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Abstract

For square tables, the marginal homogeneity model which has a structure that the row marginal distribution is equal to
the column marginal distribution was proposed. Thereafter, various extended models of marginal homogeneity have been
proposed, these models can be classified into two types marginal inhomogeneity. On the other hand, various indexes
which measure the degree of deviation from marginal homogeneity have been proposed. However these indexes cannot
concurrently define degrees of deviation from marginal homogeneity with respect to two types marginal inhomogeneity.
This paper proposes a bivariate index that can concurrently define degrees of deviation from those. The proposed bivariate
index would also be utility for visually comparing degrees of deviation from marginal homogeneity in several tables using
confidence regions.
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1. Introduction

Square tables having the same ordinal classifications are generally obtained by two times repeated measurement or
matched pair data for categorical variables in clinical study and in the study of social mobility. Consider the data in
Tables 1a and 1b taken from Gane, Deray, Liaw, Lim, Lai, Rasenack, Wang, Papatheodoridis, Bisceglie, Buti, Samuel,
Uddin, Bosset, and Trylesinski (2014). In the intent-to-treat population of the study, 680 patients with chronic hepatitis
B were randomized in the telbivudine treatment group and 687 patients with chronic hepatitis B were randomized in the
lamivudine treatment group. The first time (baseline) and second time (end of study) of estimate glomerular filtration rate
(eGFR) were classified into 3 categories: < 60 mL/min/1.73 m2, 60 − 89 mL/min/1.73 m2, and ≥ 90 mL/min/1.73 m2,
respectively. The eGFR categories indicate that “ ≥ 90 ” is best category and “ < 60 ” is worst category.

Table 1. The two tables below are square tables of eGFR category at end of study by treatment groups, stratified by
eGFR category at baseline; source Gane et al. (2014)

(a) Telbivudine group
Baseline

End of study ≥90 60−89 <60 Total
≥90 382 185 1 568

60−89 36 71 4 111
<60 1 0 0 1
Total 419 256 5 680

(b) Lamivudine group
Baseline

End of study ≥90 60−89 <60 Total
≥90 366 123 2 491

60−89 78 106 4 188
<60 1 5 2 8
Total 445 234 8 687

For above data, we are interested in checking whether or not the marginal distribution of first time is equal to the marginal
distribution of second time. As the analysis of homogeneity of marginal probabilities, the marginal homogeneity model
which has a structure that the row marginal distribution is equal to the column marginal distribution was proposed by
Stuart (1955). Thereafter, various extended models of marginal homogeneity have been proposed, these models can be
classified into two types marginal inhomogeneity. One is the extended marginal homogeneity model which was proposed
by Tomizawa (1984). Second is the marginal logit model which was considered by McCullagh (1977). Furthermore
extended models for the extended marginal homogeneity model or the marginal logit model have been proposed (see,
e.g., Tahata and Tomizawa (2008) and Kurakami, Tahata and Tomizawa (2013)). On the other hand, various indexes that
measure the degree of deviation from marginal homogeneity have been proposed (see, for example, Tomizawa, Miyamoto
and Ashihara (2003) and Iki, Tahata and Tomizawa (2012)). However these existing indexes cannot concurrently define
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the degree of deviation from marginal homogeneity corresponding to the extended marginal homogeneity model and the
marginal logit model. We believe that for comparing degrees of deviation from marginal homogeneity in Tables A and B,
it is important that the index can concurrently define the degree of deviation from those. Because, the index corresponding
to the extended marginal homogeneity model may show that the degree of deviation from marginal homogeneity in Table
A is bigger than that in Table B, but the index corresponding to the marginal logit model may show that the degree of
deviation from marginal homogeneity in Table B is bigger than that in Table A. We will show to exist the above situation
using the artificial data. For measuring the degree of deviation from marginal homogeneity, we propose a bivariate index
that can concurrently define the degree of deviation from marginal homogeneity corresponding to the extended marginal
homogeneity model and the marginal logit model.

