) distribution, when setting the scale
parameter θ = 1 for the gamma distribution, is given by

fX(x) =
α

β γ(c)λ
(1 + x/λ)α−1(−1 + (1 + x/λ)α)−1+c/βe−(−1+(1+x/λ)α)1/β

, x > 0, α, λ, β, c > 0.

When β = α = 1, the G-L{LL} reduces to the gamma distribution with the parameters c and λ. Figure 2 provides graphs
of the G-L{LL} PDF for various values of α, λ, c and β. These plots indicate that the G-L{LL} can be monotonically
decreasing (reversed J-shape), skewed to left, symmetric, and also skewed to the right.
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Figure 2. PDFs of G-L{LL} for various values of α, λ, c and β

4.3 The Exponentiated Weibull-Lomax{Exponential} Distribution

Let the random variable T follow the Exponentiated Weibull distribution with parameters k, c and γ, the CDF of T is
then FT (x) =

(
1 − e−(x/γ)k )c

, where x ≥ 0, k, c, γ > 0. Using Equation (5), the CDF of the Exponentiated Weibull-
Lomax{exponential} (EW-L{E}) distribution is given by

FX(x) =

(
1 − e−{(α/γ) log(1+x/λ)}

k
)c
.

By setting β = α
γ

, the PDF of the EW-L{E} distribution is given by

fX(x) =
βkc
λ

(
1 +

x
λ

)−1
{
β log

(
1 +

x
λ

)}k−1 (
1 − e−{β log(1+x/λ)}

k
)c−1

e−{β log(1+x/λ)}
k

, x > 0, k, λ, β, c > 0.

When c = 1, we get the Weibull-Lomax{exponential} distribution as a sub-model of the EW-L{E} distribution. When
c = k = 1, the EW-L{E} reduces to the Lomax distribution with β and λ. Figure 3 shows that EW-L{E} PDF takes
unimodal shapes that can be skewed to the right, skewed to left, symmetric, as well as monotonically decreasing.

 

Figure 3. PDFs of EW-L{E} for various values of k, λ, β and c

4.4 The Normal-Lomax{Cauchy} Distribution

If the random variable T follows the normal distribution with parameters µ and σ with the PDF fT (x) = 1
√

2πσ
e−(x−µ)2/2σ2

,
then using equation (8) the PDF of the normal-Lomax{Cauchy} (N-L{C}) distribution is defined as

fX(x) =

√
παsec2(π[0.5 − (1 + x/λ)−α])
√

2λσ(1 + x/λ)(α+1)
exp

(
−
(
tan(π[0.5 − (1 + x/λ)−α]) − µ

)2
/2σ2

)
,

where x > 0, σ2, α, λ > 0 and µ ∈ (−∞,∞).

In Figure 4 and 5, various plots of the N-L{C} for various values of α, λ, µ and σ are provided. The plots show that N-L{C}
is flexible and can be unimodal; right skewed, symmetric, or left skewed. When σ > 1, the N-L{C} distribution can be
bimodal.
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Figure 4. PDFs of N-L{C} for various values of α, λ, µ and σ

 

Figure 5. PDFs of N-L{C} for various values of α, λ, µ and σ

5. Estimation and Simulation for the Parameters of the N-L{C} Distribution

Let X1, X2, ...., Xn be a random sample of size n drawn from the N-L{C} distribution as defined in subsection 4.4. Let
Θ = (α, λ, µ, σ)T be a vector of parameters of dimension 4. By setting zi = (1 + xi/λ)−α, the corresponding log-likelihood
function for Θ is given by

`(Θ) = 0.5 n log(π/2) + n logα − n log λ − n logσ − n(α + 1)
∑n

i=1
log zi + 2

∑n

i=1
log (sec π(0.5 − zi))

−2−1σ−2 ∑n
i=1 (tan {π(0.5 − zi)} − µ)2.

