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Abstract 

This paper reports three simulation studies conducted to identify the contextual conditions leading to the observation of 

a difficulty factor in confirmatory factor analysis. The data of each study were generated to show one underlying source 

of responding only whereas the difficulties of the simulated items constituting the contextual condition were varied. The 

first study showed that a broad range of difficulties of items was insufficient for driving a difficulty factor. The second 

study revealed that very large and small difficulties of the same size could lead to a difficulty factor if the confirmatory 

factor model included two correlated factors. In the third study a subgroup of simulated items showed very large 

difficulties of the same size while the difficulties of the other simulated item were varied. In this study almost all 

combinations of difficulties led to the observation of a difficulty factor that was correlated or uncorrelated with the 

genuine factor. 

Keywords: difficulty factor, simulation, binary data, difficulty, variance scaling 

1. Introduction 

1.1 The Difficulty Factor as a Research Problem 

The difficulty factor is described as a factor with factor loadings related to the difficulties of items (Ferguson, 1941). It 

is usually observed in addition to another factor that is associated with the latent source of responding as, for example, 

an ability or trait. Following McDonald (1965), we characterize the factor reflecting the latent source as genuine factor 

of content. Whereas the latent source underlying the data is thought to drive the genuine factor, the difficulty factor is 

considered as a phenomenon that associates with the difficulties of items. If the data require this difficulty factor for 

achieving good model fit, the typical model of measurement of confirmatory factor analysis is insufficient since it 

includes one factor only (Graham, 2006). This factor that is also referred to as latent variable can only represent the 

latent source of responding whereas the source of the neglected difficulty factor causes model misfit. Advanced 

confirmatory factor models as, for example, the models employed in multitrait-multimethod research (Byrne, 2016) 

allow for a second factor. Such a factor can capture the variation that is thought to lead to a difficulty factor. However, 

the additional factor need not to be a difficulty factor, it can also be a substantial factor. Neither the conditions driving a 

difficulty factor nor the features characterizing a difficulty factor appear to be especially clear. 

The research work reported in this paper investigates the condition driving the difficulty factor in the framework of 

confirmatory factor analysis in order to improve the identifiability of a difficulty factor. Special emphasis is given to the 

role of the similarity between very easy and very difficult items. Furthermore, the possibility of identifying a specific 

factor as difficulty factor is investigated. 

1.2 Explanations of the Difficulty Factor 

The interest in the difficulty factor as research topic appears to have been stimulated by an unusual finding reported by 

Guilford (1941). In investigating the factorial structure of the Seashore Test of Pitch Discrimination Guilford observed a 

factor that appeared to reflect the difficulties of the items instead of providing the basis for a conclusive interpretation. 

Ferguson (1941) proposed contradictory aims of test construction as reason for the observation of this factor. They were 

consistency and discrimination that demanded for sets of items that were homogeneous respectively heterogeneous 

according to difficulty. According to Ferguson a homogeneous set of items could be expected to give rise to a 

correlation or covariance matrix with a low rank (ideally the rank of one). If this matrix was input to factor analysis, it 

was unlikely that another factor emerged besides the genuine factor representing the content of the scale. In contrast, 

discrimination required heterogeneity of the difficulties of the items to assure discriminability in various ranges of an 

ability or trait dimension. In the context of assessment with binary items different difficulties could be expected to lead 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 8, No. 5; 2019 

2 

to different upper limit for the correlations among items. As a consequence of this variability, the rank the 

corresponding correlation or covariance matrix would be larger than one. A rank larger than one meant at least one 

additional factor besides the genuine factor. According to Ferguson “[the] second factor … represents a difference in 

difficulty between a particular test and the average difficulty of all tests” (p. 326). 

Later on Gibson (1959, 1960) pointed out that difficulty factors originated from mutual non-linear regressions between 

tests, and McDonald (1965) proposed non-linear factor analysis for capturing the difficulty factor. The model for 

non-linear factor analysis comprised linear and non-linear components for the genuine factors of content and spurious 

factors, respectively. The difficulty factor was conceptualized as spurious factor and represented by the quadratic 

component of the polynomial. In a subsequent publication McDonald and Ahlawat (1974) provided an example of such 

a difficulty factor that was assumed to originate from non-linear item characteristics. According to the authors the 

observation of a spurious factor should only by possible if the analysis of the data was conducted by a model that 

included a non-linear component. This remark even called Guilford’s (1941) observation of a difficulty factor into 

question since non-linear factors analysis was not available at the time of the first observation of a difficulty factor. 

The use of special statistical procedures or parceling items is recommended for dealing with the source leading to the 

difficulty factors (Floyd & Widaman, 1995). The special statistical procedures for investigating dichotomous data 

appear to have to far not found wide-spread acceptance. The presently preferred way of investigating dichotomous data 

comprises tetrachoric correlations in combination with a linear model of measurement (Muthen, 1984). The mentioned 

parceling procedure requires the computation of subscores for small groups of items. If these groups include items 

showing markedly different difficulties, most of the differences due to different difficulties are averaged out (Kishton & 

Widaman, 1994). This means the elimination of what is supposed to drive a difficulty factor. 