2. Existing Models and Indexes for Marginal Homogeneity

2.1 Notation and Existing Models

Consider a square table having the same ordinal classifications. Let pi j denote the cell probability in the ith row and jth
column of the table (i = 1, . . . ,R; j = 1, . . . ,R). The marginal homogeneity model, which was proposed by Stuart (1955),
is defined as follows

πi· = π·i for i = 1, . . . ,R, (2.1)

where πi· =
∑R

t=1 πit and π·i =
∑R

s=1 πsi. The marginal homogeneity model can be expressed using cumulative marginal
probabilities as follows

FX
i = FY

i for i = 1, . . . ,R − 1, (2.2)

where FX
i =

∑i
s=1 πs· and FY

i =
∑i

t=1 π·t. Since the cumulative marginal probabilities {FX
i } and {FY

i } contain the same
cell probability (for example, main diagonal cell probabilities), we introduce an another cumulative probability excluding
overlapped cell probabilities as follows

G1(i) =

i∑
s=1

R∑
t=i+1

πst and G2(i) =

R∑
s=i+1

i∑
t=1

πst.

Using the cumulative probabilities {G1(i)} and {G2(i)}, the marginal homogeneity model can also be expressed as follows

G1(i) = G2(i) for i = 1, . . . ,R − 1. (2.3)

Moreover, the marginal homogeneity model can be expressed as follows

H1(i) = H2(i) for i = 1, . . . ,R − 1, (2.4)

where H1(i) = FX
i (1− FY

i ) and H2(i) = (1−FX
i )FY

i . Thus, the marginal homogeneity model can be expressed using various
cumulative probabilities.

Thereafter, extended models of marginal homogeneity have been proposed. The extended marginal homogeneity model,
which was proposed by Tomizawa (1984), is defined as follows

G1(i) = τG2(i) for i = 1, . . . ,R − 1. (2.5)

This model is an extended model based on the form (2.3). A special case of this model obtained by putting τ = 1 is
equivalent to the marginal homogeneity model. The marginal logit model, which was proposed by McCullagh (1977), is
defined as follows

H1(i) = θH2(i) for i = 1, . . . ,R − 1. (2.6)

This model is an extended model based on the form (2.4). A special case of this model obtained by putting θ = 1 is
equivalent to marginal homogeneity model. Thereafter, the furthermore extension of extended marginal homogeneity and
marginal logit models were proposed by Tahata and Tomizawa (2008) and Kurakami et al. (2013), respectively.

For measuring goodness-of-fit of the model, test statistics are usually used. The family of power divergence test statis-
tics or ϕ-divergence test statistics contain well known the Pearson’s chi-squared statistic or likelihood ratio statistic as
special cases (see, Read and Cressie 1988, Pardo, 2006). We do not focus on measuring goodness-of-fit of the marginal
homogeneity model, are interested in comparing degrees of deviation from marginal homogeneity. When the marginal
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homogeneity model does not hold for several tables, we are interested in comparing degrees of deviation from it. Howev-
er, it is inappropriate for comparing degrees of deviation from marginal homogeneity in several tables using test statistics
because test statistics depend on sample size and dimension R. When two data underlying same cell probability pi j have
different sample size, test statistics values unequal although degrees of deviation from the model are same. For comparing
degrees of deviation from marginal homogeneity in several tables, we are interested in an index value that does not depend
on sample size and dimension R.

2.2 Index ϕ(λ) for Measuring Marginal Inhomogeneity Using Cumulative Probabilities of (2.3)

Tomizawa et al. (2003) proposed the index ϕ(λ) that measures the degree of deviation from marginal homogeneity. The
index ϕ(λ) does not depend on sample size and dimension R. Assuming that G1(i) +G2(i) > 0 for i = 1, . . . ,R− 1, the index
ϕ(λ) is defined as follows:

ϕ(λ) =
λ(λ + 1)
2λ − 1

I(λ)
G (λ > −1),

where

I(λ)
G =

1
λ(λ + 1)

R−1∑
i=1

G∗1(i)


(G∗1(i)

q∗i

)λ
− 1

 +G∗2(i)


(G∗2(i)

q∗i

)λ
− 1


 ,

with

G∗1(i) =
G1(i)

δ
, G∗2(i) =

G2(i)

δ
, q∗i =

G∗1(i) +G∗2(i)

2
, δ =

R−1∑
i=1

(G1(i) +G2(i)).