And by setting ti = log
(
z−1/α

i

)
sec2 (π(0.5 − zi))(µ − tan(π(0.5 − zi))), ui = log

(
z−1/α

i

)
tan(π(0.5 − zi)), ri = tan(π(0.5 − zi)),

pi = sec2 (π(0.5 − pi)) (µ − tan(π(0.5 − zi))), and qi = log
(
z−1/α

i

)
sec2(π (0.5 − zi)), the score vector

U(Θ) = (Uα = ∂`(Θ)/∂α,Uλ = ∂`(Θ)/∂λ,Uµ = ∂`(Θ)/∂µ,Uσ = ∂`(Θ)/∂σ)T

for the parameters α, λ, µ, and σ are derived analytically as

Uα(Θ) = n
α
−

∑n
i=1 log

(
z−1/α

i

)
+ π

2σ2

∑n
i=1 zi ti + 2π

∑n
i=1 zi ui,

Uλ(Θ) = 1
λ2

∑n
i=1 xiz

1/α
i − 2πα

λ2

∑n
i=1 z1+1/α

i xi (πqizi + ri − αui)

+ πα
λ2σ2

∑n
i=1 xiz

1+1/α
i

(
qi ziπsec2 (π (0.5 − zi)) − pi/α + ti − 2πti tan π (0.5 − zi)

)
,

Uµ(Θ) = −π
σ2

∑n
i=1 zi qi, and

Uσ(Θ) = −2π
σ3

∑n
i=1 zi ti, respectively.

The MLEs for the parameters α, λ, µ and σ are α̂, λ̂, µ̂ and σ̂, respectively, can be obtained by solving the nonlinear
likelihood equations U(Θ) = 0 simultaneously.

The SAS R© software was used to run the simulation analysis, to study the performance of the MLE for different sample
sizes (n =25, 50, 100, 200, and 500) and varying combinations of true values of the N-L{C} parameters (α = 0.5, 1.5, 2, 3.5,
λ = 0.5, 1.5, 2.5, 3, µ = 0.5, 1, 2, 3, σ = 0.5, 1, 1.5). For each sample size and each parameter combinations, 500 simula-
tions were performed. Table 2 presents the bias (actual estimate) and the standard deviations of the parameter estimates
of the N-L{C} distribution using the MLE method.
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Table 2 shows that the MLE method is an appropriate technique for estimating the parameters of the N-L{C} distribution.
In general, the biases and standard deviations of the parameters are reasonably small. Also, it can be deduced from
Table 2 that the standard deviation reduces for all the selected parameter values as the sample size increases. Similar
estimation analysis was conducted for other members of the T-Lomax{Y} family of distributions that are defined in Section
4. This shows that the MLE method is an appropriate method for estimating the parameters of T-Lomax{Y} families of
distributions.

Table 2. Bias and standard deviations of the parameter estimates of N-L{C} distribution using MLE method

Actual Values Bias Standard deviation
α λ µ σ n α̂ λ̂ µ̂ σ̂ α̂ λ̂ µ̂ σ̂

0.5R 0.5 0.5 0.5 25 −0.0919 −0.3258 0.0185 −0.0689 0.2832 0.6976 1.7729 0.2726
50 −0.0749 −0.3177 −0.0278 −0.0362 0.2271 0.6884 0.3493 0.1685

100 −0.0791 −0.3672 0.0120 −0.0358 0.2108 0.6695 0.2566 0.1483
200 −0.0602 −0.2924 0.0216 −0.0246 0.1797 0.5914 0.2003 0.1246
500 −0.0455 −0.2157 0.0252 −0.0210 0.1381 0.4853 0.1420 0.0930

1.5S 0.5 2 0.5 25 0.0254 −0.1366 0.0201 0.0054 0.8588 0.6879 1.1583 0.3216
50 −0.2847 −0.4396 0.3245 0.0510 0.8291 0.6849 0.9608 0.2628

100 −0.2601 −0.2939 0.0065 −0.0066 0.7189 0.5680 0.8943 0.2267
200 −0.3887 −0.4153 0.1693 −0.0073 0.5767 0.5387 0.8713 0.2218
500 −0.3660 −0.4105 0.2811 0.0365 0.5205 0.5361 0.5895 0.1299