Bandalos and Gerster (2016) introduce a new perspective into the discussion on the source of the difficulty factor. They 

highlight the similarity among the difficulties of items. This perspective suggests that it is not the broad range of item 

difficulties per se but the existence of subsets of items showing the same degree of difficulty that drives a difficulty 

factor. Such a subset causes an inhomogeneity in the sense that the items of this subset are very homogeneous whereas 

the remaining items show a not so high degree of homogeneity. Such homogeneity of a few very difficult items is likely 

to give rise to an additional factor in factor analysis, and the factor loadings on this factor may show a pattern that can 

be interpreted in favor of a difficulty factor: large factor loadings of the items of the subset of difficult items and small 

factor loadings of the other items. 

Finally, it needs to be mentioned that there is another source that can lead to an additional factor besides the genuine 

factor of content and that may be confused with the difficulty factor. It is the factor originating from the effect of the 

item positions. Although it was shown that there is no correspondence of the difficulty factor and the factor due to the 

item-position effect (Schweizer & Troche, 2018; Zeller, Reiss, & Schweizer, 2017), it is possible that there is a 

confusion of these factors and that the factor due to the item-position effect contributes to the observation of a difficulty 

factor. 

In sum, the difficulty factor is a factor with factor loadings showing sizes that are related to the difficulties of the items 

while a conclusive interpretation is not achievable. This difficulty factor is a specific factor in the sense that there are 

only a few high factor loadings associated with high difficulties. It is observed in investigating sets of dichotomous 

items showing a rather broad range of difficulties of items. Furthermore, similarity of the difficulties of items is 

considered as source driving the difficulty factor in dichotomous data. 

1.3 Specificities of the Method for Investigating the Difficulty Factor  

There is agreement that the difficulty factor is associated with a specific pattern of difficulties of items (e.g. Bandalos & 

Gerster, 2016; Ferguson, 1941). Therefore, the key to the identification of what exactly drives the difficulty factor is the 

manipulation of the difficulties in a simulation study. The difficulties of items can even be manipulated independently 

of the basic structure of simulated data. This property enables to rule out that an additional factor is rooted in the basic 

structure of the data if there is a basic structure that gives rise to one latent variable only and is kept constant. The 

manipulation of the difficulties can be achieved by computing parcels (Kishton & Widaman, 1994) or dichotomization 

(Schweizer & Troche, 2018). Whereas the manipulation by parceling is restricted to achievable means, there is no such 

restriction to the method of dichotomization. 

Data showing the expected basic structure can be generated by a procedure described by Jöreskog and Sörbom (2001). 

The expected basic structure is induced by the pp relational pattern P. This pattern includes a completely uniform 

matrix as one component and a diagonal matrix with uniform entries in the main diagonal as another component. The 

uniform matrix is achieved by the multiplication of uniform p1 column vectors c with the uniform p1 row vectors 

c
T and the pp diagonal matrix U by assigning the same value u (0 < u) to all entries of the main diagonal uii = u (i = 

1, …, p): 
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                                    UλλP  T
cc    . (1) 

The vector c can be perceived as vector of factor loadings. Uniformity is achieved by selecting the same constant 

number c (0 < c < 1) for all entries: 
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This way of generating data creates characteristics that are in line with the tau-equivalent model of measurement (Lord 

& Novick, 1968): 

                                       ετx    (3) 

where the p1 vector x  represents the centered data, the p1 vectorthe true components and the p1 vector ε the 

error components. The latent variable 
 

that is added in parentheses is no explicit part of the original tau-equivalent 

model. We added it because is reflects the latent source of responding that is the same for all items. A characteristic of 

this model is that the entries of  correspond to each other: 
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with 0 <  . For considering this model in combination with confirmatory factor analysis, its formal structure has to be 

adapted to the structure of the congeneric model of measurement (Jöreskog, 1971) that is nowadays the standard model 

of confirmatory factor analysis: 

                                     δλx   cc   . (5) 

The adaptation requires that the component   is replaced by the product of the p1 vectorof factor loadings and 

  without parentheses. We employ the subscript c to signify that the equality assumption is made (i = j, i,j = 1, …, p) 

that characterizes the tau-equivalent model. Furthermore, δ replaces . In the absence of contextual sources 

influencing the structure of data, this model can be expected to provide a good account of data originating from a 

relational pattern according to the first equation. 

In order to find out about the source driving the difficulty factor, conditions need to be established that may lead 

respectively not lead to a difficulty factor according to what is already known about this factor. The literature on the 

difficulty factor suggests types of patterns of difficulties characterizing dichotomous data as candidates. Such patterns 

are achievable by dichotomizing continuous and normally distributed data. Dichotomization means that the np matrix 

Mcontinuous including continuous and normally distributed data is transformed into the np matrix Mdichotomous of 

dichotomous and binomially distributed data. Dichotomization can be perceived as function dichot ( ) that accomplishes 

the transformation: 

                             continuoussdichotomou dichot MM   . (6) 

This function can be defined to yield either zero or one for each element mij,continuous of Mcontinuous with respect to the 

cutoff j that is specific for column j (j = 1, …, p): 

                         









jij

jij

ij m

m
m





continuous,

continuous,

continuous, for1

for0
dichot  . (7) 

The cutoffs need to be selected to achieve specific patterns of difficulty. A broad range of difficulties (Ferguson, 1941; 

McDonald & Ahlawat, 1974) can be realized by selecting a broad range of cutoffs. The high degree of similarity 
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between very difficult and very easy items (Bandalos & Gerster, 2016) is achievable by the same high and low cutoffs 

for subsets of items. 