Note that I(λ)
G is the power divergence between {G∗1(i),G

∗
2(i)} and {q∗i , q∗i } for i = 1, . . . ,R−1, and for λ→ 0 I(0)

G is Kullback-
Leiblar information between them. The index ϕ(λ) has the following characteristics: (1) ϕ(λ) lies between 0 and 1; (2)
ϕ(λ) = 0 if and only if the marginal homogeneity model holds; and (3) ϕ(λ) = 1 if and only if the degree of deviation from
marginal homogeneity is maximal (namely, for i = 1, . . . ,R − 1 either G1(i) = 0 or G2(i) = 0).

Under the extended marginal homogeneity model (2.5), the index ϕ(λ) can be simply (as a function of parameter τ)
expressed as

ϕ(λ) =
1

2λ − 1

2λ
( τ

τ + 1

)λ+1
+

(
1

τ + 1

)λ+1
 − 1

 (λ > −1). (2.7)

Thus, we see that the index ϕ(λ) can measure the degree of deviation from marginal homogeneity corresponding to the
extended marginal homogeneity model. On the other hand, under the marginal logit model (2.6), the index ϕ(λ) cannot be
simply (as a function of parameter θ) expressed.

2.3 Index ψ(λ) for Measuring Marginal Inhomogeneity Using Cumulative Probabilities of (2.4)

Iki et al. (2012) proposed the index ψ(λ) that measures the degree of deviation from marginal homogeneity. The index ψ(λ)

does not depend on sample size and dimension R. Assuming that H1(i) + H2(i) > 0 for i = 1, . . . ,R − 1, the index ψ(λ) is
desined as follows:

ψ(λ) =
λ(λ + 1)
2λ − 1

I(λ)
H (λ > −1),

where

I(λ)
H =

1
λ(λ + 1)

R−1∑
i=1

H∗1(i)


(H∗1(i)

Q∗i

)λ
− 1

 + H∗2(i)


(H∗2(i)

Q∗i

)λ
− 1


 ,

with

H∗1(i) =
H1(i)

∆
, H∗2(i) =

H2(i)

∆
, Q∗i =

H∗1(i) + H∗2(i)

2
, ∆ =

R−1∑
i=1

(H1(i) + H2(i)).

Note that I(λ)
H is the power divergence between {H∗1(i),H

∗
2(i)} and {Q∗i ,Q∗i } for i = 1, . . . ,R − 1, and for λ → 0 I(0)

H is
Kullback-Leiblar information between them. The index ψ(λ) has the following characteristics: (1) ψ(λ) lies between 0 and
1, (2) ψ(λ) = 0 if and only if the marginal homogeneity model holds, and (3) ψ(λ) = 1 if and only if the degree of deviation
from marginal homogeneity is maximal (namely, for i = 1, . . . ,R − 1 either H1(i) = 0 or H2(i) = 0).

Under the marginal logit model (2.6), the index ψ(λ) can be simply (as a function of parameter θ) expressed as

ψ(λ) =
1

2λ − 1

2λ
( θ

θ + 1

)λ+1

+

(
1

θ + 1

)λ+1
 − 1

 (λ > −1). (2.8)
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Thus, we see that the index ψ(λ) can measure the degree of deviation from marginal homogeneity corresponding to the
marginal logit model. On the other hand, under the extended marginal homogeneity model (2.5), the index ψ(λ) cannot be
simply (as a function of parameter τ) expressed.

2.4 Other Indexes for Measuring Marginal Inhomogeneity

For square tables with ordered categories, some indexes that measure the degree of deviation from marginal homogeneity
have been proposed other than indexes ϕ(λ) and ψ(λ). For example, Tahata, Tajima and Tomizawa (2006), Tahata, Iwashita
and Tomizawa (2006), and Tahata, Iwashita and Tomizawa (2008). Under the extended marginal homogeneity model or
the marginal logit model, these indexes cannot be simply (as a function of parameter τ or θ) expressed such as the indexes
ϕ(λ) and ψ(λ). Thus, these indexes cannot measure the degree of deviation from marginal homogeneity corresponding to
the extended marginal homogeneity model or the marginal logit model.