3L 3 3 1 25 0.3471 0.1618 0.1993 0.0552 0.9494 1.3838 1.2703 0.4941
50 0.2224 0.1314 −0.0317 −0.0182 0.9112 1.2945 1.2158 0.4705

100 0.1708 0.2188 −0.3269 −0.0941 0.8242 1.2626 1.1255 0.4033
200 0.1234 0.2226 −0.4276 −0.1251 0.7416 1.2168 1.0000 0.3440
500 0.0037 −0.0063 −0.2976 −0.0919 0.6427 1.1991 0.9199 0.2982

2B 2.5 1 1.5 25 0.1871 0.3666 −0.2083 0.0857 0.7074 1.3100 0.5922 0.3895
50 0.1270 0.2141 −0.1129 0.0633 0.6403 1.2617 0.4160 0.2741

100 −0.0013 −0.0446 −0.0244 0.0317 0.5364 1.1085 0.2821 0.1910
200 −0.0465 −0.1236 −0.0168 0.0134 0.4888 1.0123 0.2149 0.1435
500 −0.0763 −0.1752 −0.0028 −0.0037 0.3609 0.7556 0.1261 0.0958

3.5B 1.5 2 1.5 25 0.5740 0.2954 −0.2042 0.0380 1.2225 0.7736 0.8573 0.4651
50 0.3169 0.1567 −0.2056 −0.0037 1.2203 0.8030 0.6935 0.3692

100 0.0929 0.0124 −0.0790 0.0190 1.2110 0.7989 0.5260 0.2748
200 −0.0531 −0.0562 −0.0490 0.0061 1.0315 0.6703 0.3918 0.1972
500 −0.1681 −0.1172 −0.0055 0.0011 0.8670 0.5561 0.2290 0.1202

RSkewed to the right, Ssymmetric, Lskewed to the left, B bimodal distribution.

6. Some Applications of T-Lomax{Y} Family of Distributions

In this section, different data sets from different disciplines with different shapes are used to illustrate the flexibility
of the Weibull-Lomax{log-logistic}, gamma-Lomax{log-logistic}, Exponentiated Weibull-Lomax {exponential}, Normal-
Lomax{Cauchy}, and Weibull-Lomax {exponential}(W-L{E}) distributions as representatives of the T-Lomax{Y} family of
distributions in modeling and better fitting variety of shapes of data. This include unimodal and bimodal data sets and
comparing their results to other known distributions. For each of the applications, the maximized log-likelihood estimates
(MLEs), the value of two times the minus log-likelihood function −2 log l, the Akaike Information Criterion (AIC) value,
the Bayesian Information Criterion (BIC) value, and the Kolmogorov-Smirnov (K-S) test statistic and its corresponding
p-value for each of the fitted distributions are reported. Also, the Cramér-von Mises (W∗ ) and the Anderson-Darling (A∗)
statistics, are described in detail in (Chen and Balakrishnan, 1995), are provided to compare the T-Lomax{Y} members
ability to fit real world data with other distributions. In general, the smaller the values of the −2 log l, AIC, BIC, K-S, W∗,
and A∗ test statistics, the better the fit to the data.
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6.1 Applications With Unimodal Data Sets

Three data sets from different fields of sciences, medical, entomology and material science are used in this section to re-
veal the power of members of the T-Lomax{Y} family of distributions in modeling the three different shapes of unimodal
data sets; right skewed, symmetric, and left skewed, compared with other strong extended distributions of the Lomax
distribution. The three and four parameters T-Lomax{Y} members: W-L{LL}, G-L{LL}, EW-L{E}, N-L{C}, and the W-L{E}
are used to fit these unimodal data sets. Their results are compared to the fitting results of the McDonald Lomax (McLo-
max), the Beta Lomax (BLomax), and the Kumaraswamy Lomax (KwLomax) distributions which are known extensions
of the Lomax distribution defined by Lemonte and Cardeiro (2013) with four and five parameters. The goodness of fit
tests results for fitting the different distributions to the different data sets are reported in Tables 3-8.