If a specific difficulty condition, i.e. a specific pattern of difficulties of items, creates a difficulty factor, this should be 

apparent as model misfit in confirmatory factor analysis by the one-factor model. In contrast, the two-factor 

confirmatory factor model with one factor specified to reflect the pattern of difficulties should lead to good model fit. 

The formal description of this model is given by 

                                 δλλx  dd cc    . (8) 

This model can be perceived as extension of the one-factor model. It comprises the additional component ddλ  for 

representing the contribution of the difficulty factor to the response. The p1 vector d of factor loadings and the 

corresponding latent variable d constitute this component. Both the vector and the latent variable are identified by the 

subscript d to make the association with the difficulty factor obvious. 
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When fixing factor loadings this way, the exact sizes of the entries are not important but the relationships among the 

assigned numbers must be accurate. Deviations from the exact size are compensated by the estimation of the variance 

parameter d  (Schweizer, Troche, & DiStefano, 2019). If the relationships are accurate, the estimation of d is 

sufficient for achieving a good account of the data. Furthermore, the size of the estimate of the variance parameter d
signifies whether the factor accounts for a substantial or a negligible amount of variance. 

Another important aspect of the model is the specification of the relationship among the latent variables. There is the 

possibility to assume that the sources underlying the genuine factor and the additional factor are independent of each 

other. In this case the covariance parameter cd  needs to be specified to zero, 

                                        0cd   . (10) 

This possibility excludes that the additional factor also taps the latent source of the genuine factor. The other possibility 

is estimating the covariance parameter. Selecting this possibility means that the estimation of the variance parameter can 

yield any value from the set of real numbers, cd , but only positive numbers signify a valid result since variances 

have to be positive. 

1.4 The Variance Estimates as Sources of Information 

Confirmatory factor analysis as method for investigating the structural validity of scales relies on the outcome of 

investigating model fit (Deng, Yang, & Marcoulides, 2018). If the model of measurement fits to the structure of the data, 

good model fit can be expected. Since such investigations are mostly conducted on the basis of the congeneric model of 

measurement (Jöreskog, 1971), data originating from a uniform relational pattern are likely to yield good model fit 

whereas inhomogeneity can be expected to lead to model misfit. The configuration of difficulties described by Bandalos 

and Gerster (2016) can be perceived as such inhomogeneity. One way of dealing with such inhomogeneity is replacing 

the one-factor model of measurement by a two-factor model. If the two-factor model leads to good model fit, this result 

implicitly signifies that there is additional variation, which is not captured by the first factor but by the second one. 

However, the source of the variation captured by the second factor is not completely clear. There is the possibility of 

additional variation that is due to the difficulties of the items. This possibility reflects Ferguson’s (1941) argument that 

heterogeneity of difficulties increases the rank of a matrix. Another possibility is that the variation due to the latent 

source is split up into two parts and each factor captures one of these parts. A further possibility could be that the factors 

account for the same variance. Allowing the factors to correlate with each other enables this possibility. In order to find 

out about the nature of the variation that is captured by the factors, the variance estimates c  and d need to be 

investigated. Furthermore, it is necessary to estimate the whole variance at the latent level. We conceive the whole 

variance as variance of the sum of the two latent variables var( c + d): 
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                             dccddcdc 2varvarvar SDSDr   . (11) 

Since the available scaling methods for the variances of latent variables lead to different estimates, it is necessary to 

assure comparability of the variances by the selection of an appropriate scaling method (Schweizer, Troche, & Distefao, 

2019). Criterion-based scaling with squared factor loadings can establish comparability. If the criterion number of these 

methods is set equal to one, reasonably large variance estimates are achievable (Schweizer, Troche, & Reiß, 2017). 

1.5 Objectives  

The first objective was to find out whether a broad range of difficulties of items impaired model fit in comparison to 

difficulties of the same size when investigated by the one-factor model. In addition it was to be investigated whether 

including an additional factor with factor loadings according to the difficulties of the items improved model fit. The 

second objective focused on high and low difficulties of items of the same size. It was to be investigated whether 

subsets of items showing the same high or low difficulties led to a worse model fit than items showing the same 

medium difficulty. Besides the one-factor model a two-factor model was to be employed. The factor loadings of the 

second factor of the two-factor model had to reflect the factor loadings. The third objective highlighted the combination 

of similarity and very large sizes of the difficulties of one subset of items. This investigation was expected to reveal 

whether having one subset of item with the same extremely high difficulty impaired model fit. The fourth aim was to 

explore whether and how the variance estimates of the factors changed as a function of the difficulties of the items and 

the characteristics of the model. Further insight into what stimulated the difficulty factor was expected from this 

objective.  