3. Bivariate Index and Confidence Region

We propose a bivariate index that can concurrently define the degree of deviation from marginal homogeneity correspond-
ing to the extended marginal homogeneity model and the marginal logit model. The proposed bivariate index would
also be utility for visually comparing degrees of deviation from marginal homogeneity in several tables using confidence
regions.

3.1 Definition of the Bivariate Index

Assuming that G1(i) +G2(i) > 0 and H1(i) + H2(i) > 0 for i = 1, . . . ,R − 1, we propose the bivariate index

Φ(λ) =

(
ϕ(λ)

ψ(λ)

)
; a 2 × 1 vector.

It has the properties: (1) Φ(λ) = (0, 0)′ if and only if the marginal homogeneity model holds, (2) Φ(λ) = (1, 1)′ if and only
if the degree of deviation from marginal homogeneity is maximal, in the sense that G1(i) = 0 and H1(i) = 0 (then G2(i) > 0
and H2(i) > 0) or G2(i) = 0 and H2(i) = 0 (then G1(i) > 0 and H1(i) > 0) for i = 1, . . . ,R − 1. Note that the structure of
maximum degree of deviation from marginal homogeneity for the proposed bivariate index Φ(λ) is different from that for
indexes ϕ(λ) and ψ(λ). The proposed bivariate index is constructed based on similar idea to Ando, Tahata and Tomizawa
(2017) and Ando, Tahata and Tomizawa (2019). Ando et al. (2017) and Ando et al. (2019) proposed bivariate indexes
corresponding to the model that is different the marginal homogeneity model.

Indexes ϕ(0) and ψ(0) indicate the minimum Kullback-Leiblar information between two distribution, respectively. However,
when λ , 0, indexes ϕ(λ) and ψ(λ) cannot expressed as the minimum power divergence. Therefore, if the user wants
to measure the degree of deviation from marginal homogeneity by using the minimum power divergence between two
distribution, then the user should use the bivariate index Φ(0).

3.2 A Confidence Region for the Bivariate Index

Let
n = (n11, n12, . . . , n1R, n21, n22, . . . , n2R, . . . , nR1, nR2, . . . , nRR)′; a R2 × 1 vector,

π = (π11, π12, . . . , π1R, π21, π22, . . . , π2R, . . . , πR1, πR2, . . . , πRR)′; a R2 × 1 vector.

Assuming that n is according to a multinomial distribution Multi(N; π) with sample size N (=
∑∑

ni j). Then
√

N(π̂−π) is
according to asymptotically a R2-dimensinal normal distribution with mean zero vector and covariance matrix Diag(π) −
ππ′, where π̂ = n/N and Diag(π) is diagonal matrix (see, e.g., Agresti, 2013, p. 590). To estimate the indexes, ϕ̂(λ) and
ψ̂(λ) are obtained by ϕ(λ) and ψ(λ) with {πi j} replaced by {π̂i j}, respectively, where π̂i j = ni j/N. The Φ̂(λ) is obtained by
Φ(λ) with ϕ(λ) and ψ(λ) replaced by ϕ̂(λ) and ψ̂(λ), respectively. Let (∂Φ(λ)/∂π′) be the 2 × R2 matrix that the entry in row k
and column l is ∂Φ(λ)

k (π)/∂πl, where Φ(λ)
1 and Φ(λ)

2 are ϕ(λ) and ψ(λ), respectively, and πl is the lth element of π. When N
approaching infinity, the estimated bivariate index can be approximated by

Φ̂(λ) = Φ(λ) +

(
∂Φ(λ)

∂π′

)
(π̂ − π) + o(∥ π̂ − π ∥),

where o(∥ π̂ − π ∥) converges to (0, 0)′. Using the delta method (see, Agresti, 2013, Sec. 16.1),
√

N(Φ̂(λ) − Φ(λ)) has
asymptotically a bivariate normal distribution with mean zero vector and covariance matrix

Σ =

(
∂Φ(λ)

∂π′

)
(Diag(π) − ππ′)

(
∂Φ(λ)

∂π′

)′
=

(
σ11 σ12
σ21 σ22

)
,
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with σ12 = σ21. The elements σ11, σ12 and σ22 are expressed as follows:

σ11 =

(
∂ϕ(λ)

∂π′

)
(Diag(π) − ππ′)

(
∂ϕ(λ)