6.1.1 Data 1: Remission Times of Bladder Cancer Patients

This first data set represents the remission times (in months) of a random sample of 128 bladder cancer patients, the
distribution of this data is heavily skewed to the right (skewness = 3.286). This data was analyzed by Lemonte and
Cordeiro (2013). The results in Tables 3 and 4 for the McLomx, BLomax, and KwLomax distributions are obtained from
Lemonte and Cardeiro (2013). The three parameters distribution W-L{E} is providing the best fit with the lowest AIC
and BIC test statistics. Comparing the fit of the four and five parameters distributions reveals that the EW-L{E} (four
parameters), KwLomax (four parameters) and McLomax (five parameters) distributions provide the best fit in modeling
this data set with some slight differences in the different tests values.

Table 3. MLEs and the measures −2 log l, AIC, BIC results for the remission times of bladder cancer data

Estimates Statistics
Distributions α̂ λ̂ ĉ β̂ k̂ µ̂ σ̂ −2logl AIC BIC

W-L{LL}
0.3926 1.8489 1.6121 821.8 827.8 836.3(0.15)* (1.5689) (0.3916)

G-L{LL}
0.5187 2.1028 1.3848 0.8314 821.6 829.6 841.0(0.40) (1.53) (1.07) (0.59)

EW-L{E}
10.8715 1.1090 1.8021 1.3723 819.9 827.9 839.4(18.70) (0.83) (3.07) (0.97)

N-L{C}
0.1862 0.000049 2.728 0.5655 821.4 829.4 840.8(0.04) (0.00001) (1.46) (0.38)

W-L{E}
8.8627 1.4606 1.5114 820.0 826.0 834.5(7.4999) (0.868) (0.2764)

Mclomax 0.8085 11.2929 2.1046 1.506 5.1886 819.8 829.8 844.1(3.36) (15.82) (3.08) (0.24) (25.03)

BLomax 3.9191 23.9281 1.5853 1.1572 820.1 828.1 839.6(18.19) (27.34) (0.280) (5.02)

KwLomax 0.39191 12.2973 1.5162 12.0323 819.9 827.9 839.4(2.386) (17.32) (0.23) (87.14)
*Standard error.

The values of the AIC, BIC, and K-S test statistics are the same for both the KwLomax and EW-L{E} distributions. But,
the EW-L{E} distribution provides the best fit based on the W∗ statistic, and the McLomax distribution has the smallest A∗

statistic.
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Table 4. Goodness-of-fit tests for data 1

Statistics
Distributions K-S (P-value) A* W*

W-L{LL} 0.0491 (0.9167) 0.3412 0.0532
G-L{LL} 0.0465 (0.9451) 0.3023 0.0463
EW-L{E} 0.0395 (0.9883) 0.1693 0.0247
N-L{C} 0.0464 (0.9452) 0.2770 0.0411
W-L{E} 0.0409 (0.9828) 0.1761 0.0257

McLomax 0.0391 (0.9896) 0.1685 0.0254
BLomax 0.0405 (0.9846) 0.1900 0.0283

KwLomax 0.0389 (0.9902) 0.1727 0.0259

This application suggests that the four parameters EW-L{E} distribution is better than the KwLomax and McLomax dis-
tributions in fitting this data set. The values in Table 3 and 4 indicate that the three and four parameters members of the
T-Lomax{Y} family are having a better or similar fit to this data compared to the other mentioned distributions.

Recently, the Cauchy-Weibull{Logistic} (C-W{L}) distribution was used to fit this data set by Almheidat, Famoye, and
Lee (2015). The C-W{L} distribution provided an adequate fit to this data compared to other distributions used in their
comparison (see Almheidat et al. (2015)). But when compared to the T-Lomax{Y} members, the C-W{L} distribution
is considerd the least effective in fitting this data set; with the highest AIC, BIC and K-S, A∗, and W∗ statistics and the
smallest p-value for the K-S test.

 

Figure 6. Fitted PDFs of the T-Lomax{Y} distributions for for or data 1

This application shows the power of the T-Lomax{Y} family of distributions in fitting heavily right-skewed data set. Figure
6 illustrates the fitted density functions of the W-L{LL}, G-L{LL}, EW-L{E} and N-L{C}, along with the histogram of the
remission times of bladder cancer patients. The plots show the abilities of these members in fitting right skewed data set.