2. The Effect of a Broad Range of Difficulties of Items - Study 1 

2.1 Introduction 

Since this study was designed according to the first objective, it was necessary to generate data according to one 

underling source of responding in combination with different ranges of the difficulties of items. Following the reasoning 

by Ferguson (1941) and McDonald and Ahlawat (1974), it was expected that increasing the range of the difficulties of 

items would impair model fit when the investigation was conducted by the one-factor confirmatory factor model but not 

when using the two-factor model. 

2.2 Method 

Data were generated according to one latent source of responding, as is described in the theoretical section. The factor 

loadings for the generation of the relational pattern were specified to 0.4 and the unique variances were set to 0.84. 

Two-hundred matrices were generated as recommended by Bandalos and Gagné (2012) for simulation studies. We 

considered the columns of the generated 500  20 matrices as simulated items and the rows as simulated test takers. 

Subsequently, the continuous and normally distributed data were transformed into dichotomous data in such a way that 

the difficulties linearly increased from the lower to upper limits. These limits were 0.4 and 0.6, 0.3 and 0.7, 0.2 and 0.8, 

0.1 and 0.9. Furthermore, equal mean difficulties (0.5-0.5) were considered; they served as comparison level. 

Probability-based covariances were computed and used as input to confirmatory factor analysis. Furthermore, for 

overcoming the difference between the binomially distributed data and the latent variables following the normal 

distribution, a link transformation was performed in modeling the data (McCullagh & Nelder, 1985; Schweizer, 2013; 

Schweizer, Ren, & Wang, 2015). Otherwise tetrachoric correlations would have to be computed. However, tetrachoric 

correlations frequently led to matrices that were not positive definite. Although this could be prevented by the 

stimulation of the ridge option, the call of this option was avoided since it implicitly diminished the correlations among 

items. 

One-factor and two-factor confirmatory factor models were employed for investigating the data. The factor loadings 

were specified, as is described in the theoretical section. Since it could be assumed that the latent source contributed 

equally to each item, the factor loadings on the first latent variable were specified to show the same size; the number 

one was selected for this purpose. The second latent variable was designed as difficulty factor. The factor loadings were 

specified to correspond to the difficulties selected for the construction of the data. The variance parameters of the latent 

variables were set free for estimation to enable the fitting of the model to the data. 

The simulation was conducted in several steps. The structured random data were generated by means of PRELIS 

(Jöreskog & Sörbom, 1999). Additional transformations of the data (e.g. the dichotomization of the continuous data) 

were conducted by PASCAL programs.  

The maximum likelihood estimation method of LISREL (Jöreskog & Sörbom, 2006) was employed for investigating 

the data. The evaluation of the results was conducted by the following fit indices and criteria (in parenthesis): ,  
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RMSEA (≤ .06), SRMR (≤ .08), CFI (≥ .95), TLI (≥ .95), and AIC (see DiStefano, 2016; Hu & Bentler, 1999). The CFI 

difference with a cutoff of .01 served the comparison of models (Cheung & Rensvold, 2002). The chi-square difference 

test was also considered when it was applicable. The variances of the latent variables were scaled according to the 

criterion-based method with squared factor loadings using the criterion number of one (Schweizer, Troche, & Reiß, 

2017). 

2.3 Results 

The mean fit results observed in investigating the generated data by means of the one-factor and two-factor models are 

included in Table 1. 

Table 1. Mean Fit Results Obtained by One-factor and Two-factor Confirmatory Factor Models for Increasing Ranges 

of Difficulties of Items (N = 200) 

R1 χ2 RMSEA SRMR CFI TLI AIC 
d2   

(2 F) 

dCFI  

(2 F) 

d2   

(2 cF) 

dCFI  

(2 cF) 

.5-.5 189.5 0.006 0.042 0.99 1.00 231.5 - - - - 

.4-.6 190.0 0.006 0.042 0.99 1.00 232.0 1.02 0.00 1.87 0.00 

.3-.7 188.5 0.005 0.042 0.99 1.00 230.5 1.42 0.00 1.93 0.00 

.2-.8 188.3 0.005 0.042 0.99 1.00 227.6 1.17 0.00 2.51 0.00 

.1-.9 191.1 0.007 0.043 0.98 0.99 233.1 1.25 0.00 2.85 0.00 
1 Lower and upper limits of the range for difficulties of items. 

The results reported in the columns two to seven were obtained by the one-factor model, in the columns eight and nine 

by the two-factor model with no correlation among the factors, and in the column ten and eleven by the two-factor 

model allowing for a correlation among the factors. All statistics for the one-factor model signified good model fit. The 

comparison between the CFIs of the one-factor models did not yield a substantial result (Note. Before rounding the 

statistics, the difference between CFI(.5-.5) and CFI(.1-.9) was smaller than .01). Furthermore, all chi-square and CFI 

differences reported in the columns eight to eleven indicated that there was no improvement in model fit. 