∂π′

)′
=

1
δ2

R−1∑
s=1

R∑
t=s+1

[
πst(v

(λ)
st )2 + πts(w

(λ)
ts )2

]
,

σ12 =

(
∂ϕ(λ)

∂π′

)
(Diag(π) − ππ′)

(
∂ψ(λ)

∂π′

)′
=

1
δ∆

R−1∑
s=1

R∑
t=s+1

[
πstv

(λ)
st V (λ)

st + πtsw
(λ)
ts V (λ)

ts

]
,

σ22 =

(
∂ψ(λ)

∂π′

)
(Diag(π) − ππ′)

(
∂ψ(λ)

∂π′

)′
=

1
∆2

[ R∑
s=1

R∑
t=1

πst(V
(λ)
st )2

]
,

where for λ , 0,

v(λ)
st =

2λ

2λ − 1

[ t−1∑
i=s

{(
Gc

1(i)

)λ
+ λ

((
Gc

1(i)

)λ − (
Gc

2(i)

)λ)
Gc

2(i)

}
− (t − s)

(2λ − 1)ϕ(λ) + 1
2λ

]
,

w(λ)
ts =

2λ

2λ − 1

[ t−1∑
i=s

{(
Gc

2(i)

)λ
+ λ

((
Gc

2(i)

)λ − (
Gc

1(i)

)λ)
Gc

1(i)

}
− (t − s)

(2λ − 1)ϕ(λ) + 1
2λ

]
,

V (λ)
st =

2λ

2λ − 1

[ (2λ − 1)(1 − ψ(λ))
2λ

R−1∑
m=1

(
∂H1(m)

∂πst
+
∂H2(m)

∂πst

)

−
R−1∑
i=1

[∂H1(i)

∂πst

{
1 − (Hc

1(i))
λ − λHc

2(i)

(
(Hc

1(i))
λ − (Hc

2(i))
λ
)}
+
∂H2(i)

∂πst

{
1 − (Hc

2(i))
λ − λHc

1(i)

(
(Hc

2(i))
λ − (Hc

1(i))
λ
)} ]]

,

and for λ = 0,

v(0)
st =

1
log 2

 t−1∑
i=s

log Gc
1(i) − (t − s)(ϕ(0) − 1) log 2

 ,
w(0)

ts =
1

log 2

 t−1∑
i=s

log Gc
2(i) − (t − s)(ϕ(0) − 1) log 2

 ,
V (0)

st =
1

log 2

[
log 2(1 − ψ(0))

R−1∑
m=1

(
∂H1(m)

∂πst
+
∂H2(m)

∂πst

)
+

R−1∑
i=1

(
∂H1(i)

∂πst
log Hc

1(i) +
∂H2(i)

∂πst
log Hc

2(i)

) ]
,

with

Gc
1(i) =

G1(i)

G1(i) +G2(i)
, Gc

2(i) =
G2(i)

G1(i) +G2(i)
, Hc

1(i) =
H1(i)

H1(i) + H2(i)
, Hc

2(i) =
H2(i)

H1(i) + H2(i)
,

∂H1(i)

∂πst
=

i∑
k=1

R∑
l=i+1

{I(s = k)π·t + I(t = l)πs·} ,
∂H2(i)

∂πst
=

R∑
k=i+1

i∑
l=1

{I(s = k)π·t + I(t = l)πs·} ,

and where I(·) is the indicator function, I(·) = 1 if true, 0 if not. Note that the asymptotic variances σ11 and σ22 of ϕ(λ)

and ψ(λ), respectively, have been shown by Tomizawa et al. (2003) and Iki et al. (2012).

An approximate 100(1 − α)% confidence region of the bivariate index Φ(λ) is derived by

N
(
Φ̂(λ) − Φ(λ))′Σ̂−1(Φ̂(λ) − Φ(λ)) ≤ χ2

(1−α;2),

where χ2
(1−α;2) is the 1 − α quantile of the chi-square distribution with two degrees of freedom and Σ̂ is obtained by Σ with

{πi j} replaced by {π̂i j}.
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4. Numerical Examples

In this Secttion, using numerical examples we will show that the proposed bivariate index Φ(λ) is utility.