6.1.2 Data 2: Tribolium Castaneum Cultured at 24oC

This application uses an entomology data set about a sample of size 368 Tribolium Castaneum cultured at 24oC taken
from Park (1954). Alzaghal et al. (2016) used the W-L{E} distribtuion, a sub modal of the T-Lomax{exponential} family,
to fit this data set. The values of the W-L{E} distribtuion provided in Tables 5 and 6 are obtained from Alzaghal et al.
(2016). The MLEs of the parameters as well as the goodness-of-fit tests of the T-Lomax{Y} members W-L{LL}, G-L{LL},
EW-L{E} and N-L{C} with the other competing distributions McLomax, BLomax, and KwLomax are shown in Tables 5
and 6.

The five parameters McLomax distribution rank first based on −2 log l, AIC and K-S test statistics. However, the four
parameters G-L{LL} distribution rank first with the least A∗ and W∗ test values. With one less parameter and very similar
goodness of fit tests values, the G-L{LL} distribution is considered a strong replacement to the five parameters McLomax
distribution in fitting this data set. The other T-Lomax {Y} members of distributions have an adequate fit to the same data
set. This application illustrates the flexibility of the T-Lomax{Y} family of distributions in modeling symmetric data sets.
Figure 7 displays the histogram and the fitted T-Lomax{Y} family density functions to the Tribolium Castaneum data set.
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Table 5. MLEs and the measures −2 log l, AIC, BIC results for the Tribolium Castaneum cultured at 24oC

Estimates Statistics
Distributions α̂ λ̂ ĉ β̂ k̂ µ̂ σ̂ −2logl AIC BIC

W-L{LL}
0.2622 5.7287 11.2763 2979.1 2985.1 2996.9(0.14) (0.99) (4.98)

G-L{LL}
0.2242 2.1803 3.5591 0.1453 2968.8 2976.8 2992.4(0.66) (20.82) (1.94) (0.35)

EW-L{E}
4.2652 2.1655 0.3595 11.4468 2969.1 2977.1 2992.7(13.25) (0.74) (0.37) (9.14)

N-L{C}
0.6950 0.2325 16.6637 2.3014 2969.3 2977.3 2992.9(0.21) (0.44) (20.68) (3.20)

W-L{E}
12.63 0.5171 12.3971 2976.2 2982.1 2993.8(28.78) (0.52) (8.42)

Mclomax 278.58 4946.91 381.60 45.293 6.238 2966.6 2976.6 2996.2(37.15) (2.18) (358.97) (16.130) (2.67)

BLomax 1.5003 546.82 27.998 142.30 2973.2 2981.2 2996.8(0.82) (282.52) (1.39) (70.79)

KwLomax 1.1169 7.9334 66.9955 169.29 2968.7 2976.7 2992.3(0.78) (36.32) (123.27) (348.49)

Table 6. Goodness-of-fit tests for data 2

Statistics
Distributions K-S (P-value) A* W*

W-L{LL} 0.0902 (0.0049) 2.7506 0.4664
G-L{LL} 0.0838 (0.0113) 2.2153 0.3958
EW-L{E} 0.0834 (0.0119) 2.2381 0.3993
N-L{C} 0.0829 (0.0125) 2.2507 0.4014
W-L{E} 0.0904 (0.0048) 2.5902 0.4481

McLomax 0.0808 (0.0164) 2.2889 0.4042
BLomax 0.0842 (0.0108) 2.4418 0.4053

KwLomax 0.0849 (0.010) 2.2167 0.3961

 