The scaled mean variances are presented in Table 2.  

Table 2. Mean Scaled Variances of Latent Variables of the One-factor [F1] and Two-factor [F1,F2] Confirmatory Factor 

Models for Different Ranges of Difficulties (N = 200) 

R1 
Var(F1) 

[F1] 
 Var(F1) 

[F1,F2] 

Var(F2) 

[F1,F2] 
Sum2 

 Var(F1) 

[cF1,cF2] 

Var(F2) 

[cF1,cF2] 

Cov 

[cF1,cF2] 
Sum3 

.5-.5 0.51  - - -  - - - - 

.4-.6 0.50  0.48 0.02 0.50  0.58 0.12 -0.10 0.50 

.3-.7 0.46  0.45 0.02 0.47  0.51 0.07 -0.06 0.46 

.2-.8 0.40  0.39 0.02 0.41  0.46 0.07 -0.06 0.41 

.1-.9 0.33  0.31 0.02 0.33  0.37 0.06 -0.05 0.33 
1 Lower and upper limits of the range for difficulties of items. 
2 The sum (=whole variance at latent level) is the sum of the two variances. 
3 The sum (=whole variance at latent level) is the sum of the two variances plus the covariance (see Equation 11).  

The second column includes the variances for the one factor model, the columns three and four for the two-factor model 

with no correlation among the factors, and the columns six and seven for the two-factor model allowing for a 

correlation among the factors. The covariance is reported in column eight. Furthermore, there are the columns five and 

nine that comprise the whole variances at the latent level. 

The variances for the one-factor model revealed that there was a gradual decrease from 0.51 to 0.33 as a consequence of 

the increase in the range of the difficulty of the items. Furthermore, the comparison of these variances with the whole 

variances for the two-factor models showed that there was virtually constancy. There was no deviation larger than 0.01. 

Moreover, it became obvious that allowing the factors to correlate among each other led to a considerable increase of 

the variance of the first factors that was compensated by a negative covariance. 

2.4 Discussion 

The results of the simulation study did not support the expectation that increasing the range of difficulties would impair 

model fit and provide the basis for another factor that showed the characteristics of a difficulty factor. Instead all fit 

results suggested that there was one basic source of responding, as was induced in the process of generating the data. 

However, the increase of the range of difficulties was not without an effect. The increase influenced the results in an 

unexpected way. There was a decrease in the size of the variance estimate for the factor of the one-factor model. This 
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variance at the latent level showed to be virtually constant irrespective of the number of considered factors and the 

correlation among them. 

3. The Effect of the Same High and Low Degree of Difficulty of the Items – Study 2  

3.1 Introduction 

The second study focused on the similarity of the items according to difficulty since a high degree of similarity was also 

proposed as the source of the difficulty factor (Bandalos & Gerster, 2016). Such similarity could be achieved by 

assigning the same degree of difficulty to several items. Since assigning the same degree to all items would mean 

uniformity that is assumed for the genuine factor, it appeared to be necessary to have two subsets of items that differed 

according to difficulty. But the difficulties of the items of each subset were the same.  

3.2 Method 

The methods of the first and second study only differed according to the cutoffs used in dichotomizing the continuous 

and normally distributed data. The 20 columns of the generated 500  20 matrices were subdivided into two subsets of 

ten columns. The columns of each subset were dichotomized according to the same cutoff. Four pairs of cutoff were 

employed for dichotomizing the data. The first one yielded difficulties of simulated items of 0.4 and 0.6, the second one 

of 0.3 and 0.7, the third one of 0.2 and 0.8, and the fourth one of 0.1 and 0.9. Furthermore, there were the matrices with 

columns dichotomized to yield simulated difficulties of 0.5. As in Study 1, the results observed for these matrices 

served as comparison level.  

For further information see the method section of Study 1. 

3.3 Results 

Table 3 includes the mean fit results observed in investigating the generated data by means of the one-factor and 

two-factor models. 

Table 3. Mean Fit Results Obtained by One-factor and Two-factor Confirmatory Factor Models for Increasing Distances 

Between Subsets of Items Showing the Same Difficulty (N = 200) 

L1 χ2 RMSEA SRMR CFI TLI AIC 
d2   

(2 F) 

dCFI  

(2 F) 

d2   

(2 cF) 

dCFI  

(2 cF) 

.5/.5 189.5 0.006 0.042 0.99 1.00 231.5 - - - - 

.4/.6 187.9 0.006 0.042 0.99 1.00 230.9 0.94 0.00 1.83 0.00 

.3/.7 186.3 0.005 0.042 0.99 1.00 228.3 1.35 0.00 2.75 0.00 

.2/.8 185.6 0.005 0.042 0.99 1.00 227.6 1.08 0.00 3.70 0.00 

.1/.9 192.6 0.007 0.043 0.96 0.99 234.6 2.92 0.00 7.71 0.01 
1 Lower and upper difficulties characterizing the subsets of items. 