4.1 The Utility of Concurrently Characterizing

For comparing degrees of deviation from marginal homogeneity in two Tables, it is important that the index can concur-
rently define degrees of deviation from marginal homogeneity corresponding the extended marginal homogeneity model
and the marginal logit model. We will show the above importance using the artificial data such as Tables 2a and 2b.
These data are 4 × 4 square tables with n = 1000 each. For these data, using the index ϕ(0) we can judge that the degree
of deviation from marginal homogeneity in Table 2b is bigger than that in Table 2a, using the index ψ(0) we can judge
that the degree of deviation from marginal homogeneity in Table 2a is bigger than that in Table 2b. Thus, for comparing
degrees of deviation from marginal homogeneity in two Tables, the conclusion may change by using which of indexes ϕ(λ)

and ψ(λ). On the other hand, using the index Φ(0), from Figure 1, we can judge that there is no the magnitude relationship
between the degree of deviation from marginal homogeneity in Table 2a and that in Table 2b. Thus, for comparing degrees
of deviation from marginal homogeneity, we suggest that the analyst should use the proposed bivariate index Φ(λ).

Table 2. Artificial square tables; n = 1000 for each

(a)
101 58 85 95
33 114 45 65
23 43 96 71
26 31 32 82

(b)
196 24 38 38
8 188 27 27
5 10 206 19
2 6 6 200

Table 3. Estimates of ϕ(0) and ψ(0), approximate standard errors for ϕ̂(0) and ψ̂(0), and approximate 95% confidence
intervals for ϕ(0) and ψ(0), for the data of Tables 2a and 2b

Estimated Standard Confidence
index error interval

(a) For Table 2a
ϕ(0) 0.1467 0.0265 (0.0947, 0.1987)
ψ(0) 0.0968 0.0175 (0.0626, 0.1311)

(b) For Table 2b
ϕ(0) 0.4108 0.0621 (0.2891, 0.5324)
ψ(0) 0.0314 0.0062 (0.0193, 0.0435)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

φ

ψ

2a

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

2b

Figure 1. Approximate 95% confidence regions for Φ(0), for the data of Tables 2a and 2b
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4.2 Example of Real Data

For the data in Tables 1a and 1b, we are interested in whether patients in the telbivudine group are better than patients in
the lamivudine group about the change from baseline to end of study in eGFR category as a clinical interest. Generally,
when there is the treatment effect, the marginal homogeneity model does not hold. Thus, it can be assumed the bigger the
degree of deviation from marginal homogeneity, the higher the treatment effect.

We shall compare degrees of deviation from marginal homogeneity in Tables 1a and 1b using the confidence regions for
Φ(0). The estimates of Φ(0) are

Φ̂(0) =

(
0.3517
0.2072

)
and Φ̂(0) =

(
0.0349
0.0162

)
,

respectively, and the estimates of Σ are

Σ̂ =

(
2.3317 1.1678
1.1678 0.8108

)
and Σ̂ =

(
0.3125 0.1428
0.1428 0.0674

)
,

respectively. From Figure 2, we can see that the degree of deviation from marginal homogeneity in Table 1a is bigger than
that in Table 1b, and patients in the telbivudine group are better than patients in the lamivudine group about the change
from baseline to end of study in eGFR category.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

φ

ψ

1a

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1b

Figure 2. Approximate 95% confidence regions for Φ(0), for the data of Tables 1a and 1b

5. Concluding Remarks

This paper proposed a bivariate index which can concurrently define degrees of deviation from marginal homogeneity cor-
responding to the extended marginal homogeneity model and the marginal logit model. We believe that it is important to
concurrently define degrees of deviation from marginal homogeneity corresponding to the extended marginal homogene-
ity model and the marginal logit model. Because, (1) for comparing degrees of deviation from marginal homogeneity in
two Tables, the conclusion may change by using which of indexes ϕ(λ) and ψ(λ) as shown in Sectction 4.1, and (2) indexes
ϕ(λ) and ψ(λ) are not independent as shown in Secttion 3.2. In addition, the proposed bivariate index would be utility for
visually comparing degrees of deviation from marginal homogeneity using confidence regions. For comparing degrees of
deviation from marginal homogeneity in several square contingency tables, we believe that the proposed bivariate index
produces results that are easier to interpret than existing indexs.
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