Figure 7. Fitted PDFs of the T-Lomax{Y} distributions for data 2

6.1.3 Data 3: Breaking Stress of 50mm Carbon Fibers

The last shape a unimodal data can take is presented in this example. This application shows the ability of the T-Lomax{Y}
distributions in fitting real life left skewed data set. The data set is taken from Nichols and Padgett (2006) and it is about
the breaking stress of carbon fibers of 50 mm in length. The same T-Lomax{Y} members W-L{LL}, G-L{LL}, EW-L{E}
and N-L{C} with the other competing distributions McLomax, BLomax, and KwLomax are used to fit this data set. The
MLEs of the parameters as well as the goodness-of-fit tests results are provided in Tables 7 and 8.
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The T-Lomax{Y} distributions, the three parameters W-L{LL} and the four parameters N-L{C} distributions provide the
best fit to this data set. The lowest value of AIC and BIC provided by the W-L{LL} and N-L{C} distributions provides the
lowest −2 log l, K-S, A∗ and W∗ values and the highest p-value for the K-S.

Table 7. MLEs and the measures −2 log l, AIC, BIC results for the carbon fibers data set

Estimates Statistics
Distributions α̂ λ̂ ĉ β̂ k̂ µ̂ σ̂ −2logl AIC BIC

W-L{LL}
3.2031 12.77 2.787 171.7 177.7 184.3(9.24) (41.15) (0.85)

G-L{LL}
3.61 14.428 1.0298 0.37 171.7 179.7 188.5(27.28) (113.58) (1.45) (0.59)

EW-L{E}
1758.54 0.8004 544.85 3.9129 171.9 179.9 188.7(16.47) (0.35) (53.18) (1.07)

N-L{C}
1.364 0.6039 3.2494 1.235 170.5 178.5 187.2(0.60) (0.99) (3.32) (1.07)

W-L{E}
2772.99 906.18 3.4417 172.2 178.2 184.7(10.04) (30.73) (0.33)

Mclomax 14.277 80.50 6.7221 3.6284 170.76 172.2 182.2 193.1(62.31) (353.93) (4.81) (0.86) (444.47)

BLomax 9.823 601.05 7.512 163.79 182.4 190.4 199.2(10.57) (2306.9) (128) (459.78)

KwLomax 15.016 138.40 4.019 170.30 173.1 181.1 189.8(51.86) (477.25) (0.64) (293.59)

Recently, Fatima, Jan, and Ahmad (2018) fitted this data using the three parameters Rayleigh Lomax distribution. A
comparison between the Rayleigh Lomax distribution’s performance and the W-L{LL} distribution in fitting this data set
reveals that both distributions provide an adequate fit for this data set. But, the W-L{LL} distribution provides a better
fit with lower −2 log l, AIC, BIC, A∗ and W∗ values. This application shows the ability of the T-Lomax{Y} family of
distributions in providing a good fit for a left skewed data set. Figure 8 presents the plots of the T-Lomax{Y} members in
fitting the histogram of the carbon fibers data set.

Table 8. Goodness-of-fit tests for data 3

Statistics
Distributions K-S (P-value) A* W*

W-L{LL} 0.0821 (0.7653) 0.4741 0.0778
G-L{LL} 0.0821 (0.7659) 0.4736 0.0778
EW-L{E} 0.0808 (0.7816) 0.4855 0.0778
N-L{C} 0.0770 (0.8289) 0.3751 0.0591
W-L{E} 0.0825 (0.7595) 0.4866 0.0832

McLomax 0.0843 (0.7367) 0.5026 0.0859
BLomax 0.1272 (0.2360) 1.2552 0.2257

KwLomax 0.0884 (0.6803) 0.5498 0.0973

6.2 Application With Bimodal Data Set

Some members of the T-Lomax{Y} family of distributions has the ability of modeling real lifetime data set with bimodal
histogram in addition to unimodal data sets. In this subsection, one of the bimodal members of the T-Lomax{Y} family
of distributions is used to fit a bimodal medical data set and the goodness of fits tests results compared with other known
bimodal distributions used for fitting this data set are recorded in Tables 9 and 10.
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Figure 8. Fitted PDFs of the T-Lomax{Y} distributions for data 3