This Table shows the same structure as Table 1. The results reported in the first row correspond to the results reported in 

the first row of Table 1. As is obvious from the results reported in columns three to six, the one-factor model yielded 

good model fit in all cases. However, the comparison of the CFIs included in column 5 revealed a substantially worse 

model fit for .1/.9 as the pair of difficulty levels than for any other pair and the comparison level. Furthermore, only for 

this pair of difficulties the replacement of the one-factor model by the two-factor model led to improvement in model fit 

according to CFI and also to 
2. 

Table 4 comprises the scaled mean variances.  

Table 4. Mean Scaled Variances of the Latent Variables of the One-factor [F1] and Two-factor [F1,F2] Confirmatory 

Factor Models for Different Subsets of Difficulties of Items (N = 200) 

L1 
Var(F1) 

[F1] 
 Var(F1) 

[F1,F2] 

Var(F2) 

[F1,F2] 
Sum2 

 Var(F1) 

[cF1,cF2] 

Var(F2) 

[cF1,cF2] 

Cov 

[cF1,cF2] 
Sum3 

.5/.5 0.51  - - -  - - - - 

.4/.6 0.48  0.49 -0.01 0.48  0.59 0.09 -0.10 0.48 

.3/.7 0.39  0.36 0.02 0.38  0.44 0.07 -0.06 0.39 

.2/.8 0.25  0.23 0.02 0.25  0.29 0.06 -0.05 0.25 

.1/.9 0.10  0.09 0.01 0.10  0.12 0.03 -0.02 0.11 
1 Lower and upper difficulties characterizing the subsets of items. 
2 The sum (=whole variance at latent level) is the sum of the two variances. 
3 The sum (=whole variance at latent level) is the sum of the two variances plus the covariance (see Equation 11). 

This Table shows the same structure as Table 2. Again a gradual decrease of the variance estimates for the one-factor 
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model was observed as a consequence of the increase in the range of the difficulty of the items. It was an even stronger 

decrease than the decrease reported in Study 1 since the decrease from 0.51 ended with 0.10. Again the whole variances 

at the latent level virtually corresponded to the variance estimates for the one-factor model.  

3.4 Discussion 

This Study revealed one condition giving rise to results that signified the observation of a difficulty factor. There was 

the impairment in model fit and the evidence in favor of an additional factor that showed factor loading related to the 

difficulties of the items. The special features of this condition were equal sizes of the difficulties of the items of each 

subset of items. Equal sizes meant a high degree of similarity of the difficulties of the items, as was suggested to drive a 

difficulty factor by Bandalos and Gerster (2016).   

The validity of this finding was impaired by the fact that impairment in model fit was signified by CFI (Bentler, 1990) 

in data due to items showing extremely high difficulties. The variances of binary items with extremely high difficulties 

were very small. As a consequence, the implicit comparison with the independence model was unlikely to reveal a 

major difference that would signify good model fit (Schweizer, Troche, & Reiß, 2019). Therefore, it was important that 

also the comparison of the one-factor and two-factor models by the chi-square difference additionally confirmed the 

observation of a difficulty factor. 

4. The Effect due to Items Showing the Same High Difficulty - Study 3  

4.1 Introduction 

This study served the realization of the third objective that was inspired by the outcome of Study 2. The effect due to 

the combination of equal difficulties and of very large sizes of difficulties of items was to be investigated in more detail. 

Since the high difficulties of items were more important for the characterization of an additional factor than the small 

difficulties, the subset of items showing high difficulties was retained from Study 2. It remained to be investigated 

which characteristics of the other items would contribute to the observation of a difficulty factor. Therefore, we 

manipulated the difficulties of the other items. 

4.2 Method 

The methods employed as part of this study corresponded to the methods selected for the studies 1 and 2 with the 

exception of the dichotomization of the continuous and normally distributed data. The 20 columns of the generated 500 

 20 matrices were subdivided into two subsets of ten columns. The columns of each subset were dichotomized 

according to the same cutoff. The columns of one subset were dichotomized by a cutoff that yielded difficulties of items 

of 0.9. The columns of the second subset were dichotomized according to different cutoffs to achieve different levels. In 

the first level all columns of the second subset were dichotomized to achieve a difficulty of 0.8 (.8/.9), in the second 

level of 0.7 (.7/.9), in the third level of 0.6 (.6/.9), in the fourth level of 0.5 (.5/.9), in the fifth level of 0.4 (.4/.9), in the 

sixth level of 0.3 (.3/.9), in the sevens level of 0.2 (.2/.9) and in the eights level of 0.1 (.1/.9). Furthermore, the matrices 

with all columns dichotomized to yield difficulties of 0.5 were considered as comparison level.   

Further information on methods can be found in the method section of Study 1. 

4.3 Results 

The investigation of the data by the one-factor and two-factor models led to the mean fit results reported in Table 5. 