6.2.1 Data 4: Times to Death of Psychiatric Patients

This data set is taken from the survival data of 26 inpatients admitted to the University of Iowa hospitals during the years
1935-1948. The data consists of the age of each patient at first admission to the hospital, sex, number of years from
admission to death and is taken from Klein and Moeschberger (1997). This application considers the times to death of
the 26 psychiatric patients. A member of the T-Lomax{Y} family of distributions, namely the Normal-Lomax{Cauchy}
distribution, is used in fitting this data set. The N-L{C} distribution is revealing a superiority in fitting this bimodal data
set compared to the following bimodal distributions: the four parameters Beta-Normal (B-N) distribution defined by
Famoye, Lee and Eugene (2004), the four parameters Weibull-gamma{log-logistic} (W-G{LL}) distribution introduced by
Alzaatreh, Lee and Famoye (2015), and the Weibull Lindley (W-L) distribution defined by Asgharzadeh, Nadarajah, and
Sharafi (2018). The parameters estimates and the different test results are provided in Tables 9 and 10.

The values in Tables 9 and 10 indicate that the N-L{C} distribution provides a superior fit to this bimodal data among the
five distributions presented. It has the smallest −2 log l, AIC, BIC, K-S, A∗ and W∗ values and the highest p-value of the
K-S. the N-L{C} distribution gives the best fit in comparison with the other distributions performance.

Table 9. MLEs and the measures −2 log l, AIC, BIC results for the times to death of psychiatric patients data set

Estimates Statistics
Distributions α̂ λ̂ ĉ β̂ µ̂ σ̂ −2logl AIC BIC

N-L{C}
604.69 6176.50 6.2362 5.1188 176.6 184.6 189.6(61.5094) (6.0013) (2.5175) (1.8651)

B-N
0.1040 171.20 56.2885 6.2733 190.0 198.0 203.0(0.1086) (318.81) (11.040) (4.1968)

W-G{LL}
3.1294 729.9 0.3938 2.8238 186.7 194.7 199.8(2.3302) (948.98) (0.1394) (1.1677)

W-L
9.901 0.043 0.0283 186.8 192.8 196.5(2.822) (0.0105) (0.0101)

Table 10. Goodness-of-fit tests for data 4

Statistics
Distributions K-S (P-value) A* W*

N-L{C} 0.0990 (0.9606) 0.2068 0.0287
B-N 0.1801 (0.3676) 0.7497 0.1253

W-G{LL} 0.1951 (0.2757) 1.0374 0.1561
W-L 0.1158 (0.8765) 1.0035 0.0598

Recently, Asgharzadeh et al. (2018) used the W-L distribution to fit this data set and compared the results with seven
other distributions. The W-L distribution fits the data better in comparison with the seven other distributions. But, in
comparison with the N-L{C} distribution, the W-L distribution ranks second in fitting this data set. This application is
a good illustration of the power of a T-Lomax{Y} member, N-L{C}, in modeling a bimodal data set. In Figure 9, the
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plots support the results of Tables 9 and 10 in showing that the N-L{C} distribution provides the best fit to this bimodal
histogram.

 

Figure 9. Fitted PDFs for data 4

7. Summary

Using the T-X framework, this paper proposed a new generalization of the two-parameter Lomax distribution namely,
the T-Lomax{Y} families of distributions. From which, the T-Lomax{exponential}, T-Lomax{Weibull}, T-Lomax{log-
logistic}, T-Lomax{logistic}, T-Lomax{Cauchy} and T-Lomax{extreme value} families of distributions were investigated.
Some statistical properties of these defined new families including the moments and Shannon entropies were studied.
Four members of the T-Lomax{Y} family of distributions namely, the Weibull-Lomax {log-logistic} , gamma-Lomax{log-
logistic}, Exponentiated Weibull-Lomax{exponential} and Normal-Lomax{Cauchy} distributions were studied in more
details. The parameters of the Normal-Lomax{Cauchy} distribution are estimated by the method of maximum likelihood.
A simulation study to assess the performance of the parameters using the MLE method of the Normal-Lomax{Cauchy}
distribution is provided. Lastly, four different real data sets were used to demonstrate the flexibility of the T-Lomax{Y}
family of distributions in fitting the different shapes of real-world data from different sciences.
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