Table 5. Mean Fit Results Obtained by One-factor and Two-factor Confirmatory Factor Models for a Subsets of Items 

Showing the Same High Difficulty and Another Subsets of Items with Smaller Difficulties (N = 200) 

L1 χ2 RMSEA SRMR CFI TLI AIC 
d2   

(2 F) 

dCFI  

(2 F) 

d2   

(2 cF) 

dCFI  

(2 cF) 

.5/.5 189.5 0.006 0.042 0.99 1.00 231.5 - - - - 

.8/.9 237.1 0.022 0.048 0.90 0.90 279.1 3.09 0.00 4.10 0.00 

.7/.9 225.3 0.019 0.047 0.93 0.93 268.3 2.81 0.00 4.49 0.00 

.6/.9 219.8 0.016 0.046 0.94 0.94 261.8 7.80 0.01 10.41 0.02 

.5/.9 207.5 0.013 0.045 0.96 0.96 249.5 6.61 0.01 12.14 0.01 

.4/.9 204.4 0.011 0.045 0.96 0.97 246.4 5.12 0.01 12.02 0.02 

.3/.9 199.7 0.010 0.044 0.97 0.97 241.7 2.68 0.00 11.02 0.01 

.2/.9 194.0 0.008 0.043 0.97 0.98 236.0 1.33 0.00 9.03 0.01 

.1/.9 192.6 0.007 0.042 0.96 0.99 234.6 2.92 0.00 7.71 0.01 
1 Lower and upper difficulty levels characterizing the subsets of items. 

The results reported in this Table are arranged in the same way as the results of Table 1. The first row includes the 
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results for the comparison level that were also included in the first row of the Tables 1 and 3. The following rows 

provide the new results with the exception of the last row. This row includes results already reported in the last row of 

Table 3. 

Virtually all results for the one-factor model reported in the columns three to six suggested impairment of model fit due 

to the manipulation of the difficulties of items. All CFI differences for comparisons with the comparison level (.5/.5) 

were larger than 0.1. The comparison of the AICs yielded the smallest AIC for the comparison level. Furthermore, the 

smallest RMSEA was found for the model of the comparison level and also the smallest SRMR with one exception. 

The consideration of an additional uncorrelated factor led to a substantial improvement in model fit in three levels 

(.6/.9, .5/.9, .4/.9) according to the chi-square difference and also the CFI difference. Allowing the two factors of the 

two-factor model to correlate with each other led to substantial chi-square differences for all levels. The CFI difference 

also reached the level of significance for comparisons of the CFI for the comparison level with the CFIs of six other 

levels (.6/.9, .5/.9, .4/.9, .3/.9, .2/.9, .1/.9). 

The means estimates of the variance parameter are presented in Table 6 (see next page). The structure of this Table 

corresponds to the structure of Table 2. The comparison of the entries of the second column including the variance 

estimates for the one-factor model revealed that the estimate for the comparison level was almost two times as large as 

any other estimate. The comparison of the variance estimates reported in the third and sixth columns that referred to the 

genuine factor of the two-factor model showed to be considerably larger than the estimate for the corresponding 

one-factor model. In the .8/.9 and .7/.9 levels the estimate for the correlated genuine factor was more than four times as 

large as the estimate for the factor of the corresponding one-factor model. These large sizes were compensated by 

negative variance and covariance estimates since in all cases the whole variance at the latent level virtually 

corresponded to the variance estimate for the factor of the corresponding one-factor model. 

4.4 Discussion 

All levels considered in this study appeared to drive a difficulty factor. A common feature of these levels was the 

equality of the difficulties and also the very large difficulties of one subset of items. The likelihood of observing a 

difficulty factor appeared to be especially high if the other items showed difficulties near to the mean of the range 

between zero and one. Apparently complex patterns of difficulties of items led to the observation of  

Table 6. Mean Scaled Variances of Latent Variables of the One-factor [F1] and Two-factor [F1,F2] Confirmatory Factor 

Models for the Subset with Constant Diffculties and Other Subsets of Difficulties (N = 200) 

D1 
Var(F1) 

[F1] 
 Var(F1) 

[F1,F2] 

Var(F2) 

[F1,F2] 
Sum2 

 Var(F1) 

[cF1,cF2] 

Var(F2) 

[cF1,cF2] 

Cov 

[cF1,cF2] 
Sum3 

.5/.5 0.51  - - -  - - - - 

.8/.9 0.18  0.39 -0.20 0.19  0.88 0.28 -0.49 0.18 

.7/.9 0.23  0.37 -0.16 0.21  0.94 0.30 -0.50 0.24 

.6/.9 0.26  0.39 -0.12 0.27  0.82 0.20 -0.37 0.27 

.5/.9 0.26  0.33 -0.07 0.26  0.66 0.13 -0.26 0.27 

.4/.9 0.25  0.29 -0.04 0.25  0.51 0.08 -0.16 0.27 

.3/.9 0.22  0.23 -0.01 0.22  0.37 0.06 -0.11 0.23 

.2/.9 0.16  0.16 -0.00 0.16  0.24 0.04 -0.06 0.16 

.1/.9 0.10  0.09 0.01 0.10  0.12 0.03 -0.03 0.09 
1 Lower and upper difficulty levels characterizing the subsets of items. 
2 The sum (=whole variance at latent level) is the sum of the two variances. 
3 The sum (=whole variance at latent level) is the sum of the two variances plus the covariance (see Equation 11). 

a difficulty factor. These patterns were to some degree in line with each one of the ideas regarding the source of the 

difficulty factor (Bandalos & Gerster, 2016; Ferguson, 1941; McDonald, 1965, and others). But no one of the ideas 

seemed to reflect the complexity completely. 

The large increases of the estimates of the variance parameter for the genuine factor were unexpected results. In some 

cases the size of this estimate for the genuine factor of the two-factor model surmounted the size of the estimate for the 

corresponding factor of the one-factor model several times. This increase occurred although the latent source driving the 

genuine factor was kept constant. The large variances were compensated by either a negative estimate of the variance of 

the additional factor or a negative estimate of the covariance. Whereas the covariance could be negative, variances must 

be positive (Stoel, Garre, Dolan, & van de Wittenboer, 2006; Verbeke & Molenberghs, 2003). But there was also no 

reason for expecting a negative correlation among the factors that might lead to a negative covariance. 
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4. General Discussion 

Factor-analytic models distinguish between latent and observed variables and assume that the latent variables influence 

the observed variables (Flora, LaBrish, & Chalmers, 2012). Furthermore, the latent variables that are also referred to as 

factors usually represent latent sources. The responses to the items that load on a factor are assumed to be influenced by 

the corresponding latent source. A factor that is not driven by such a source is an annoyance since the researchers’ effort 

to disclose the meaning of such a factor is likely to fail. Such an experience led Guilford (1941) to provide the first 

report of a difficulty factor and to open up a new field of research this way. 

For avoiding such situations, researchers need to be equipped with methods for identifying factors that are not driven by 

a latent source as, for example, the difficulty factor. One method proposed for the identification of a difficulty factor is 

the investigation of the relationship between the difficulties of the items and the sizes of the factor loadings since a 

difficulty factor is known to show factor loadings according to the difficulties of the items. However, as pointed out by 

McDonald and Ahlawat (1974), such a relationship does not exclude the possibility that there is an underlying source 

driving the additional factor. For example, the item-position effect is related to the difficulties of the items if the items 

are arranged according to their difficulties (Schweizer Troche, 2018). But the corresponding factor is a factor that is 

independent of the difficulties (Zeller, Reiss, & Schweizer, 2017). 

The reported research work aims at the identification of the conditions that lead to the observation of a difficulty factor. 

It relies on simulated data since such data enable the systematic manipulation of the properties characterizing the data. 

Furthermore, the investigation makes use of fixed-links models (Schweizer, 2006, 2008, 2009) that enable the 

theory-guided decomposition of the variances and covariances. The factor loadings of such a model can be specified 

according to the difficulties of the items in order to assure that the corresponding factor shows a basic characteristic of a 

difficulty factor: a close relationship of the difficulties of the items and the sizes of the factor loadings. 

The results of the research work add to the knowledge on the conditions that drive a difficulty factor. The first study 

reveals that the broad range of difficulties of the items is not as important, as is suggested in literature (Ferguson, 1941; 

McDonald & Ahlawat, 1974). The second study signifies that very high and low difficulties of equal size may drive the 

difficulty factor (Bandalos & Gerster, 2016). The third study shows what actually leads to the difficulty factor: there 

must be one subgroup of items showing the same high difficulty. This means inhomogeneity with respect to the 

complete set of items (Bandalos & Gerster, 2016). Each one of the levels of this study includes a subgroup of items with 

very high difficulties of equal size whereas the difficulties of the other items vary. 

The knowledge about the condition driving a difficulty factor cannot only be used for the identification of a difficulty 

factor but also for avoiding such a factor. Guidelines for item writing and item selection (Johnson & Morgan, 2016) 

should equip researchers with knowledge appropriate for this purpose. In real data the effect of equal difficulties may 

vary as a function of the type and number of processes contributing to performance. The effect may be stronger in 

simple items than in complex items since fewer processes contribute. In contrast, in complex items the effect may be 

weak since more processes that may differ from each other are likely to contribute (Schweizer, 1998, Stankov, 2001). 

Furthermore, there is the additional information provided by the variance estimates for the latent variables. Variances of 

latent variables are rarely considered in empirical research with the exception of longitudinal research and invariance 

analyses (McArdle, 2009; McArdle & Cattell, 1994; Schmitt & Kuljanin, 2008). Variances can be useful if the model of 

measurement includes more than one latent variable since in this case a comparison of the contributions of the latent 

variables to the explanation of the criterion variable is possible. In the present case the comparisons of the variances for 

the latent variable of the one-factor model and the whole variance of the two-factor models reveals virtual equality. This 

result is in line with the presumption that there is no additional underlying source for the difficulty factor. 

Although the research work provides new insight regarding the conditions driving the difficulty factor and the 

consequences for the variance associated with the latent variables, there is also a limitation. The limitation is the lack of 

a contribution to the explanation of how the difficulty factor is generated. Further research is necessary to improve our 

understanding of the mechanism that leads to the difficulty factor. 
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